Phase Evolution in a Quantum Dot
Coulomb Blockage vs. Kondo Correlation Regimes

Yang Ji, D. Sprinzak, R. Schuster
D. Mahalu, V. Umansky, H. Shtrikman
M. Heiblum

Braun Center for Submicron Research
Weizmann Institute of Science, Rehovot, Israel

- Testing Coherence of a QD
- Measuring phase evolution of a QD:
 \[\Rightarrow \text{in Coulomb Blockade Regime} \]
 \[\Rightarrow \text{in Kondo Correlation Regime} \]

QD in the Coulomb Blockade Regime

- small puddle of electrons
- small capacitance, \(C \)
- large charging energy, \(U_C = e^2/2C \)
- energy quantization, \(\Delta \ll U_C \)

Conductance (\(e^2/h \))

On
aligned energy level

Off
misaligned energy level

Plunger Gate Voltage, \(V_p \) (mV) \([\text{\scriptsize energy}]\)
Phase Measurements on Coulomb-Blockaded Quantum Dots, Including Kondo Correlations

Two Dimensional Electron Gas (2DEG)

Realization of QD in 2DEG
Phase Measurements on Coulomb-Blockaded Quantum Dots, Including Kondo Correlations

Typical Parameters:

\[\Gamma_e << k_B T << \Delta << U_C \]

- **Gamma** (\(\Gamma_e \))
- **K_B** (\(k_B \))
- **Delta** (\(\Delta \))
- **U_C** (\(U_C \))

Typical Parameter Values:

- **QD size** 300 nm x 300 nm
- **Number of electrons** 100 - 300
- **Capacitance, C** 160 aF
- **Charging energy, U_C** 0.5 meV
- **Level spacing, \(\Delta \)** 50 µeV
- **Temperature (100 mK)** 10 µeV
- **Single particle level width, \(\Gamma_e \)** 0.1 - 1 µeV

Determining Coherence and Phase of QD

Two path interferometer

- Electron has *wavelike* behavior
- Current \(I_{\text{drain}} \propto |t_{SD}|^2 \)
- Two-path interference

\[I_{\text{drain}} = |t_{SD}|^2 = |t_1 + t_2|^2 = |t_1|^2 + |t_2|^2 + 2 |t_1 t_2| \cos \Delta \phi \]

Drain current depends on relative phase between the two paths

\[\Delta \phi = \phi_1 - \phi_2 \]
Utilizing the Aharonov-Bohm Effect

tuning phase with magnetic field

\[\Delta \phi = \phi_{AB} + \Delta \phi_0 (B=0) \]

\[\phi_{AB} = 2\pi \Phi / \Phi_0 \]

\[\Phi_0 = h/e \text{ flux quantum} \]

\[\Phi_0 = h/e \text{ flux quantum} \]

\[\phi_{QD} \text{ is deduced from oscillation} \]

Expected Phase Evolution in a Resonant Tunnelling Device

Breit-Wigner formula for transmission amplitude…

\[t_{QD} = C_n \frac{i \Gamma/2}{(E - E_n) + i \Gamma/2} \]

transmission phase………………………………

\[\theta(t_{QD}) = \theta(C_n) + \arctan \frac{2}{\Gamma} (E - E_n) \]
Sequential Peaks in Resonant Tunnelling: 1D

- Each resonance leads to phase change of π
- Consecutive resonances are out of phase: $\theta(C_{n+1}) - \theta(C_n) = \pi$

Experimental Considerations

Two Terminal Interferometer

closed Aharonov-Bohm ring

Four Terminal Interferometer

two path interferometer

$$I_D \propto |t_{12}| \cos \Delta \Phi$$
Phase Measurements on Coulomb-Blockaded Quantum Dots, Including Kondo Correlations

Experimental Realization

two terminal

four terminal

A. Yacoby et al., PRL 74, 4047 ('95)

R. Schuster et al., Nature 385, 417 ('97)

Phase Evolution in a Two Terminal Interferometer

\[G(B) = G(-B) \]

Magnetic Field, \(B \) (mT)

Phase rigidity!
Phase Measurements on Coulomb-Blockaded Quantum Dots, Including Kondo Correlations

Apparent Phase Phase Evolution in a Two Terminal Interferometer

![Graph of phase evolution in a two-terminal interferometer](image)

Phase Evolution in a Four Terminal Interferometer

![Graph of phase evolution in a four-terminal interferometer](image)
Phase Evolution of a QD in the CB Regime

![Graph showing phase evolution of a QD in the CB regime.](image)

- Abrupt phase lapse between the peaks: \(\Gamma_c, < k_B T \)

Phase Evolution of few CB Peaks in the CB Regime

![Graph showing phase evolution of few CB peaks in the CB regime.](image)

- All peaks have the same phase!
• Why the abrupt phase lapse?
• Why all resonances with same phase?

No complete explanation yet!

A few suggestions:
• A single level is responsible for the transport
• Intra QD Fano resonance
• Many body treatment

The Kondo effect

A brief history

• 1930s Abnormal temperature dependence of resistance observed in metals lightly doped with magnetic impurities
• 1960s Explained with spin-flip scattering (Kondo)
• 1988 Prediction of Kondo effect in a QD (Glazman & Raikh; Ng & Lee)
• 1994 Measured Kondo effect in a metal point contact (Ralph *et al.*)
• 1998 Measured tunable Kondo effect in a QD (Goldhaber-Gordon *et al.*)

Scattering Phase in Kondo regime predicted to be $\pi/2$
(Langreth ‘64, Nozières ‘74, Gerland *et al.* ‘00).

