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[Figure 1 about here.]

The proposed generative model for a dynamic sensory scene is shown in fig.1. The presence or

absence of each object in the scene if formalized by a hidden Markov model (HMM) with binary

hidden states Xt
i ∈ {0, 1} and binary observations Stj ∈ {0, 1}. Xt

i = 0 and Xt
i = 1 are called the

’off-state’ and the ’on-state’ and for the Stj , 0 vs. 1 stands for a spike vs. no spike from presynaptic

neuron j, respectively.

During small time intervals ∆t, the probabilities of the state Xt
i to switch from 0 to 1 and vice

versa are given by ron
i ∆t = P (Xt+∆t

i = 1|Xt
i = 0) and roff

i ∆t = P (Xt+∆t
i = 0|Xt

i = 1). ron
i and roff

i

control respectively the rate of appearance and the average duration of the stimulus.

the probability of observing a spike in channel j in time interval ∆t given the configuration

Xt := [Xt
1, X

t
2, ..., X

t
M ] of hidden objects is modeled as a linear superposition:

p(Stj = 1|Xt) = ∆t

(
q0 +

∑
i

Xt
i qij

)
. (1)

where ∆t qij stands for the probability that object i causes a spike in receptor j in an interval of

length ∆t. The term ∆t q0j models the effect of unspecified causes such as background noise. In the

limit of small ∆t, the instantaneous firing rate of receptor j is given by q0j +
∑

iX
t
i qij .
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Derivation without overlap between objects

Let us first consider the case when there is no overlap between predictive fields, i.e. each object i

affects a distinct set of receptors. In this situation, if qij is larger than 0, then qkj = 0 for all k 6= i.

This situation does not require explaining away, and is equivalent to I independent HHMs, one for

each object.

Let pti = p(Xt
i = 1|S(t)) denote the probability of feature i being present at time t given synaptic

input S(t) := [S
(t)
1 , S

(t)
2 , ..., S

(t)
M ] with S

(t)
j := [S1

j , S
2
j , ..., S

t
j ] being the input from receptor units j up

to time t. The dynamics of unit i are described via the log odds Lti := log
pti

1−pti
. As a consequence,

the probability of feature i being present is a simple function of Lti, i.e. pti = [1 + exp(−Lti)]−1.

Taking the limit of ∆t→ 0 for the discrete time HMM yields a continuous process with temporal

dynamics L̇i = d
dtLi given as

L̇i = ron
i

(
1 + e−Li

)
− roff

i

(
1 + eLi

)
+
∑
j

wijsj −Ψi (2)

where sj =
∑

k δ(tjk − t) refers to the input spike train from channel j. A derivation of this result is

provided in Deneve (Denève, 2008).

The weights wij for incoming spikes and the drift term Ψi are given as:

wij := log
qij + q0j

q0j
and Ψi :=

∑
j

qij . (3)

Outputs are generated by integrating eq. (2) up to a dynamic threshold Gi whose dynamics read

Ġi = ron
i

(
1 + e−Gi

)
− roff

i

(
1 + eGi

)
+ ηoi −Υi (4)

where oi =
∑

k δ(t̃ik − t) is the output spiketrain of unit i. The unit is said to fire spikes at times t̃ik

when Li exceeds Gi by more than η/2 at which point the threshold is increased by η. Υi is a constant

drift term analogous to Ψi. Using the abbreviation Φi(G) := −ron
i (1 + e−G) + roff

i (1 + eG) + Υi one

can derive equation (??) for G.

Lti estimates the probability of object i being present given the receptor inputs. This is an analog
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quantity, but it has to be signalled via a binary output spike train Oti . The adaptive threshold

Gi ’simulates’ the dynamics of the internal probability estimate of a putative postsynaptic unit

receiving Oti as input. Whenever Gi decays too far below the actual probability Li, unit i fires a

new spike such that a putative postsynaptic unit can appropriately update its probability estimate.

As a result, the dynamic threshold tracks the probability of presence of the object. η controls the

precision of this spike-based representation of probability, and regulates the number of output spikes.

Alternatively, this neuron can be understood as an integrate and fire neuron with membrane potential

V t
i corresponding to the ’prediction error’ V t

i = Lti − Gti. The threshold and reset potential of this

integrate and fire unit are respectively η
2 and −η

2 . The advantage of using such spike-based rather

than a rate-based representation of probabilities are described elsewhere (Denève, 2008).

Derivation of Input targeted Divisive Inhibition (overlap)

We now extend the previous results to a network that can account for different causes i. Analogous

to eq. (3), evidence for object i, observed in channel j, (spikes from receptor j) should be weighted

by the log ratio of firing rates when the object is present vs. absent.

