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Controlling thermodynamic cycles to minimize the dissipated heat is a long-standing goal in
thermodynamics, and more recently, a central challenge in stochastic thermodynamics for nanoscale
systems. Here, we introduce a theoretical and computational framework for optimizing nonequilibrium
control protocols that can transform a system between two distributions in a minimally dissipative fashion.
These protocols optimally transport a system along paths through the space of probability distributions that
minimize the dissipative cost of a transformation. Furthermore, we show that the thermodynamic metric—
determined via a linear response approach—can be directly derived from the same objective function that is
optimized in the optimal transport problem, thus providing a unified perspective on thermodynamic
geometries. We investigate this unified geometric framework in two model systems and observe that our
procedure for optimizing control protocols is robust beyond linear response.
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Understanding how to efficiently control thermodynamic
cycles is a truly foundational problem in thermodynamics.
Our modern mathematical framework for macroscopic
thermodynamics emerged from efforts to describe the
transfer of heat into work and to quantify the wasted or
excess heat dissipated to the environment [1]. As it has
become possible to probe the thermodynamics of nanoscale
systems, both experimentally and in computer simulations,
the role of thermal fluctuations has reoriented our inter-
pretation of the fundamental constraints imposed by the
second law; at small scales, fluctuation theorems precisely
quantify the relationship between entropy production and
irreversible dynamics [2–4]. Exploiting nonequilibrium
dynamics to understand equilibrium properties like free
energy differences has been realized both experimentally
and computationally via the Jarzynski equality [5,6].
However, the statistical accuracy of such calculations
requires minimizing dissipation over the nonequilibrium
ensemble of trajectories by choosing an appropriate external
driving protocol [7,8]. What is more, fundamental questions
about the design and properties of nanoscale machines from
biology to engineering require theoretical tools to carefully
interrogate dissipation in stochastic systems.
Despite the importance of measuring dissipation, it has

proved challenging to do so accurately in nanoscale systems,
with only indirect proxies available. While bounds like the
thermodynamic uncertainty relations [9,10] can be used to
aid inference, these relations do not necessarily tightly
constrain the dissipation and cannot be directly correlated
with it in general [11]. Nevertheless, recent experimental and
computational advances have reinvigorated efforts to design
optimal controllers for nanoscale systems. Optimizing
a protocol through the use of “thermodynamic geometry”
[12–16], an approach in which the dissipation is quantified

through a Riemannian path length in the space of protocols,
has proved among the most productive strategies for
this problem [8,17–19]. The metric itself is derived via a
perturbative expansion [8] and hence applies only in the limit
of driving that is sufficiently slow or when the magnitude of
the perturbation is sufficiently small.
Separately, initially spurred by developments in the

study of variational solutions to certain partial differential
equations [20–22], a distinct geometry, based on optimal
transport theory, has been connected to nonequilibrium
dissipation. In this formulation, distances are measured not
with a Riemannian metric but directly between probability
distributions by determining a minimum cost transport plan
that moves the probability mass from an initial distribution
ρA to a given target ρB. The cost defines the Wasserstein
metric, which, in the Monge formulation, is formally
defined through an optimization problem,

W2
2ðρA; ρBÞ ¼ inf

T

Z

Ω
jx − TðxÞj2ρAðxÞdx; ð1Þ

where T ranges over all valid maps or transportation plans
that send ρA to ρB. The Wasserstein metric is a lower bound
on the dissipative cost to transform ρA to ρB in a finite time,
and, importantly, provides an alternate geometric framework
for minimizing dissipation [23]. Unlike the perturbative
formulation that leads to the thermodynamic Riemannian
metric, this approach makes no approximation to quantify
the total change entropy along a dissipative transformation.
However, the constrained minimization problem (1) that one
must solve to compute the Wasserstein distance is notori-
ously challenging, both analytically and numerically [24].
Here, we introduce a theoretical and computational

framework for optimizing control protocols that realize
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ABSTRACT
When a physical system is driven away from equilibrium, the statistical distribution of its dynamical trajectories informs many of its physical
properties. Characterizing the nature of the distribution of dynamical observables, such as a current or entropy production rate, has become
a central problem in nonequilibrium statistical mechanics. Asymptotically, for a broad class of observables, the distribution of a given observ-
able satisfies a large deviation principle when the dynamics is Markovian, meaning that fluctuations can be characterized in the long-time
limit by computing a scaled cumulant generating function. Calculating this function is not tractable analytically (nor often numerically) for
complex, interacting systems, so the development of robust numerical techniques to carry out this computation is needed to probe the prop-
erties of nonequilibrium materials. Here, we describe an algorithm that recasts this task as an optimal control problem that can be solved
variationally. We solve for optimal control forces using neural network ansatz that are tailored to the physical systems to which the forces are
applied. We demonstrate that this approach leads to transferable and accurate solutions in two systems featuring large numbers of interacting
particles.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0095593

I. INTRODUCTION
At equilibrium, a physical system relaxes to a time-invariant

distribution with a statistical weight that can, in many cases, be
computed easily. Straightforward characterization of the relative
probabilities of distinct states facilitates the use of Markov Chain
Monte Carlo algorithms, and, as a result, expectations of observables
are tractable to compute in many cases. When we drive a system
away from equilibrium, either through the application of an external
perturbation or with an energy-consuming dynamics that inherently
breaks detailed balance, we lose the luxury of this facile description
and knowledge of the universal distribution of states. While it is
possible in some cases to characterize steady-state distributions of
complex, interacting, nonequilibrium systems,1–6 as an alternative,
we adopt a manifestly dynamical point of view.

The large deviation perspective on nonequilibrium statistical
mechanics focuses less on static states of a system and more on
time-dependent trajectories.7,8 Ruelle developed a thermodynamic

formalism9 based on Donsker–Varadhan large deviation theory
that has become a widely used framework to understand the sta-
tistical fluctuations of dynamical behavior, from glassiness,7,10,11

to dynamical phase transitions,12,13 to thermodynamic uncertainty
relations.14,15 The central object of study within this theory is
the scaled cumulant generating function (SCGF) for a dynamical
observable AT . This object is defined as the limit of an expectation
over trajectories,

ψ(λ) = lim
T→∞

1
T

logEXeλTAT , (1)

playing a role akin to that of a free energy for an equilibrium system.
The Legendre–Fenchel transform of ψ(λ) defines the large devia-
tion rate function I(a), which describes the rate of decay of the
probability that AT ∈ [a, a + da],

P(AT ∈ [a, a + da]) � e−TI(a)da. (2)
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FIG. 2. The 1D ASEP with lattice size L = [10, 50, 100]. The variational results (dots) in different lattice size L and DMRG results (dashed lines) of (a) the SCGF scaled by
L, (b) the average current per site. The variational results of the average current shown in (b) are obtained by numerically computing the derivative of the convex envelope of
the corresponding SCGF from (a). The convex envelope is obtained by performing the Legendre–Fenchel transform twice. The inset shows the absolute error between the
variational results and the DMRG results. The parameters used throughout this example are p = 0.1, q = 0.9, α = 0.5, β = 0.5, γ = 0.5, and δ = 0.5. For the parameters
used in the neural network, the dimension of the hidden layer is 20, and the number of Li in (23) is 3. The DMRG results are adapted from Helms, Ray, and Chan.38

where a different transition matrix Wu is optimized. Equation (25)
is different from (14) because the Radon–Nikodym derivative for
Markov jump processes has a different form than that for SDEs.58

We review the derivation in Appendix A.

