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Primary visual cortex (V1)

I The first area of cortex to receive
visual information (from LGN)

I Neurons respond selectively to
oriented visual stimuli



LGN and V1 Receptive Fields

LGN RFs are circularly symmetric; V1 RFs are orientation-tuned

Hubel and Wiesel, 1962



V1 has a retinotopic map

Tootell et al., 1988; scalebar= 1cm

Right:
I TOP: RFs recorded in

vertical penetration (⊥ to
surface). Positions stay
∼constant.

I BOTTOM: RFs recorded in
horizontal penetration (‖ to
surface). 1mm movement
⇒ RFs ∼ 1

2 -overlapping. Hubel and Wiesel, 1977



V1 has a map of orientation preference

Bosking et al 1997

I Preferred orientation is
∼constant from top to
bottom of cortex at a given
point

I Preferred orientation varies
periodically with movement
across the V1 surface

I Period ∼1 mm: all
orientations represented
within a 1 mm2 “functional
unit”



Long-range V1 connections are orientation-tuned

Bosking et al 1997



Stimulus Contrast



Thoughts on (some) cortical functions

I Sense data arrives locally; perception involves knitting
together into objects. Objects persist across variation of, yet
depend upon, local data:

I Localized contours ⇒ perceive objects
I Punctate somatosensory stimuli ⇒ perceive chair, floor, pieces

of clothing
I Auditory stimuli transduced punctate in frequency and time ⇒

perceive sounds of different objects

I Similarly on motor side: we experience high-level motor
plans/intentions (“grasp my pen”) invariant to, yet dependent
on, detailed implementation.
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Thoughts on (some) cortical functions

I How are objects knit together?
I Long-range (contextual) interactions within one cortical area
I Hierarchical feedforward/feedback between areas: larger

invariant structures emerge gradually (small steps per area;
e.g. V2, but not V1, responds to illusory contours)

I How do contextual and top-down influences modulate
responses?

I Selectivity – e.g. for orientation, position – largely or entirely
created by arrangement of feedforward inputs onto layer 4 cells

I Context, attention appear to modulate gain of response
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What I’ll address today

I Some first explorations – broad circuit motifs – of mechanisms
of contextual modulation, stimulus interaction
(“normalization”), gain amplification/suppression

I And of their nonlinear dependence on network activity level or
stimulus contrast;

I Largely ignore laminar structure; imagine we are modeling
interactions within layers 2/3

I Only consider “excitatory” and “inhibitory” neurons, without
further divisions into subtypes
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What I’ll address today

Essential idea:

I Response suppression – by context or competing stimuli – has
been assumed to arise from activation of inhibitory neurons
that in turn suppress the other neurons;

I Some forms only appear at higher contrast: this has been
interpreted in terms of a “hidden” class of inhibitory neurons
with high thresholds (activated only at higher contrast);

I Instead, all of this can arise from simple, generic network
dynamics, in which the entire network – both E and I cells –
undergo the suppression, or loss of amplification;

I An expansive input-output cellular nonlinearity (which can be
identical for E and I cells) automatically leads to the two
regimes: a low-contrast “facilitative” regime and a high
contrast “suppressive” regime
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Surround Suppression

Classical Receptive Field (CRF or “center”): region in which
appropriate visual stimuli elicit spikes:

Extra-Classical Receptive Field (ECRF or “surround”): region
surrounding CRF; visual stimuli do not elicit spikes:

Song & Li, 2008



Surround Suppression

Ozeki, Finn, Schaffer, Miller and Ferster (2009)

Stimulus: 2 degree center, 20 degree surround, drifting grating

I Surround stimuli suppress responses to CRF stimuli

I Suppression is tuned for surround orientation, relative to
center

I Found in ∼ 1/2 of V1 cells in layers 2-4



What is the likely mechanism of surround suppression?

