Kinetics and Anisotropy in Nanoparticle Assembly (from the perspective of a simulator)

Michael Engel

Self-Organization Processes Institute for Multiscale Simulation Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

UC **SANTA BARBARA** Kavli Institute for Theoretical Physics

Friedrich-Alexander-Universität Department Chemie- und Bioingenieurwesen

Deutsche Forschungsgemeinschaft

Materials from nanocrystals or colloids

Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials M. Boles, ME, D. Talapin, Chem. Rev. **2016**, 116, 11220-11289

Outline

- Self-assembly of complex crystals on the computer
- Relationship between structure and formation pathways
- Finite magic number clusters
- Role of polydispersity
- Modeling anisotropic patchy interactions
- Simulating crystal growth (incomplete)

3d billiard in simulation

event-driven molecular dynamics 57 balls (spheres)

Crystallization in the hard sphere model system

Theoretical prediction:

• Kirkwood, J. Chem. Phys. 1939

Computer simulation:

- Alder, Wainwright, J. Chem. Phys. 1957
 - UNIVAC, 32 particles, 300 collisions/hour
- Wood, Jacobson, J. Chem. Phys. 1957

Phase diagram

- fluid phase at low density, $\phi < 0.494$
- solid phase at high density, $\phi > 0.545$

Self-assembly simulation of the hard sphere system

Hard sphere phase transition (1957)

Local bond orientational order parameter:

versus

Rhombic dodecahedra (FCC plastic crystal)

Self-assembly of polyhedra ("Polyhedron Zoo")

P.F. Damasceno, ME, S.C. Glotzer, *Science* **2012**, 337, 453

Oscillatory pair potential

Fitting to VASP (ab-initio QM)

- effective pseudo-potentials for intermetallics
- Mihalkovic, Henley, PRB 85, 09210 (2012)

Characteristics:

- 1. short-range repulsion
- 2. medium-range Friedel oscillations

A *good guess* is the Mihalkovic-Henley oscillating pair potential (OPP):

$$V(r) = \frac{C_1}{r^{\eta_1}} + \frac{C_2}{r^{\eta_2}}\cos(kr + \phi)$$

High-throughput simulations

Numerical brute-force phase diagram determination

Machine learning approach

- Start with test configuration
- 1) Select order parameter
- 2) Generate list of reference configurations
- 3) Measure order parameter
 - possibly train neural network
 - include defects? interfaces?
- 4) Compare test configuration

But:

- Is the list of reference configurations complete?
- What are good order parameters?
- How can we quantify order and symmetry, not just classify?

Structure solution at the atomic scale ... in experiment

Bond-orientational order diagrams as "fingerprints"

Crystallography on simulation data

- M. Engel, "Point Group Analysis in Particle Simulation Data" https://arxiv.org/abs/2106.14846
- Web applet for particle simulation data early glimpse: <u>https://dev.engellab.de/PGquant.html</u>

16 known crystal structures

15 "unknown" crystal structures

Crystal structure discovery ("Potential Zoo")

Isotropic multiwell pair potential

$$V_{\rm OPP}(r) = \frac{1}{r^{15}} + \frac{\cos(k(r-1) + \phi)}{r^3}$$

Highlights: 20 000+ simulations 16 known crystal structures 15+ previously unknown crystal structures first icosahedral quasicrystal (sim) most complex crystal structure (sim)

[1] ME, P.F. Damasceno, C.L. Phillips, S.C. Glotzer, *Nature Mater.* **2015**, 14, 109

[2] J. Dshemuchadse, P.F. Damasceno, C.L. Phillips,
ME, S.C. Glotzer, *Proc. Natl. Acad. Sci. U. S. A.* 2021,
118, e2024034118

Phase diagrams (>20000 simulations,)

Overcoming the constraints of chemistry

Outline

- Self-assembly of complex crystals on the computer
- Relationship between structure and formation pathways
- Finite magic number clusters
- Role of polydispersity
- Modeling anisotropic patchy interactions
- Simulating crystal growth (incomplete)

Building block \rightarrow Structure \rightarrow Pathway

Building block \rightarrow Structure \checkmark

hard spheres (noble metals) form FCC/HCP soft spheres (micelles, DNA-ligand NPs) form BCC / A15

Building block \rightarrow Pathway \checkmark Structure \rightarrow Pathway ?

icosahedral order (alloys) prefers high-symmetry clusters tetrahedral order (water, Si) tends to favor multistep nucleation

Hard polyhedra with good clustering behavior

Prenucleation clusters forming in the TT system

Icosahedral 20-particle clusters form first, and later convert into a **highly complex crystal**.