Let Si = 1 when the ith site of the lattice is occupied by a
particle and Si = 0 otherwise. Practically, for the ith site, the mod-
ified transition rate [qu(i), pu(i)] = [q + δqu(i), p + δpu(i)] when
Si = 1 and [qu(i), pu(i)] = 0 when Si = 0. The rate modification

FIG. 3. (a) A typical training process for λ = −0.1. (b)–(d) Typical trajectories of the current in the biased ensemble. The yellow line depicts the average current from the
mean field theory. It is clear that the control force changes the current for different λ.
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DERIVATION OF THE THERMODYNAMIC METRIC

We consider a system with coordinates x 2 Rd subject to an ergodic Markovian dynamics. A particle trajectory in

which the ith particle is at x(i)
0 at t = 0 is denoted X(i)(t;x(i)

0 ). Within this framework, the density

⇢(x, t) = h�(X(t;x0) � x)i (S1)

evolves according to a linear partial di↵erential equation

@t⇢(x, t) = L
†
⇢(x, t). (S2)

For example, we consider the microscopic dynamics specified by the stochastic di↵erential equation

dX(t) = �rU(X(t),�(t))dt +
p

2��1dWt, (S3)

where �(t) 2 Rk is a vector of control parameters conjugate to the generalized forces ⇥(x, t) = �@�U(x,�(t)), � is
the inverse temperature, and U is the potential energy of system, and W is a standard Wiener process. In this case,
the distribution satisfies the evolution equation

@t⇢(x, t) = �r · (v(x, t)⇢(x, t)) (S4)

where the local velocity v is explicitly

v(x, t) = �rU(x,�(t)) � �
�1

r log ⇢(x, t) (S5)

meaning that

L
† = �rU · r + �

�1�. (S6)

In this work, we focus on the problem of transforming an initial distribution, which could be the equilibrium
distribution with the initial control parameters, e.g.,

⇢A(x) = Z
�1(�(0))e��U(x,�(0))

, (S7)

into a target distribution ⇢B(x) which is the distribution that the system relaxes to when the control parameters are
fixed at �(tf). The protocol has a finite duration 0 < tf < 1. More general distributions ⇢A and ⇢B could also be
considered. We employ the standard stochastic thermodynamics definitions of work,

W [X(t)] = �

Z tf

0
⇥(X(t,x0)) · �̇(t)dt, (S8)

and heat,

Q[X(t)] = �

Z tf

0
rU(X(t,x0)) � dX(t). (S9)

In this formulation, the work and the heat yield the total change in energy when the system is driven by the protocol,
meaning that the first law of thermodynamics is simply,

�U = W � Q. (S10)

Using these expressions and (S4), the total entropy change is given by [23],

�⌃tot =

Z tf

0
�(t)

Z

⌦
v(x, t)Tv(x, t)⇢(x, t)dx dt (S11)

where the excess entropy dissipated to the environment is given by the average dissipated heat

�⌃ = �(�U � hW i) = � hQi . (S12)

The entropy change of the system is a state function and has no explicit dependence on the protocol used.
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The average energy change of the system is a state function and has no explicit dependence on the protocol used.
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fixed at �(tf). The protocol has a finite duration 0 < tf < 1. More general distributions ⇢A and ⇢B could also be
considered. We employ the standard stochastic thermodynamics definitions of work,

W [X(t)] =

Z tf

0
⇥(X(t,x0)) · �̇(t)dt, (S8)

and heat,

Q[X(t)] = �

Z tf

0
rU(X(t,x0)) � dX(t). (S9)

In this formulation, the work and the heat yield the total change in energy when the system is driven by the protocol,
meaning that the first law of thermodynamics is simply,

�U = W � Q. (S10)

Using these expressions and (S4), the total entropy change is given by [23],

�⌃tot =

Z tf

0
�(t)

Z

⌦
v(x, t)Tv(x, t)⇢(x, t)dx dt (S11)

where the excess entropy dissipated to the environment is given by the average dissipated heat

�⌃ = �(hW � �Ui) = � hQi . (S12)

The average energy change of the system is a state function and has no explicit dependence on the protocol used.
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Controlling thermodynamic cycles to minimize the dissipated heat is a longstanding goal in ther-
modynamics, and more recently, a central challenge in stochastic thermodynamics for nanoscale
systems. Here, we introduce a theoretical and computational framework for optimizing nonequi-
librium control protocols that can transform a system between two distributions in a minimally
dissipative fashion. These protocols optimally transport a system along a Wasserstein geodesic,
paths through the space of probability distributions that minimize the dissipative cost of a transfor-
mation. Furthermore, we show that the thermodynamic metric—determined via a linear response
approach—can be directly derived from a more general formulation based on optimal transport
distances, thus providing a unified perspective on thermodynamic geometries. We investigate this
unified geometric framework in two model systems and observe that our procedure for optimizing
control protocols is robust beyond linear response.

Understanding how to e�ciently control thermody-
namic cycles is a truly foundational problem in ther-
modynamics. Our modern mathematical framework for
macroscopic thermodynamics emerged from e↵orts to de-
scribe the transfer of heat into work and to quantify the
wasted or excess heat dissipated to the environment [1].
As it has become possible to probe the thermodynamics
of nanoscale systems, both experimentally and in com-
puter simulations, the role of thermal fluctuations has
reoriented our interpretation of the fundamental con-
straints imposed by the second law; at small scales, fluc-
tuation theorems precisely quantify the relationship be-
tween entropy production and irreversible dynamics [2–
4]. Exploiting nonequilibrium dynamics to understand
equilibrium properties like free energy di↵erences has
been realized both experimentally and computationally
via the Jarzynski equality [5, 6]. However, the statistical
accuracy of such calculations requires minimizing dissipa-
tion over the nonequilibrium ensemble of trajectories by
choosing an appropriate external driving protocol [7, 8].
What is more, fundamental questions about the design
and properties of nanoscale machines from biology to en-
gineering require theoretical tools to carefully interrogate
dissipation in stochastic systems.

Despite the importance of measuring dissipation, it has
proved challenging to do so accurately in nanoscale sys-
tems, with only indirect proxies available. While bounds
like the thermodynamic uncertainty relations [9, 10] can
be used to aid inference, these relations do not necessarily
tightly constrain the dissipation and cannot be directly
correlated with it in general [11]. Nevertheless, recent
experimental and computational advances have reinvig-
orated e↵orts to design optimal controllers for nanoscale
systems. Optimizing a protocol through the use of “ther-
modynamic geometry” [12–16], an approach in which
the dissipation is quantified through a Riemannian path
length in the space of protocols, has proved among the
most productive strategies for this problem [8, 17–19].
The metric itself is derived via a perturbative expan-

sion [8] and hence applies only in the limit of driving
that is su�ciently slow or when the magnitude of the
perturbation is su�ciently small.