{Not Measured!}
A QD in the Kondo Correlated Regime

Anderson Model

- Fermi level aligned between quasi-bound states
- First order process is not allowed
- QD is strongly coupled to the leads (Γ_z is large)
- Spin degenerate level in the QD, e_d
- Spin singlet formed (between QD & leads)
- Enhanced DOS at the Fermi level

What is the Kondo effect?

Forming a Spin Singlet

- Spin up electron wave function spills to the leads
- Spin up electrons in leads move back (Pauli’s exclusion)
- Spin down electrons form a singlet with QD’s spin up electron
- An attractive potential for spin down electrons forms around the QD
- Impinging rate of spin down electrons increases
- Transport DOS at the Fermi level in the leads peaks (width T_K)
The Kondo enhancement = Coherent sum of many possible events

Kondo effect in QD: Characteristics

Kondo: Enhanced valley conductance at low temperature

Prerequisites for the Kondo effect
- spin polarized QD
- spin degenerate level
- strong coupling to leads, $\Gamma \gg T_K$
- low temperature, $T \ll T_K$

Quenching the Kondo effect
- no spin polarization
- reducing coupling to leads, Γ_e
- increasing temperature, T
- applying DC bias
Kondo Regime

Typical Parameters:

- $k_B T < T_K < \Gamma_e < \Delta < U_C$

- QD size: 150 nm x 150 nm
- Number of electrons: 50
- Capacitance, C: 50 aF
- Charging energy, U_C: 1.5 meV
- Level spacing, Δ: 500 μeV
- Temperature ($T=100 \text{ mK}$): 10 μeV
- Single particle level width, Γ_e: 200 μeV
- Kondo Temperature ($T_K=1 \text{ K}$): 100 μeV

Identify a Kondo Pair

Reducing coupling strength

strong coupling to leads

weak coupling to leads
Identify a Kondo Pair
changing temperature

Identify a Kondo Pair
applying DC bias
Four Terminal Interferometer with Kondo QD

- S source
- D drain
- B base
- R reflector
- P plunger gate

Expected Phase Evolution

QD in Coulomb Blockade Regime
measured by R.Schuster *et al.* ('97)

- Phase evolves in resonance
 as expected
- Phase lapse in the valley
 not understood
- Similarity of phase in all peaks
 not understood

QD in Kondo Correlated Regime
predicted by U. Gerland *et al.* ('00)

- Phase shift is a constant π/2 in the Kondo valley
- Total phase shift through two peaks is π
Phase Measurements on Coulomb-Blockaded Quantum Dots, Including Kondo Correlations

Testing Coherence and Measuring Phase

- **Plunger Gate Voltage, \(V_p \) (mV)**
 - 15, 20, 25, 30, 35, 40
 - 0, 2, 4, 6, 8, 10
 - 1, 2, 3, 4, 5, 6

- **Magnetic Field (mT)**
 - -15, -10, -5, 0, 5, 10, 15

Measured Phase Evolution

- **Plunger Gate Voltage, \(V_p \) (mV)**
 - -300, -280, -260, -240, -220, -200, -180

Dr. Mordehai Heiblum, Weizmann Institute of Science (ITP 10/3/01)
Phase Measurements on Coulomb-Blockaded Quantum Dots, Including Kondo Correlations

Phase Evolution in a Kondo Pair

Phase Evolution in a Kondo Pair
What happens when Kondo correlation is being destroyed and the QD moves into the Coulomb Blockade regime?

Kondo Correlation → Coulomb Blockade

(reducing coupling strength)
Phase Measurements on Coulomb-Blockaded Quantum Dots, Including Kondo Correlations

Kondo Correlation → Coulomb Blockade

Increasing Temperature
Applying DC Bias

<table>
<thead>
<tr>
<th>Temperature (mK)</th>
<th>Visibility</th>
<th>Phase (π)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DC Bias (µV)</th>
<th>Visibility</th>
<th>Phase (π)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sensitivity of Phase to Kondo Correlation

new fingerprint of the Kondo effect

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>Visibility</th>
<th>Phase (π)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DC Bias (µV)</th>
<th>Visibility</th>
<th>Phase (π)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Coherence of transport in a Kondo correlated system verified

• Kondo related phase-shift is measured

 In Kondo valley: phase shift is a constant π

• Gradual evolution of phase behavior from Kondo regime to Coulomb Blockade regime

What is Learned from Phase Measurements?

-- Kondo regime:

 Phase shift in conductance valley is π not $\pi/2$
 Total phase shift of spin-degenerate duel is $\approx 2\pi$... not π
 Phase of CB peaks before and after differs by π

-- Coulomb blockade regime:

 Why an abrupt phase lapse ?
 Why repetitious phase behavior in all peaks ?

Are Quantum Dots understood ?
Kondo Effect at Unitary Limit

- reducing coupling strength -

Kondo Effect at Unitary Limit

- increasing temperature -
Kondo Effect at Unitary Limit
- increasing bias -

A-B Oscillations with a Kondo QD

Phase Evolution
Phase Measurements on Coulomb-Blockaded Quantum Dots, Including Kondo Correlations

Evolution of Phase and Conductance
- reducing coupling strength -

![Graph showing evolution of phase and conductance with reduced coupling strength.]

Increasing Temperature

![Graph showing phase and conductance evolution with increasing temperature.]

Applying DC Bias

![Graph showing phase and conductance evolution with applied DC bias.]

Dr. Mordehai Heiblum, Weizmann Institute of Science (ITP 10/3/01)