In contrast to the case of a single hidden cause, these firing rates now depend on the current

presence or absence of all other objects k 6= i:

q0j −→ q0j +
∑
k 6=i

Xt
kqkj

q0j + qij −→ q0j + qij +
∑
k 6=i

Xt
kqkj

Although the true state of the hidden causes is not known to the network, approximate inference can

still be implemented via a mean field approach. We use the fact that p̂ti := 1/(1 + e−G
t
i) is a good

estimate of the posterior probability or expected state pti = 1/(1 + e−L
t
i).

We thus replaced the binary Xt
k for all but unit i by their on-line estimate p̂tk. This yields the
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expected firing rate for channel j when object i is absent vs. present as:

q0j +
∑
k 6=i

p̂tkqkj and q0j + qij +
∑
k 6=i

p̂tkqkj (5)

With the abbreviation Atij := q0j +
∑

k 6=i p̂
t
kqkj referring to the influence of causes other than Xt

i , the

probabilities of observing NO event in absence vs. presence of cause i are

1−∆tAtij and 1−∆t(qij +Atij). (6)

This provides all the information necessary for the inference algorithm and yields the discrete-time

multi-unit equivalent of eq. (2):

Lt+∆t
i ≈ Lti + ∆t

[
ron
i

(
1 + e−L

t
i

)
− roff

i

(
1 + eL

t
i

)]
+
∑
j

w̃tijS
t
j +

∑
j

btij(1− Stj) (7)

with

w̃tij := log

(
qij +Atij
Atij

)
and btij := log

(
1−∆t(qij +Atij)

1−∆tAtij

)
. (8)

In the limit of ∆t→ 0 equation (7) gives the continuous equation

L̇i = Φi(Li) +
∑
j

w̃ij(t)sj . (9)

It can be shown that this inference algorithm is exact as long as (1) p̂ti = pti and (2) the probability

that more than 3 objects are present at the same time and overlap on the same receptor can be

neglected. Thus, we expect this algorithm to be particularly efficient when objects are rare events,

i.e. if ron
i � roff

i .

Equation (8) realizes a type of divisive inhibition as can be seen most clearly for qij � q0j , i.e.

when input weights are small. We can then use fixed weights wij := log
q0+qij
q0

and a more standard

type of divisive inhibition to approximate the effective weights w̃tij in (8) as w̃tij =
wij

1+
∑

k 6=i wkj p̂
t
k
.

It is important to note that the feedforward weights wij are fixed and determined by the parameters

of the causal model. The effective weights w̃ij , however, depend on the network activity and are
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therefore not static.

An example of sensory input S(t) generated by the generative model, and outputs of the neural

layer is shown on fig??.

[Figure 2 about here.]
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Figure 1: The generative model and its neural implementation. (a) Relation between GM and neural network. The
dashed circular units represent objects composing the sensory scene, and dashed loopy arrows indicate their stochastic
’on’ and ’off’ transitions. Straight dashed arrows indicate that these objects modulate in turn the firing rate of receptor
neurons (blue triangles) producing spike trains (observations) Sj . The neural network (below the dashed line) is
composed of the receptor neurons (input layer) and detector neurons (output layer, represented by orange triangles).
Detector neurons process their inputs using feed-forward (black) and inhibitory lateral (magenta) connections. Lateral
connections modulate the gains of feed-forward connections (magenta circles) and thus regulate the flow of information
between the two layers. (b) Predictive fields used as a simplified model of object structure. Each colored line represents
the profile of increased firing rate of receptor units caused by one object (color coded). (c) An example illustrating how
different objects cause correlated and noisy receptor responses. Two objects X1 and X2 appearing and disappearing
over time (top 2 panels) both influence the time dependent firing rates (i.e. the probability of firing) of two receptor
units S1 and S2 (bottom 2 panels, plain lines). While the presence of X1 has a stronger impact on S1 (i.e. q11 > q12),
X2 has a stronger impact on S2 (i.e. q22 > q21). Spikes from S1 and S2 (blue vertical lines) are samples from these
rates.
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Figure 2: Processing with and without divisive inhibition. (a) Presence of objects. Each line corresponds to an
object and its presence is indicated by a colored rectangle. The firing rates of the receptor units are determined by
the configuration of objects at each point in time. (b) Raster plot of input spike trains. Firing rates of corresponding
receptor units are indicated by shades of gray. (c) Raster plot of output spike trains from the network. Gray shading
in the background indicates estimated probabilities of the corresponding units. (d) Post stimulus time histogram
indicating estimated firing rates over 500 repetitions. (e) Probability of object being present decoded from the output
spike trains, averaged over 500 repetitions. (f) Raster plot for the network without divisive inhibition.
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