Separately, initially spurred by developments in the
study of variational solutions to certain partial di↵eren-
tial equations [20–22], a distinct geometry, based on op-
timal transport theory, has been connected to nonequi-
librium dissipation. In this formulation, distances are
measured not with a Riemannian metric, but directly
between probability distributions by determining a mini-
mum cost transport plan that moves the probability mass
from an initial distribution ⇢A to a given target ⇢B . The
cost defines the Wasserstein metric, which, in the Monge
formulation, is formally defined through an optimization
problem

W
2
2 (⇢A, ⇢B) = inf

T

Z

⌦
|x � T (x)|2⇢A(x)dx, (1)

where T ranges over all valid maps or transportation
plans that send ⇢A to ⇢B . The Wasserstein metric is a
lower bound on the dissipative cost to transform ⇢A to ⇢B

in a finite time, and, importantly, provides an alternate
geometric framework for minimizing dissipation [23]. Un-
like the perturbative formulation that leads to the ther-
modynamic Riemannian metric, this approach makes no
approximation to quantify the total change entropy along
a dissipative transformation. However, the constrained
minimization problem (1) that one must solve to com-
pute the Wasserstein distance is notoriously challenging,
both analytically and numerically [24].

Here, we introduce a theoretical and computational
framework for optimizing control protocols that realize
Wasserstein geodesics. These are paths through the space
of probability distributions that minimize the dissipative
cost of the finite-time transformation. Additionally, we
show that the thermodynamic metric can be derived di-
rectly from this more general formulation based on op-
timal transport distances. Our result provides a unified
geometric framework for minimizing the dissipative costs

Ω?

Ω0

Monge Problem 8

To find a minimum dissipation protocol �⇤, we must solve the following minimization problem:

�⇤ = argmin
�:[0,tf ]!Rk

�⌃tot[�] subj. to ⇢(·, 0) = ⇢A, ⇢(·, tf) = ⇢B . (S13)

As discussed in the main text, this is the Benamou-Brenier formulation of the optimal transport problem [22]. It should
be noted that the rigorous formulation of the relation between the minimizer (S13) and the optimal transportation
plan requires that the time-dependent local velocity fields and density (v, ⇢) are allowed to vary over all possible
functions that satisfy (3) and the boundary conditions. While we place no restrictions on the control parameters �,
in practice we represent � with a neural network, so we do restrict the function class to an extent, though su�ciently
wide neural networks should allow us to find expressive enough protocols to ensure that this restriction is unimportant.

Benamou and Brenier [42] initially established the connection between the Monge problem (1) and formulation
of the optimal transport problem as a minimization over velocity fields (6). We outline the core argument here for
completeness and because it is not widely known in the physics community. First, we write the dynamical evolution in
the state space in the Lagrangian formalism, as above X(t;x) with the initial condition X(0;x) = x. The associated
particle velocity we denote

Ẋ(t;x) = v(x, t), (S14)

emphasizing that though we have changed the representation the conservation equation @t⇢ + r · (⇢v) = 0 still holds
for (S1) and (S14). The boundary conditions of the optimal transport problem require that an admissible solution
in terms of the density (S1) and (S14) must have the property that at some fixed final time tf , for all bounded,
continuous functions f ,

Z

⌦
f(x)⇢B(x)dx =

Z

⌦
f(X(tf ;x))⇢A(x)dx. (S15)

Obviously, if X(tf ;x) ⌘ T (x), the optimal map, is a valid solution.
They additionally show that

tf

Z

⌦

Z tf

0
|Ẋ(t,x)|2⇢A(x) dx dt �

Z

⌦
|X(t,x) � x|

2
⇢A(x) dx dt �

Z

⌦
|T (x) � x|

2
⇢A(x) dx dt. (S16)

The first inequality is Jensen’s inequality; the second is due to the fact that T minimizes the integral. Hence, the
optimal map is simply given by

X(t;x) = (1 �
t

tf
)x +

t

tf
T (x), (S17)

which also defines the optimal pair (⇢, v) via (S1) and (S14).
We do not know the distribution ⇢(x, t) at all intermediate times without solving (S4) because, as we change the

protocol, the system is driven away from equilibrium. However, for su�ciently weak driving, we can solve the equation
for the dynamics perturbatively. We first assume that the rate of driving is slow; explicitly, �̇ ⌘ ✏�̇✏ so we can write
the adjoint linear operator driving the dynamics as

L
† = L

†
0 + ✏L

†
1 (S18)

with

L
†
1 = �̇✏ · @�. (S19)

Expanding the solution to first order in ✏,

⇢(x, t) = ⇢0(x, t) + ✏⇢1(x, t) + O(✏2), (S20)

we see that

⇢0(x, t) = e
��U(x,�(t))

/Z(�(t)) (S21)

and the correction term satisfies

@t⇢1(x, t) = L
†
0⇢1(x, t) + L

†
1⇢0(x, t) (S22)

No explicit protocol!
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of nonequilibrium transformations. We investigate this
approach to minimum dissipation control in two simple
models of nanoscale engines, and we compare control pro-
tocols determined via both the thermodynamic metric
and the geometry of optimal transport. Remarkably, we
observe that our procedure for optimizing control proto-
cols is robust outside the linear response regime, which
leads to a significant improvement in protocol design over
the thermodynamic metric when the driving is fast.

Derivation of the thermodynamic metric from optimal

transport theory. We consider the problem of transform-
ing an initial equilibrium distribution ⇢A = ⇢(·, 0) into a
target distribution ⇢B = ⇢(·, tf) with a nonequilibrium
driving protocol � of duration tf . At su�ciently long
times, we assume that the system relaxes to an equi-
librium distribution ⇢0(x) = e

��U(x,�)
/Z(�), where U

denotes the potential energy of the system. The results
we derive below apply to a broad class of systems that
evolve according to a Markovian dynamics. To make
the discussion precise, we consider a system with coordi-
nates x 2 ⌦ ⇢ Rd subject to the following overdamped
Langevin equation,

ẋ = �rU(x,�(t)) +
p

2��1⌘(t) (2)

where ⌘ is a Gaussian random variable with h⌘(t)i = 0
and h⌘i(t)⌘j(t0)i = �(t � t

0)�ij . The external protocol �
changes as a function of time, which drives the system
away from equilibrium. As a result, the time-dependent
distribution ⇢(x, t) of states is non-Boltzmann, but it
does satisfy a Fokker-Planck equation

@t⇢ + r · (v⇢) = 0, (3)

where the local velocity is

v(x, t) = �rU(x(t),�(t)) � �
�1

r log ⇢(x, t). (4)

The instantaneous entropy of the system can be specified
exactly through the Gibbs equation,

⌃sys(t) = �kB

Z

⌦
⇢(x, t) log ⇢(x, t) dx. (5)

