

## Collective X-ray Diffraction and Photoluminescence in Perovskite Nanocrystal Superlattices

DMITRY BARANOV, DIVISION OF CHEMICAL PHYSICS, LUND UNIVERSITY KITP NANOASSEMBLY23 CONFERENCE 16 MAY 2023

#### **Colloidal Semiconductor Nanocrystals**



## Lead Halide Perovskite Nanocrystals

#### CsPbBr<sub>3</sub>







Efros, Even, Lounis, Sercel, and others





Guzelturk et al, *Nat. Mater.*, **2021**, 20, 618-623

## Artificial Atoms and Collective Effects



# 8-10 nm CsPbBr<sub>3</sub> Nanocubes

C<sub>18</sub>H<sub>35</sub>NH<sub>3</sub><sup>+</sup> Br<sup>-</sup>

LUND UNIVERSITY

 $PbBr_2 + C_{17}H_{33}COOCs + C_{18}H_{35}NH_2 \rightarrow CsPbBr_3 + by-products$ 



Protesescu et al., *Nano Lett*, 15 (6), 3692-3696, **2015** Almeida et al., *ACS Nano*, 12 (2), 1704-1711, **2018** 

# Superlattices by Solvent Removal



# Well-ordered in Electron Diffraction



# Assembly by Solvent Evaporation



```
[CsPbBr<sub>3</sub>]<sub>NC</sub> ≈ 0.8-1 µM
```

Solvents: Toluene (*b.p.*111 °C) Tetrachloroethylene (b.p. 121 °C)

Evaporation takes 2-12 hours, depending on the amount of liquid.



## Wide-Angle X-Ray Diffraction



## Superlattice Satellites of the 1<sup>st</sup> Bragg Peak



Schuller, *Phys. Rev. Lett.*, **1980**, 44, 24, 1597-1600 Toso, DB, Giannini, Manna, *ACS Mater. Lett.* **2019**, 1, 2, 272-276



## Superlattice Satellites of the 1<sup>st</sup> Bragg Peak





Schuller, *Phys. Rev. Lett.*, **1980**, 44, 24, 1597-1600 Toso, DB, Giannini, Manna, *ACS Mater. Lett.* **2019**, 1, 2, 272-276

## Superlattice Satellites of the 1<sup>st</sup> Bragg Peak



Schuller, *Phys. Rev. Lett.*, **1980**, 44, 24, 1597-1600 Toso, DB, Giannini, Manna, *ACS Mater. Lett.* **2019**, 1, 2, 272-276 From TEM of monolayers: 11.5-12.6 nm center-to-center distance



#### **Drying Superlattice in Vacuum**



# **Physical Picture of Superlattice Diffraction**



#### **Quantitative Structural Refinement**



Toso, DB et al, ACS Nano 2021, 15, 4, 6243-6256; model based on Fullerton et al., Phys. Rev. B, 1992, 45, 16, 9292-9310

## **Quantification of Structural Parameters**



### **Comparison with Model**









Hallstrom et al., ACS Nano 2023, 17, 8, 7219-7228

## **Comparison with Model**



Exp 2: Toso et al., ACS Nano 2021, 15, 12, 20341-20352



Hallstrom et al., ACS Nano 2023, 17, 8, 7219-7228

## Comparison with Model



Exp 2: Toso et al., ACS Nano 2021, 15, 12, 20341-20352



Hallstrom et al., ACS Nano 2023, 17, 8, 7219-7228

#### **Predicting Diffraction Patterns**



#### **Diffraction and Interference**

![](_page_20_Figure_1.jpeg)

## Experiments on Superfluorescence/-radiance in Perovskites

![](_page_21_Figure_1.jpeg)

# Dicke Superradiance, 1954

![](_page_22_Figure_1.jpeg)

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

#### Experiment with HF gas, 1972

![](_page_23_Figure_1.jpeg)

PRESSURE SQUARED (m Torr<sup>2</sup>)

Herman et al., in Laser Spectroscopy, 379-492, 1974

# Superfluorescence, 1975

![](_page_24_Figure_1.jpeg)

Bonifacio and Lugiato, Phys. Rev. A, 11 (5), 1975

UNIVERSITY

## Experiment with Na vapor, 1976

![](_page_25_Figure_1.jpeg)

Gross et al., Phys. Rev. Lett., 36 (17), 1035-1038, 1976

## Looking for Superfluorescence

![](_page_26_Figure_1.jpeg)

Baranov et al., ACS Nano, 15 (1), 650-664, 2021

Miloch et al., arXiv, 2023, 2303.08791

# **Important Open Questions**

![](_page_27_Figure_1.jpeg)

 $T_1$ , radiative decay  $T_2$ , decoherence time  $T_{SR}$ , characteristic time

 $T_1 > T_{SR} > T_2$ 

![](_page_27_Figure_4.jpeg)

![](_page_27_Figure_5.jpeg)

![](_page_27_Figure_6.jpeg)

 $I_{max}(t) \propto N$ 

![](_page_27_Picture_8.jpeg)

UNIVERSIT

## Timescales:

• Radiative vs. decoherence vs. cooperative

## **Disorder:**

• Energy, position, and orientation

#### Interactions:

Dipole-dipole, long-range

### Structure:

• intrinsic or necessary superlattice

![](_page_28_Picture_0.jpeg)

This research has received funding from the European Union's Horizon 2020 research and innovation programme under the MSCA grant agreement No 794560 (RETAIN), Nanochemistry Department @IIT, Horizon Europe ERC Starting Grant No. 101039683 (PROMETHEUS), and Faculty of Science, Lund University.