Coherence and phase-sensitive measurements in a quantum-dot interferometer experiment.

H. Shtrikman

Y. I. M. Helmich, D. Mahalu, H. Shtrikman

Phase measurement in a quantum dot via a double-sh	

H. Shtrikman

R. Schuster, E. Buks, M. Helmich, D. Mahalu, Y. Umansky

Phase evolution in a Kondo-correlated system

P. G. Silvestrov

Bukker Np. Novosibirsk

and

Institute Leiden

Small Quantum Dots

Kondo Effect and Phase Measurements in Small Quantum Dots
The Kondo Effect and Phase Measurements in Small Quantum Dots

One may find

\[|A^{00}(\nu)\rangle = |A^{00}(\nu)\rangle \cdot e^{-i\phi} \]

If \(A^{00} = A^{00}(\nu) \),

\[\frac{\partial \phi}{\partial x} = \Theta \]

\[\frac{\partial \Phi}{\partial y} = \Theta \]

\[J_{AB} \sim \overline{A_{e}e^{-i\Theta}} \]

\[J_{AB} = |(A_{e}e^{-i\Theta})^{2} + J_{AB}|^{2} \]

\[= \int |A_{e}e^{-i\Theta} + A_{ee}|^{2} \]
Dr. Peter Silvestrov, ITP, Leiden (ITP Nanoscience 11-19-01) Kondo Effect and Phase Measurements in Small Quantum Dots

W. van Veen et al. 2000

Kondo: E xperiments with DD-5

Nature 1998

D. Geshkenbein-Gordon et al.

- Why are the peaks so high?
- Why are the peaks so narrow?
- Why do we see sets of peaks?
Kondo Effect and Phase Measurements in Small Quantum Dots

1. The Kondo effect is not an answer.
2. Anderson Impurity

2. \(\pi/2 \neq \pi/2 \)

 The experiment is surprising about

1. Strong sensitivity of

Figure 2
Kondo Effect and Phase Measurements in Small Quantum Dots

\[H = \sum \left(g \frac{\Delta}{2} + V_{\text{on-site}} \right) \]

Kondo Hamiltonian

\[H = \sum \left(\frac{\Delta}{2} C_{s} + \frac{\Delta}{2} C_{s}^\dagger \right) \]

Anderson Impurity Model

\[\Delta \propto R \sqrt{A} A_{0} \]

Experimental AB effect measured in this experiment.
Dr. Peter Silvestrov, ITP & Leiden (ITP Nanoscience 11-01-19) Kondo Effect and Phase Measurements in Small Quantum Dots

\[G = \frac{n}{2} \left(\frac{4\pi}{h} \right) \left[\frac{1}{\nu^2 + 6\nu} \right] \]

\[\text{Phase for } S = \frac{1}{2} \]

\[(\nu)^2 \approx \nu_0 \]

\[\frac{G}{G(T)} = \frac{1}{T} \]

\[\frac{1}{\nu_0} = T \sqrt{\frac{1}{d} \frac{1}{\mu} \frac{N}{A} \left(\frac{V_0 - \nu_0}{\nu_0} \right)} \]
Figure 3
Dr. Peter Silvestrov, ITP & Leiden (ITP Nanoscience 11-19-01) Kondo Effect and Phase Measurements in Small Quantum Dots
FIG. 2. X 2D plot of drain current as a function of V^p.

The data is plotted as a function of the phase (Φ) and the magnetic field (B). The phase is shown on the left axis, and the magnetic field on the right axis. The plot shows oscillations in the current as a function of the phase, with minima and maxima indicating the influence of the Kondo effect.
$\Delta E = 0$

$T (E) = 0$

- $k \theta$

Phase factor

Single amplitude

$G \propto k A$

$S = 0$
3. $S = 0$ - Adiabatic

+π phase change

- $\frac{\pi}{2}$ phase change

2. $S = 1$ - Seno - antiferromagnetic

1. $S = \frac{1}{2}$ - Simpe exchange

Conclusion: S