Together with the conventional definition of the heat
from stochastic thermodynamics [25, 26], we obtain a
quadratic form for the total entropy production along a
nonequilibrium transformation [23, 27],

�⌃tot =

Z tf

0
�(t)

Z

⌦
vT (x, t)v(x, t)⇢(x, t) dx dt. (6)

Hence, to minimize the dissipation associated with a
transformation from the thermodynamic state specified
by �(0) to a state in which the control parameters are
fixed at �(tf), we must identify a minimizer �⇤(t) of (6),
noting that local velocity and the density both depend
on �. This minimization problem has a geometric in-
terpretation: the minimum of (6) over all (v, ⇢) sat-
isfying (3) and (4) with the boundary conditions that

⇢(·, 0) = ⇢A and ⇢(·, tf) = ⇢B is exactly the Benamou-
Brenier formulation of the Wasserstein optimal transport
distance [22, 28]. That is, minimizing (6) provides an
alternative formulation of the Wasserstein distance de-
fined (1). The connection between optimal transport and
dissipation is well-known in the partial di↵erential equa-
tions literature [29] and was subsequently connected to
stochastic thermodynamics by Aurell [23, 27].

Computing the minimizer �⇤ analytically is generically
challenging because of the nonlinear dependence of the
distribution on the protocol. Of course, within a lin-
ear response approximation, the form of the distribution
simplifies considerably, and the quadratic functional can
be written as an explicit function of �; we now demon-
strate that carrying out the minimization of (6) with re-
spect to � recovers the Riemannian thermodynamic met-
ric. Following the dynamical linear response framework
of Zwanzig [30, 31], we assume that � changes slowly rel-
ative to the rate of relaxation of the system. Within this
approximation, we can expand the instantaneous density
around the equilibrium density with the control param-
eters fixed,

⇢(x, t) = ⇢0

�
x,�(t)

�
+ ✏⇢1

�
x,�(t)

�
+ O(✏2) + . . . (7)

At first order in ✏ we obtain

⇢1(x, t) = �⇢0(x, t)

Z 1

0
�⇥(x�(s), t) · �̇(t)ds (8)

where �⇥(x, s) denotes the deviation of the generalized
forces from their average, @�U(x, �(t))�@�F (�(t)). The
only part of the quadratic functional that depends on �
is the work; to leading order in ✏ an explicit computa-
tion [32] shows that the protocol dependent dissipation
is

L[�] =

Z tf

0
�̇T (t)⇣

�
�(t)

�
�(t)dt (9)

with

⇣
�
�(t)

�
= �

Z 1

0

⌦
�⇥(s)�⇥T (0)

↵
�(t)

ds. (10)

Minimizing the expression (9) yields a geodesic with re-
spect to the positive definite symmetric form ⇣; these
geodesics in protocol space are minimum dissipation pro-
tocols within the linear response approximation [12, 17].
Computational approach. We consider two general

paradigms for determining protocols that minimize (6).
The first involves specifying a set of intermediate dis-
tributions and learning a protocol �⇤(t) that drives the
system along a Wasserstein geodesic between these inter-
mediate distributions. Alternatively, we specify a proto-
col �(t) and determine an optimal speed function �⇤(t)
such that the system driven under �(�⇤(t)) minimizes
(6). The first paradigm ensures that an engine reaches
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Minimizing the expression (9) yields a geodesic with re-
spect to the positive definite symmetric form ⇣; these
geodesics in protocol space are minimum dissipation pro-
tocols within the linear response approximation [12, 17].
Computational approach. We consider two general

paradigms for determining protocols that minimize (6).
The first involves specifying a set of intermediate dis-
tributions and learning a protocol �⇤(t) that drives the
system along a Wasserstein geodesic between these inter-
mediate distributions. Alternatively, we specify a proto-
col �(t) and determine an optimal speed function �⇤(t)
such that the system driven under �(�⇤(t)) minimizes
(6). The first paradigm ensures that an engine reaches
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be noted that the rigorous formulation of the relation between the minimizer (S13) and the optimal transportation
plan requires that the time-dependent local velocity fields and density (v, ⇢) are allowed to vary over all possible
functions that satisfy (3) and the boundary conditions. While we place no restrictions on the control parameters �,
in practice we represent � with a neural network, so we do restrict the function class to an extent, though su�ciently
wide neural networks should allow us to find expressive enough protocols to ensure that this restriction is unimportant.

We do not know the distribution ⇢(x, t) at all intermediate times without solving (S4) because, as we change the
protocol, the system is driven away from equilibrium. However, for su�ciently weak driving, we can solve the equation
for the dynamics perturbatively. We first assume that the rate of driving is slow; explicitly, �̇ ⌘ ✏�̇✏ so we can write
the adjoint linear operator driving the dynamics as
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at order ✏. Using the method of characteristics and the initial condition ⇢1(x, 0) = 0 and assuming that the protocol
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Here x� denotes the fast-timescale relaxation of the system to slow driving and x�(0) = x0; the protocol is e↵ectively
fixed over the relaxation time of x� due to the assumed timescale separation. In the integral, ⌧ denotes the relaxation
of the fast process, which typically can be taken to infinity assuming that the integral converges su�ciently quickly.
Writing the equilibrium distribution as

⇢0(x, t) = e
��U(x,�(t))+�F (�(t))

, (S20)

where F is the equilibrium free energy with the control parameters fixed,

F (�) = ��
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dx. (S21)

The derivative with respect to � yields the deviation of the generalized forces from their average value at a particular
point x, that is,
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Because the protocol advances slowly relative to the timescale of relaxation of the system, we can extend ⌧ ! 1 so
that
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The excess dissipation associated with the protocol can be computed by computing the average work associated with
the perturbation. The contribution from the total change in energy does not depend on the protocol and contributes
the leading term, so we are left with, at order ✏,

� hW i =

Z

⌦

Z tf

0
�̇(t) · @�U(x,�(t))⇢(x, t) dx dt

= �

Z

⌦

Z tf

0
�̇T (t)

✓Z 1

0
�⇥(x�(s), t)�⇥T (x�

0 , t)ds

◆
⇢0(x

�
0 , t)�̇(t) dx�

0 dt.

(S24)

This expression optimizes (S11) and recovers the thermodynamic metric of Sivak and Crooks [17]. The dissipation
along a protocol � : [0, tf ] is proportional to the path functional

L[�] :=

Z tf

0
�̇T (t)⇣(�(t))�̇(t)dt, (S25)

where

⇣(�(t)) = �

Z 1

0

⌦
�⇥(x(s), t)�⇥T (x(0), t)

↵
�

ds; (S26)

the subscript � denotes that the average for the initial condition is taken from the equilibrium distribution with
the control parameters fixed at �(t). Because ⇣ is a positive semi-definite form, it is a Riemannian metric and all
associated path lengths are non-negative.

COMPUTATIONAL DETAILS FOR PROTOCOL OPTIMIZATION

We consider two di↵erent approaches for learning protocols that minimize (6): we either specify target intermediate
distributions and learn a protocol �⇤ that drives the system through these distributions or specify a protocol � and
determine �⇤, the speed at which the protocol is traversed.