Crystal structure of the cF432 crystal

f

gray particles:
• 1

particles in unit cell:

• $8 \times (53 + 1) = 432$

Similar to intermetallic alloys

 e.g.: Bergman phase Mg₃₂(AI,Zn)₄₉

Cluster hierarchy

Anisotropic growth of the PBP crystal

The low-density fluid converts to a coexistence of fiber-like motifs separated by weakly ordered dense region.

Two-step growth of the TBP crystal

Clathrate crystal from a low-density fluid via an intermediate amorphous fluid phase.

Organizing pathways by dimensionality

S. Lee, E.G. Teich, ME, S.C. Glotzer, Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 14843

Outline

- Self-assembly of complex crystals on the computer
- Relationship between structure and formation pathways
- Finite magic number clusters
- Role of polydispersity
- Modeling anisotropic patchy interactions
- Simulating crystal growth (incomplete)

Multiply-twinned nanoparticles

Long history, e.g.:

- X. Ma, F. Lin, X. Chen, C. Jin, ACS Nano 2020, 14, 9594
- J.S. Du, W. Zhou, S.M. Rupich, C.A. Mirkin, Angew. Chem. 2021, 60, 6858
- M. Sun, Z. Cheng, W. Chen, M. Jones, ACS Nano 2021, 15, 15953

Multi-domain structure in framboidal pyrite (fool's gold)

Arrangement of microcrystals in **framboidal pyrite** FeS₂.

Domain structures on sections of framboids from Shirone drill core (31m depth)

H. Ohfuji, J. Akai, Am. Mineral. 87, 176 (2002)

Assembly line for colloid crystals (Vogel group @ FAU)

Water-in-oil emulsion droplets with colloidal spheres (polystyrene)

Magic number cluster database

Magic number hard sphere clusters

Thermodynamic stability diagram: high-precision free energy calc.

J. Wang, C.F. Mbah, T. Przybilla, B.A. Zubiri, E. Spiecker, ME, N. Vogel *Nature Comm.* **2018**, 9, 5259

Free energy calculations

- (1) Existing free energy calculations (FEC):
- work well for solids with no or few defects
 - e.g. with Frenkel-Ladd method
- work well for fluids
 - e.g. with thermodynamic integration to ideal gas

How to calculate free energies for partially ordered systems?

(2) Why are simulations so much easier than FEC?

- Systems quickly and consistently move towards lower free energy.
- How can we see this in FEC?

Hierarchy in configuration space

Partition function is hierarchical:

system •

all configurations

macrostate

• phase; e.g.: fluid, crystal

basin

averages over phonons

microstate

single configuration, r

Hierarchy in configuration space

Partition function is hierarchical:

Is this separation correct?

Let's assume it is!

Fluid = many basins, fe Solid = fewer basins, r $S_{conf.}^{fluid} > S_{conf.}^{solid}$

macroscopic (dis)order

few phonons more phonons $S_{\rm vib.}^{\rm fluid} < S_{\rm vib.}^{\rm solid}$

microscopic (dis)order

Dependence on density

- configurational entropy (basins) does not or only slowly change with density
- vibrational entropy (phonons) decreases <u>rapidly</u> with density

Interpretation:

"At the hard sphere phase transition, the system trades configurational entropy for vibrational entropy."

Transmission X-ray imaging (Spiecker group @ FAU)

- ZEISS Xradia 810 Ultra X-ray microscope
- imaging of 16 μ m x 16 μ m large areas
- optical resolutions down to 50 nm (pixel size of 16 nm)

Competing pathways

Structure characterization of icosahedral and decahedral colloidal cluster polymorphs

C.F. Mbah, J. Wang, S. Englisch, P. Bomminini, N.R. Varela-Rosales, E. Spiecker, N. Vogel, ME preprint

Thermodynamics of clusters

Free energy landscape of decahedral and icosahedral clusters

Occurence statistics in simulation contradicts FE calculations

C.F. Mbah, J. Wang, S. Englisch, P. Bomminini, N.R. Varela-Rosales, E. Spiecker, N. Vogel, ME preprint

Kinetic crystallization pathways

39

Bifurcation of crystallization trajectories

At the critical point, five grains are present in the compact pentagonal bipyramid (PB) configuration.

Outline

- Self-assembly of complex crystals on the computer
- Relationship between structure and formation pathways
- Finite magic number clusters
- Role of polydispersity
- Modeling anisotropic patchy interactions
- Simulating crystal growth (incomplete)

Opals are naturally occurring colloidal crystals

- **Opal** = "hydrated aggregation of silica colloidal spheres $(SiO_2 \cdot nH_2O)$ "
- Colloids in nature initially size-disperse (?)
- Some opals form binary crystals.
 - Sanders, Phil. Mag. A 42, 705 (1980)

How is this possible?