I Surround stimulus stimulates surrounding regions of cortex

I This evokes excitatory, orientation-tuned input into local
region via long-range connections

I To cause suppression, this input must preferentially drive
inhibitory cells (so these inhibitory cells would not be surround
suppressed)

I Expectation: cells should receive increased inhibition when
they undergo suppression
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During Suppression, Both the Inhibition and Excitation
That Cells Receive Decrease

Ozeki, Finn, Schaffer, Miller and Ferster (2009)

I Interpretation: During suppression, both excitatory and
inhibitory cells are suppressed (lower their firing rates)

I Has been confirmed directly (Song and Li, 2008)
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Q: How Can Addition of External Excitation Onto
Inhibitory Cells Cause Both Excitatory and Inhibitory Firing
Rates to Decrease?

A: This will happen iff

I Excitatory recurrence alone is strong enough to be unstable

I Network is stabilized by feedback inhibition (Tsodyks et al.,
1997, J. Neurosci.)

I Call this an inhibition-stabilized network, or ISN
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The circuit must be an ISN regardless of the nature of
suppressive inputs

Common principle:
If E unstable

I Reduction in recurrent E is
too large for reduction in E
firing rate

I Therefore, in new steady
state, E must receive less
inhibition and/or more
external excitation

If E stable:
I In new steady state, E must

receive more inhibition
and/or less external
excitation
(can rule out the latter
scenarios)
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Predictions of the ISN Model

1. Should see a transient increase in inhibition at the onset of
the surround, before the steady-state decrease of inhibition

2. Cells receiving primarily LGN excitation should not show much
suppression (because suppression is due to withdrawal of
cortical feedback excitation)

Both verified (Ozeki et al. 2009)
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Surround Suppression and the ISN Model: Conclusion

I Surround suppression is not inhibition – it is de-amplification:
I Responses are normally amplified by recurrent excitation in

balanced network (“balanced amplification”)
I Surround stimulus adds bias toward inhibition ⇒ turns down

gain for both E and I responses



Balanced Amplification

Because of separation of excitatory and
inhibitory neurons, synaptic connectivity
matrices are non-normal: WWT 6= WTW.

r =

(
rE
rI

)
W =

(
WEE −WEI

WIE −WII

)

WXY ≥ 0

WWT =

(
+ +
+ +

)
WTW =

(
+ −
− +

)

Non-normal ⇐⇒ Eigenvectors are not orthogonal

⇒ can have large amplification – large transient responses to small
perturbations – not predicted by eigenvalues: well known in fluid
mechanics (see book by Trefethen and Embree, 2005)
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Intuition for Non-Normal Transient Responses
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Balanced amplification: Effective Feedforward Connections

I Non-orthogonal eigenvectors ⇒ transformation to eigenvector
basis is non-unitary (distorts space):

I Network activity is growing and then shrinking, but in
eigenvector basis it appears to be monotonically shrinking

I Best simplification with a unitary (non-distorting)
transformation: Schur decomposition:

I Eigenvalues on diagonal
I Upper diagonal nonzero = “Feedforward weights”; lower

diagonal zero.
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Balanced Amplification vs. Eigenvector Picture

Eigenvector picture:
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Balanced Amplification vs. Eigenvector Picture

Eigenvector picture:

Schur picture:

Schur picture with small
eigenvalues (“balanced”):



Surround suppression as loss of balanced amplification

r =

(
rE
rI

)
W =

(
w −kIw
w −kIw

)
Linear dynamics in terms of rE
and rI :

τ drE
dt

= −rE + wrE − kIwrI
τ drI

dt
= −rI + wrE − kIwrI

Change variables to the sum and
difference, r± = re ± ri :

τ dr+
dt

= −r+ − w+r+ + wFFr−
τ dr−

dt
= −r−

wFF ≡ w(kI + 1)
w+ ≡ w(kI − 1)

Small E/I imbalances drive
large balanced responses (e.g.,
surround suppression)
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