We use automatic di↵erentiation to learn a time-dependent �⇤ that drives the system through target intermediate
distributions. Here, �⇤ : R1

! R2 is a single hidden layer neural network. The input to �⇤ is the current time of the
protocol and the output is the temperature and the mechanical parameter being modulated. Our general algorithm
is shown below in Algorithm 1.

Algorithm 1 Automatic Di↵erentiation to Optimize �⇤
Initialize protocol �⇤
for e = 1, . . . , nepochs do

Initialize state x0

for t < ⌧ do
X�(t+�t) = X�(t) + Ẋ�(t)�t . Use desired integration scheme
t t+�t
if end of interval then

Compute L(t) and update �⇤
Clear gradient information

end if
end for

end for

The automatic di↵erentiation approach introduced above can be extended to any integration scheme that stores
the exact gradients along the integration step. Alternatively, an adjoint method can be used, where gradients are
computed by integrating backwards in time [36], thus incurring a lower memory cost. However, for the systems
we investigate here, it is tractable to store the gradients and optimize �⇤ by directly backpropagating through the
dynamics.

When the total number of time steps is large for a longer protocol duration ⌧ , it is impractical to di↵erentiate
through the entire trajectory. During backpropagation, gradient information from each time step is multiplied, via
the chain rule, leading to exploding or vanishing gradients [37]. To mitigate this, we split our trajectory into N

short-time intervals and instead carry out intermediate optimization steps during a cycle. In practice, we see that
an interval length, M = ⌧

Ndt , of around 5-10 steps is ideal, with larger M for larger ⌧ being more expedient. See
https://github.com/rotskoff-group/wasserstein-interpolation for code and the parameters used.

Perturb around the instantaneous equilibrium:

First order correction satisfies,

Computing the contribution to the dissipation from the protocol,
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Figure 1 | Schematic comparison of a macroscopic Stirling cycle and its realization in a colloidal system. (1)→ (2) Isothermal increase of the stiffness of
the optical trapping potential (isothermal compression) at Tc = 22 ◦C. (2)→ (3) Instantaneous temperature increase to Th =86 ◦C at fixed optical
potential (isochoric process). (3)→ (4) Isothermal decrease of trap stiffness (isothermal expansion) at Th. (4)→ (1) Instantaneous temperature decrease
to Tc at fixed optical potential (isochoric process). The histograms show the measured particle probability distributions of the corresponding stationary
states together with Gaussian fits as solid lines. The width of the distribution at Th is 1.11 times greater than at Tc at same potential. Originating in an
increase in thermal energy this broadening provides an independent measure of the hot temperature (90 ◦C) which is in good agreement with the
fluorescently measured temperature of 86 ◦C. Inset Stirling process in the pressure–volume diagram representation, where the enclosed area amounts to
the work extracted by the machine.

not contribute to W because U is constant and the work is
only delivered during the isothermal steps. Although work W ,
heat Q and inner energy U are no longer sharp values but have
become fluctuating quantities, energy can be neither generated nor
destroyed, which leads to a stochastic first-law-like energy balance
!U =W −Q (refs 16,17).

Figure 2a shows how W (in units of kBTc) changes with time
during the Stirling cycle (black) over the duration of a typical
experiment. As the slope of the work trajectory is negative, the
machine extracts energy on the order of 20 kBT ∼= 10−19 J from
the heat baths. To resolve the dynamics within a cycle, we
show a magnified view in the inset of Fig. 2a. Obviously, W
decreases (increases) when expanding (compressing) the system
because the corresponding work increments dW = (∂U/∂t )dt are
always negative (positive). In contrast to a macroscopic engine,
however, here thermal fluctuations in the work are obvious.
These fluctuations can be seen more clearly in Fig. 2b,c where
we show the work per cycle n, wn =

∫ (n+1)τ
nτ (∂U/∂t ′)dt ′ and its

probability distribution p(wn), which is centred around its average
value w̄ =−0.11 kBTc. We also performed experiments where the
Stirling engine was operated in counter-clockwise direction. This
is achieved by time reversal of the protocol that controls both the
optical tweezer and the heating laser. As expected, the slope of W
then becomes positive and the machine operates as a heat pump
(red data in Fig. 2).

For a microscopic understanding of our stochastic heat engine
it is helpful to consider that the work increment δW of a
colloidal particle at position R inside a parabolic trap with
time-dependent trap stiffness is proportional to R2. The fact
that the particle probability distribution at higher temperatures
is broader explains the observed small difference between the
work extracted during step (3) → (4) and the work spent while
compressing the system (1) → (2). Although this broadening
is hardly visible in the corresponding equilibrium distributions

(Fig. 1), it results in an average work production. For the counter-
clockwise direction, this difference is positive, as is the slope
of the work trajectory.

We also studied how the average work per cycle w̄ varies
with cycle time τ (red symbols in Fig. 3a). With increasing τ , w̄
monotonically decreases until it approaches the quasistatic limit w̄∞
at long cycle times. In this limit, the work is easily obtained from the
corresponding free energies along the paths (1)→ (2) and (3)→ (4)
of the Stirling cycle. Because the free energy of a colloidal particle
inside a two-dimensional parabolic potential is (up to a constant)
given by F(k,T )=2kBT ln

√
k (ref. 18), we obtain

w̄∞ =!F1→2+!F3→4 = 2kBTc

[
1− Th

Tc

]
ln

√
kmax

kmin

which agrees well with our experimental data (Fig. 3a). Towards
smaller cycle times, we observe a reversal from negative to positive
values of w̄ . In this regime, dissipation effects become important
and themean work per cycle can be written as

w̄ = w̄∞+ w̄diss (2)

with w̄diss the mean irreversibly dissipated work per cycle. Because
w̄diss > 0 and increases with decreasing τ , this qualitatively explains
the observed change of sign in w̄ . It has been shown14,18,19 that
the irreversible work can be written to first order as w̄diss = %/τ ,
where the coefficient % contains information about the protocol
and the coupling mechanism between the colloidal particle and
the thermal environment. We find excellent agreement between
equation (2) (solid line) and our data when the fitting parameter
Σ is adjusted toΣ = 0.95 kBTcs.

For most practical applications the power P =−w̄/τ delivered
by a micro-engine is of central importance. In contrast to
macroscopic heatmachines, where the dependence of P on the cycle
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Algorithm 1 Automatic Di↵erentiation to Optimize �⇤
Initialize protocol �⇤
for e = 1, . . . , nepochs do

Initialize state x0

for t < ⌧ do
X�(t+�t) = X�(t) + Ẋ�(t)�t . Use desired integration scheme
t t+�t
if end of interval then

Compute L(t) and update �⇤
Clear gradient information

end if
end for

end for

The automatic di↵erentiation approach introduced above can be extended to any integration scheme that stores
the exact gradients along the integration step. Alternatively, an adjoint method can be used, where gradients are
computed by integrating backwards in time [43], thus incurring a lower memory cost. However, for the systems
we investigate here, it is tractable to store the gradients and optimize �⇤ by directly backpropagating through the
dynamics.