 AB_2 **AB**₁₃

Size-disperse hard sphere mixture

Crystallization diagram from simulation

E. Zaccarelli, C. Valeriani, E. Sanz, W.C.K. Poon, M.E. Cates, P.N. Pusey *PRL* **2009**, 103, 135704

Molecular dynamics of hard spheres

Event-driven molecular dynamics with swap

Swap particles at each collision (if possible)

- Kranendonk, Frenkel J. Phys. Condens. Matter 1, 7735 (1989)
- Berthier et al. *Phys. Rev. Lett.* **116**, 238002 (2016)

Orders of magnitude speed-up by swap moves

Crystal structure analysis

No swap

Bond orientational

order diagram (BOD)

0.5

0

0

1

2

Distance r / o

3

4

5

Swap

Bond orientational order diagram (BOD)

48

Discovery of Laves phases

Phase observation diagram with swap algorithm

Bommineni, Varela-Rosales, Klement, ME, Phys. Rev. Lett. 2019

Laves phases in one-component systems

2.5 nm diameter Au nanocrystals

C14 Laves phase

S. Hajiw, B. Pansu, J.-F. Sadoc, *ACS Nano* **2015**, 9, 8116

soft spherical micelles from hydrated mixture TMADec-40

C14 + C15 Laves

C.M. Baez-Cotto, M.K. Mahanthappa, *ACS Nano* **2018**, 12, 3226

Outline

- Self-assembly of complex crystals on the computer
- Relationship between structure and formation pathways
- Finite magic number clusters
- Role of polydispersity
- Modeling anisotropic patchy interactions
- Simulating crystal growth (incomplete)

Anisotropic patchy interactions

PS-grafted Gd₂O₃ triangular nanoprisms @ Ye lab (Indiana)

Assembly:

- columns
- laying down (stacked)

Self-assembly of triangles

Y. Liu, M. Klement, Y. Wang, Y. Zhong, B. Zhu, J. Chen, ME, X. Ye, JACS 2021, 143 16163

Level 1: Densest packing

Analytic construction

- (1) ligands round particle shape
- (2) results in ulletlattice shear

2.0k-

Y. Liu, M. Klement, Y. Wang, Y. Zhong, B. Zhu, J. Chen, ME, X. Ye, JACS 2021, 143 16163

Level 2: Hard particle simulation

Y. Liu, M. Klement, Y. Wang, Y. Zhong, B. Zhu, J. Chen, ME, X. Ye, JACS 2021, 143 16163

Level 3: Anisotropic patchy interactions (multiscale)

Y. Liu, M. Klement, Y. Wang, Y. Zhong, B. Zhu, J. Chen, ME, X. Ye, JACS 2021, 143 16163

Outlook: More shapes

Tripod particles

Outline

- Self-assembly of complex crystals on the computer
- Relationship between structure and formation pathways
- Finite magic number clusters
- Role of polydispersity
- Modeling anisotropic patchy interactions
- Simulating crystal growth (incomplete)

Shape evolution in liquid cell @ Ye lab (Indiana)

Oxidative etching conditions: Pd@Au in H₂O + ferric chloride (FeCl₃)

Observations:

- from edge-selective to layer-by-layer atom removal
- tetrahexahedron intermediate with {310} facets
- concave shapes are achievable

C. Lei, A. Leonardi, J. Chen, ..., ME, X. Ye, Nature Commun. 2020, 11, 3041

Appearance of anisotropic shape in core@shell NPs

Chemical etching

· Interaction modeled via embedded-atom method (EAM) potential

Kinetic Monte Carlo lattice gas

Implementation in C++

Binary decision tree to store probabilities and choose where to place new particles

Cell linked list:

- Only pass over objects spatially close to reference particle (scales with N · In(N) instead of N³)
- Select type of site (particle, position to add particle, bulk buffer layer, or none)
- Use of bulk buffer layer: exclude bulk particles from simulation domain to spare memory

Modeling crystal growth (Carlos Bassani, @ KITP later!)

Varying growth conditions

• thermodynamics *vs.* kinetics

Wulff-shape maps summarize crystal growth phenomena

C. Bassani, M. Engel (unpublished)

Acknowledgements

https://engellab.de

Postdocs

- Alberto Leonardi
- Aswathy Muttathukattil
- Carlos Lange Bassani

PhD students

- Zhiyu Song
- Nydia Varela-Rosales
- Federico Tomazic
- Navid Panchi •

Master/Bachelor students

- Sahib Abdullayev
- Prashanth Kamath
- Isabella Schneider

Background

- **Chemical Engineers**
- Material Scientists
- **Physicists**
- Chemists
- **Computational Engineers**

Friedrich-Alexander-Universität Erlangen-Nürnberg

map Department Chemieund Bioingenieurwesen

advanced materials

and processes

Institute fo

Multiscale Simulation

DESIGN OF PARTICULATE PRODUCTS

NHR

FUNCTIONAL

FAU