When the total number of time steps is large for a longer protocol duration ⌧ , it is impractical to di↵erentiate
through the entire trajectory. During backpropagation, gradient information from each time step is multiplied, via
the chain rule, leading to exploding or vanishing gradients [44]. To mitigate this, we split our trajectory into N

short-time intervals and instead carry out intermediate optimization steps during a cycle. In practice, we see that
an interval length, M = ⌧

Ndt , of around 5-10 steps is ideal, with larger M for larger ⌧ being more expedient. See
https://github.com/rotskoff-group/wasserstein-interpolation for code and the parameters used.

NANOSCALE BROWNIAN ENGINE

We investigated a system consisting of a one-dimensional overdamped Brownian particle in a heat bath of temper-
ature T confined by a harmonic potential with time-dependent strength k,

Uharmonic(X(t),�(t)) =
1

2
k(t)X(t)2, (S30)

with the equation of motion evolving according to an overdamped Langevin equation

dX(t) = �rUharmonic(X(t),�(t))dt +
p

2��1dWt, (S31)

where W is standard Wiener process.
The Brownian engine is driven according to the Stirling cycle, where each stage is of equal duration ⌧/4. We

can fully characterize the cycle given Th, Tc, kh and kl, the maximum and minimum allowed temperature and trap
strength respectively. Additionally, because the equilibrium distributions are Gaussian with µ = 0 and �

2 = T/k, we
can exactly specify intermediate distributions along the cycle, because the displacement interpolation that minimizes
the Wasserstein distance is Gaussian at each intermediate time in this case [33]. We consider the four Gaussian
distributions that happen at the beginning of each stage, which have variance �

2
l , �

2
h, �

2
h, and �

2
l respectively, where

�
2
l = Th/kh and �

2
h = Tc/kl. Along each stage, we compute displacement interpolations ⇢⇤(t) that interpolate the

corresponding endpoints. This geodesic defines a set of intermediate distributions, and we learn a protocol �⇤ that
can successfully drive the engine so that the observed distribution ⇢̂(t) is the same as the target distribution ⇢⇤(t).
Because the endpoint distributions are Gaussian, the distributions along the geodesic ⇢⇤(t) are likewise Gaussian with
µt = 0 and variance

�
2
t =

✓
tf � t

tf
�i +

t

tf
�f

◆2

, (S32)

where �
2
i is the variance of ⇢⇤(0) and �

2
f is the variance of ⇢⇤(tf ), with 0  t  tf .

We compare the trained �⇤ to �LR, a protocol determined using a linear response approximation [39] that likewise
drives the Brownian engine according to the Stirling cycle. To ensure that the protocols were comparable, the
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10

where

Qh =

Z
�t

�
�@xUharmonic(Xt,�(t))

�
� dXt, (S35)

and

�t =
Th(Tl � Tt)

Tt(Tl � Th)
(S36)

as defined in [34]. See Fig 2 a) and Fig 3 inset for the dissipation and e�ciency of the Brownian engine driven by
these �⇤ and �LR. Finally, we compute the squared Wasserstein distance W

2
2 along the isothermal steps of the cycle

W
2
2 =

⌧/(4dt)X

0

�
(�(i+1)dt � �(i)dt)

2 + ((µ(i+1)dt � µ(i)dt)
2
�

(S37)

and plot the relationship between the dissipation, �Q, and W
2
2/⌧ for the isothermal compression step of the Stirling

cycle in Fig. 3.

QUBIT ENGINE

We model a system of a single superconducting qubit evolving according to Lindbladian dynamics as introduced in
[19]. The Hamiltonian of this system is

Hv = �
~⌦
2

�
✏�x +

p
V 2 � ✏2�z

�
. (S38)

Here, ✏ is the coherence parameter, and we fix ✏ = 0.6 for the experiments we run. The energy scale is denoted by ~⌦,
and �x and �z correspond to the standard Pauli matrices. We investigate protocols where the level-splitting parameter
V of the qubit and the temperature T of the environment can be modulated. We use the definitions outlined in [19]
to simulate and characterize the thermodynamics of the system and present it here again for convenience.

The generalized Bloch equations are

0

@
ṙx(t)
ṙy(t)
ṙz(t)

1

A =

0

@
�k

+
�t

�⌦Vt �✓
0
Vt

V̇t

⌦Vt �k
+
�t

0
✓
0
Vt

V̇t 0 �2k
+
�t

1

A

0

@
rx(t)
ry(t)
rz(t)

1

A +

0

@
0
0

k
�
�t

1

A , (S39)

where

k
±
�t

⌘ �⌦V
1 ± exp ~⌦V/T

exp[~⌦V/T ] � 1
(S40)

and

✓
0
V ⌘

✏

V
p

V 2 � ✏2
. (S41)

We compute the heat produced by the engine as

Q =
1

2

Z ⌧

0

�
4rt arctanh(2rt) + ln[1/4 � r

2
t ]
�

Ṫt dt (S42)

and the work done by the system as

W = �~⌦
Z ⌧

0

�
�Vt✓

0
Vt

r
x
t + r

z
t

�
V̇t dt, (S43)

where the length of the Bloch vector rt ⌘
p

(rxt )2 + (ryt )2 + (rzt )
2. With these definitions, we compute the dissipation

as

�Q =
1

2

Z ⌧

0

1

Tt

�
4rt arctanh(2rt) + ln[1/4 � r

2
t ]
�

Ṫt dt. (S44)
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1 Introduction

This document uses a cookie-cutter set of tools to analyze the active Casimir e↵ect system and varia-
tions of it. We first describe the methodology use for simulations and measurement of observerables
(Sec. 1). This framework is then applied to the following variations

• Variations of the active force (Sec. 3)

• Variations of the solvent density (Sec. 4)

• Variations of the internal plate spacing (Sec. 5)

• Variations of the angle between the plates (Sec. 6)

• Variations of the o↵set between the plates (Sec. 7)

• Use of a polydisperse solvent (Sec. 8)

2 Methods

The solvent is modeled using active Brownian particles (ABP), in which the ith particle evolves as

dX(i)
t = [�µ

@U(Xt)

@x(i)
+ vb(i)

t ]dt +
p

2DtdW
(i)
t , (1)

b(i) = [cos �(i)
t , sin �(i)

t ]>, d�(i)
t =

p
2DrdW

�(i)

t . (2)

where U is a purely repulsive WCA potential, x(i) denotes the position of the ith particle, b(i)

denotes the direction of its active velocity, v is the magnitude of the active force, and Dt and Dr

are the translational and rotational di↵usion constants. Here, W (i)
t and W �(i)

t are independent
standard Wiener processes. The WCA pair potential is given by the sum U =

P
i 6=j u(lij), where

lij =
��x(i) � x(j)

�� is the distance between particles i and j. The form of u(lij) is given by

u(lij) = 4✏ij

"✓
�ij

lij

◆12

�
✓

�ij

lij

◆6

+
1

4

#
✓

✓
2

1
6 � lij

�ij

◆
, (3)

where ✏ij and �ij are the energy and length scales set by the particle types, respectively, and ✓
is the Heaviside function. The translational and rotational di↵usion constants are given by the
Stokes-Einstein and Stokes-Einstein-Debye relations, respectively, in which

Dt =
kBT

6⇡⌘r
, (4)

Dr =
kBT

8⇡⌘r3
, (5)

where r is the radius of the particles, ⌘ is the solvent viscosity, and kB and T are the Boltzmann
constant and temperature, respectively. The value of ⌘ is scaled such that µ = (6⇡⌘r)�1 is equal
to 1 for the ABP solvent.

For the following simulations, plates composed of passive particles are fixed in space with the
ABP solvent. Examples of such systems at a solvent density of ⇢ = 0.4 are shown in Fig. 1. The
plates are constructed as rigid bodies composed of constituent particles. Note that the solvent is
capable of undergoing motility-induced phase separation for active velocities greater than 44 [1]. For
the bath ABP species, denoted A, and plate species, denoted W , we set �AA = �WW = �AW = 1

1

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

[δqu(i), δpu(i)] is determined by a neural network whose input is[Si−m, Si−m+1, . . . , Si, . . . , Si+m]. The parameter m plays the role of a
cutoff distance, determining the range of neighboring information
the neural network can gather. In this example, force equivariance
does not arise because the system is one dimensional, and the input
of fe(⋅) becomes xj − xi, where xj is the location of a particle within
the cutoff distance. Throughout, we used m = 10, meaning the input
can be either negative or positive depending on the location of the
neighboring particle.

To compute the SCGF, we use automatic differentiation to
backpropagate through the dynamics. The results are compared with
the asymptotic analytical results in the limit of L→∞ derived from
the Bethe ansatz3 and the previous numerical results by the DMRG
algorithm from Helms, Ray, and Chan,38 shown in Figs. 2 and 3.
The DMRG algorithm with sufficiently large bond-dimension is
nearly exact for this model, which we verified by comparing with
the numerically exact spectral solution for L = 10 (data not shown).

This suggests that local interactions (that is, interactions that do not
span the entire system) suffice for the control forces. Indeed, we see
convergence to the DMRG result with a neighborhood that includes
20 spins on each side of the controlled spin (Fig. 7). Figure 2 shows
that our method is very accurate for both the SCGF and the cumu-
lants obtained from this cumulant generating functions, and all the
absolute errors are less than the order of 10−2.

B. Dynamical phase transitions in active Brownian
particle systems

Recent advances on active matter, such as active Brownian
particles (ABPs), active nematics, and driven polymer networks,
have articulated a relation between macroscopic pattern forma-
tion and energy dissipation.13,59–66 One challenge in characterizing
macroscopic pattern formation that results from rare collective fluc-
tuations is that it requires large system sizes and high densities,
making numerical sampling extremely difficult. Here, we examine

FIG. 4. (a) The SCGF of entropy production in the ABP system, with particle number N = [200, 400, 800]. The data suggest that as N →∞, there will be a singularity at
λ = 0, indicating a first-order dynamical phase transition. The neural network used here is given by (22) with hidden layer dimension equal to 50 and number of Li in (23)
is 3. (b)–(d) Typical snapshots of ABPs under different biasing fields λ (N = 400). The yellow and gray arrows depict the magnitude and direction of the control force and
total force −�@x(i)U(X t) + vb(i)

t for each particle, respectively. The numerical details can be found in Appendix D.

J. Chem. Phys. 157, 074101 (2022); doi: 10.1063/5.0095593 157, 074101-7

Published under an exclusive license by AIP Publishing

Palacci et al. Science 339 6122 (2013).

https://science.sciencemag.org/content/339/6122/936
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(a)

(b)

Figure A.9: (a) Various fields of forces computed using a Gaussian convolution kernel at a plate separation of 4.3.

(b) Various fields of forces computed using a Gaussian convolution kernel at a plate separation of 14.

26

(a) (b)

(c) (d)

Figure 1: System at ⇢ = 0.4 for varying active force v. (a) v = 0. (b) v = 20. (c) v = 40. (d) v = 80.
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Figure 2: Results for a two plate system with ⇢ = 0.4. The gray vertical lines are spaced according to integer

multiples of 2
1/6

cos
�⇡

6

�
. (a) Force acting on the plates rescaled by the active velocity, except in the case of v = 0

where no rescaling is done. (b) Decomposition of the force acting on the plates into the between the plates (top) and

outside of the plates (bottom) contributions.

We first vary the active force on the solvent. We show the force on the plates and the density of
the solvent between the plates in Figs. 2a and 3a, respectively. The results for v = 0, 20, and 40 are
inline with the previous results of Ni et al. [3], where the force is found to oscillate between repulsion
and attraction. To decouple the forces produced by solvent inside and outside of the plates, we
decompose the force into a contribution from the solvent between the plates and a contribution from
the solvent outside of the plates in Fig. 2b. The contribution from outside the plates is found to be
constant and attractive, while the contribution from between the plates is oscillatory and repulsive.
In light of this result, we now examine features of the solvent between the plates in more detail.
The density between the plates is enhanced relative to the bulk density for v > 0, and is depleted
for v = 0. The period of the oscillations is found to be close to 21/6 cos

�
⇡
6

�
, which is the distance

between nearest neighbors in a hexagonal lattice with spacing matching the WCA potential. The
spacing is slightly modified for the case of v = 80, with visual inspection showing a slightly closer
spacing.

The likely first candidate for the origins of the oscillations in the force is the density, with
enhanced densities corresponding to strong repulsive forces. However, inspection of the average

4
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2

Just as interaction design is inherently limited by the constituent materials, the precision of control
is dictated by the external fields that couple to a given system and the spatio-temporal resolution
with which we can reasonably alter these fields. Moreover, an external control approach to directed
self-assembly presents new computational challenges: stochastic optimal control problems are typ-
ically formulated as high-dimensional partial di↵erential equations, which cannot be solved either
analytically or numerically for nontrivial systems. Here, we instead pose the design problem as the
optimization of a Markov decision process [21], which is in turn amenable to deep reinforcement
learning algorithms. Of course, these complicated high-dimensional problems have also benefited
from advances in deep learning, enabling the optimization of very high-dimensional feedback proto-
cols for essentially arbitrary physical systems.

In this paper, we investigate the theoretical and computational limits of nonequilibrium control in
the context of two minimal models of molecular self-assembly. We establish theoretically a relation-
ship between the cost of a protocol, as measured by the entropy production in the medium, and the
fidelity with which a target structure can be produced, akin to bounds that have been established
for nonequilibrium growth processes [22]. We then explore the capabilities of deep reinforcement
learning algorithms to control the quenched cluster size distribution of a system of particles us-
ing a feedback thermal annealing protocol as well as the steady-state cluster size distribution of
nonequilibrium actively driven colloids. Taken together, our theoretical and computational results
emphasize that high dimensional control can target assembly outcomes with high precision but with
an inescapable cost.

II. THE DISSIPATIVE COST OF HIGH-FIDELITY CONTROL

Consider a physical system with coordinates x 2 ⌦ ⇢ T3 evolving according to overdamped
Langevin equation

3^C = 1(^C )3C +
p

2⇡3]C (1)

where 1 is a nonequilibrium drift, ⇡ = :B)/` is the di↵usion coe�cient, and ]C is a Wiener process
in R3. We assume that ^C is ergodic so that there exists a unique stationary probability density
dss : ⌦ ! R.

Our goal is to develop a feedback-guided, external control protocol D that pushes the steady
state distribution towards a specified target. At present, we focus on external driving that can
be represented as a force, not a noise term, though we consider both regimes in the subsequent
numerical experiments. We assume that the external control can be implemented as a spatially-
varying external force DC leading to the controlled SDE

3^D
C = [1(^D

C ) + DC (^D
C )]3C +

p
2⇡3]C , (2)

which in turn has an associated a steady state density dD . While the most generic design task requires
tuning D to coincide with a target steady state distribution d⇤, it is not clear how to specify a target
density function for a large interacting particle system, as we typically characterize these systems
instead by some low-dimensional observable. This more limited description requires setting some
target average value of a given observable 5 : ⌦ ! R. Let us denote the target value of 5 by 5⇤. The
optimal controller then solves the minimization problem

D⇤ = argmin
D

|ED 5 � 5⇤ | (3)

where ED denotes the expectation over the controlled process (2) and E⇤ 5 ⌘ 5⇤ denotes the target
value of 5 , which we view as the expectation over the unknown target distribution (cf. Appendix A
for a detailed discussion).

In some cases, the chosen observable 5 might not be informative about the system. However,
while we seek to carry out this minimization for a particular choice of 5 , if we instead allow 5 to

3

vary and solve the minimax problem to find the controller that minimizes the mean discrepancy
over all functions 6 [23], then the objective is the Kantorovich-Rubenstein dual formulation of the
Wasserstein-1 distance [24]. This metric quantifies the distance between the target distribution and
the steady state distribution of the controlled process,

W1 (dD , d⇤) = max
6

min
D

|ED6 � E⇤6 |. (4)

The Wasserstein distance is an optimal transport distance on probability distributions, measuring
the cost to reallocate mass from one distribution to another. Applications of optimal transport
distances have become widespread in data analysis and machine learning. See Peyré and Cuturi [25]
for an applied perspective. For the fixed observable of interest, the mean discrepancy is bounded
above by the Wasserstein distance, which in turn, is bounded by the Kullback-Liebler divergence or
relative entropy

min
D

|ED 5 � 5⇤ |  W1 (d⇤, dD),

 ⇠

p
2⇡KL (d⇤kdD).

(5)

The first inequality follows from an application of dual formulation of the total variation distance
and subsequently an application of Pinsker’s inequality. Interestingly, this upper bound has a direct
physical interpretation in terms of the increase in entropy production of medium when controlling
the trajectory to alter the steady state distribution.

Minimizing the Kullback-Leibler divergence between the nonequilibrium distribution of the con-
trolled process and that of the target steady state requires driving the system away from the uncon-
trolled steady-state dss. Because the KL-divergence satisfies the triangle inequality, ⇡KL (d⇤kdss) 
⇡KL (d⇤kdD) + ⇡KL (dD kdss), minimizing ⇡KL (d⇤kdD) will increase ⇡KL (dD kdss), when the bound
is saturated. Interestingly, this latter quantity has thermodynamic interpretation due to the fluc-
tuation theorem for nonequilibrium steady states. In particular, the KL-divergence between the
controlled and uncontrolled steady states can be bounded by the entropy production in the medium
in the long time limit. To see this, following Ref. [26], we write the generalized fluctuation theorem

⌦
4
��q��Bm↵ = dD (^C0)

d
‡
D (^‡

C0�C )
, (6)

noting that ‡ signifies that the dynamics and protocol are time-reversed. Here, we write dD (x) =
4
�q (x,D) and �q quantifies the di↵erence in nonequilibrium potential between the controlled steady

state and the uncontrolled steady state. By evaluating the fluctuation theorem at C 0 = C, and noting
that the distribution at time C = 0 is assumed to be dss before the protocol is applied, we see that⌧

log
dD

dss

�
= ⇡KL (dD kdss)  h�q + �Bmi . (7)

The bound is the result of an application of Jensen’s inequality. In the long time limit, the relation
simplifies even further because �Bm grows with time whereas the di↵erence in nonequilibrium po-
tential �q does not. This result, originally described in [27] for Hamiltonian systems in the context
of free energy calculations, emphasizes that for target states that are “far” from the uncontrolled
steady state (as measured by the KL-divergence) the expected rate of entropy production in the
medium will be commensurately higher. If the uncontrolled distribution is an equilibrium distri-
bution, this relation simply relates the dissipated work h,idiss = h,i � �� to the instantaneous
distribution with the control parameters fixed [27, 28], where , is the work and �� is the free en-
ergy di↵erence of equilibrium distribution. Driving a system away from its equilibrium distribution
with an external protocol requires energetic input and such cost have been examined for Markov
jump processes [29, 30] and in the contexts related to the design of physical systems [31]. The bound
we derive relates directly to the measured observable 5 and its deviation from the target value. We
provide further discussion of this relation and details of the argument above in Appendix A.
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Another formulation of  the Wasserstein distance:
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Performance varies with control resolution
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Distributional control depends on natural length scales
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Dissipation is a proxy for accuracy
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And accuracy is a proxy for dissipation!



Feedback guided annealing
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Coarse temperature control with feedback improves targeted assembly
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A parallel set of  concerns?
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FIG. 2. The 1D ASEP with lattice size L = [10, 50, 100]. The variational results (dots) in different lattice size L and DMRG results (dashed lines) of (a) the SCGF scaled by
L, (b) the average current per site. The variational results of the average current shown in (b) are obtained by numerically computing the derivative of the convex envelope of
the corresponding SCGF from (a). The convex envelope is obtained by performing the Legendre–Fenchel transform twice. The inset shows the absolute error between the
variational results and the DMRG results. The parameters used throughout this example are p = 0.1, q = 0.9, α = 0.5, β = 0.5, γ = 0.5, and δ = 0.5. For the parameters
used in the neural network, the dimension of the hidden layer is 20, and the number of Li in (23) is 3. The DMRG results are adapted from Helms, Ray, and Chan.38

where a different transition matrix Wu is optimized. Equation (25)
is different from (14) because the Radon–Nikodym derivative for
Markov jump processes has a different form than that for SDEs.58

We review the derivation in Appendix A.

Let Si = 1 when the ith site of the lattice is occupied by a
particle and Si = 0 otherwise. Practically, for the ith site, the mod-
ified transition rate [qu(i), pu(i)] = [q + δqu(i), p + δpu(i)] when
Si = 1 and [qu(i), pu(i)] = 0 when Si = 0. The rate modification

FIG. 3. (a) A typical training process for λ = −0.1. (b)–(d) Typical trajectories of the current in the biased ensemble. The yellow line depicts the average current from the
mean field theory. It is clear that the control force changes the current for different λ.
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