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Santiago Ramón y Cajal, ca. 1900
What limits optical resolution?

What limits visual acuity?

Questions that (should have) 
kept Cajal up at night
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Outline: Acuity and Resolution

I. Visual acuity

• What are the fundamental, statistical limits on 
performance in visual hyperacuity amid 
fixational eye movements?

• A biologically plausible neural network 
decoder for fine scale vision.

II. Super-resolution microscopy

• What fundamental limits apply to conventional 
and super-resolution techniques?
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Vernier calipers
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Humans achieve hyperacuity in 
Vernier tasks

Wehrhahn and Westheimer (1990)

Results 

to decide whether the left edge of the block (the right edge was kept 
stationary) had moved to the left or to the right by setting a switch 
and pressing a button. 

In the detection test, the block of light was presented for 1.3 s 
every three seconds either to the left or to the right of a black arrow. 
The observer's task was to identify the side on which the block was 
shown. Detection threshold was defined as the contrast  at which the 
location of the block was correctly identified on 75% of the occa- 
sions. 

All subjects were male observers with normal visual function, 
and had previous training in similar psychophysical tasks. 
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The influence of  contrast  change on the localization of  
the vernier task is shown in Fig. 1 (upper part) for the 
four observers. Averaged data for the four observers are 
given in Fig. 1 (lower part). With an average value of  
around 4-5 s of  arc the vernier threshold is obviously 
optimal for the two highest contrast  levels of  0.39 and 
0.22. The threshold increases exponentially for contrasts 
decreasing below 0.22. 

In a recent experiment involving the detection of  the 
displacement of  an edge, thresholds of  23 s of  arc were 
reported, with an increase already occurring at a contrast  
of  0.3 (Mather  1987). To achieve a quantitative com- 
parison, we also measured the minimum detectable dis- 
placement under our conditions for the highest contrast  
we had (0.39) using the same size block as in the vernier 
experiment but  here its one edge was shifted as a whole. 
The displacement threshold was found to be 9.49 4-0.94 s 
of  arc for one of  the subjects (C.W., 300 responses). This 
is consistent with earlier experiments (Westheimer 1979) 
and also with the displacement threshold for sinusoidal 
grating of  a variety of  spatial frequencies (Westheimer 
1978). Mather ' s  value, more than double our own, is 
somewhat  surprising, since the vertical extent o f  our 
stimulus was much shorter than that  used by him (120 
min of  arc compared  to 20 min of  arc in our experi- 
ments). He quotes no absolute luminance values and the 
discrepancy might  be due to a substantially lower overall 
luminance compared  to ours. 

Finally, to compare  detection with discrimination, 
we measured the lowest contrast  at which the block's 
presence could be just detected. I t  was found to be 0.016 
under the same conditions as the vernier threshold ex- 
periments (see arrow in Fig. 1 lower part). 
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Fig. 1. The dependence of vernier discrimination on contrast 
c = (L~tlm - L~r)(L~tim + L~.r), where L~tim and L~u r are the luminances 
of the stimulus and the surrounding background. The stimulus is 
shown in the inset. The task of the subjects was to decide whether 
the lower part of the block was shifted to the left or to the right 
relative to the upper part. Background luminance was 860 cd/m 2. 
The individual curves for the four subjects are plotted in the upper 
part of the figure. The averaged curve from all subjects is shown 
below. Error bars denote standard deviation of the mean. Optimal 
vernier acuity is present at contrast levels c=0.39 and 0.22. The 
arrow indicates the detection threshold for a block similar in size 
as the vernier stimulus. 4 subjects, 300 responses at each contrast 
level 

Discussion 

The aim of  the experiments presented above was to gain 
insight into the contrast  dependence of  vernier resolu- 
tion. The results show that  at a background luminance 
of 860 cd/m z the vernier threshold stays in the optimal 
range of  around 4-5 s o f  arc. This is a factor of  seven 
below the resolution limit of  30 s of  arc defined by the 
spacing of  the cones in the fovea. It  is better by a factor 
of  around two than the displacement threshold deter- 
mined under otherwise identical conditions which was 
found to be 9.49 s of  arc measured for a contrast  of  0.39. 

Finally, a bright block 20 min of  arc high and 14 min of  
arc wide, could be detected at a contrast  of  0.016. This 
low contrast  threshold probably  involves spatial and 
temporal  summation of  ganglion cell signals (Barlow 
1958), but  it implies, nevertheless, a high contrast  sen- 
sitivity at the level of  single retinal ganglion cells. 

Physiological recordings (Kaplan and Shapley 1986) 
had shown that  two different types of  ganglion cells in 
the retina of  primates display a marked difference in their 
contrast  sensitivity. The signals of  these ganglion cells are 
relayed to elements in the magno-  and the parvocellular 
layers of  the L G N  respectively. The stimulus conditions 
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Photoreceptor/ganglion cell 
spacing in the fovea (30’’)
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Hering’s theory of Vernier 
acuity
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1958), but  it implies, nevertheless, a high contrast  sen- 
sitivity at the level of  single retinal ganglion cells. 
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• Ewald Hering (1899) 
proposed integration of 
information from multiple 
photoreceptors along the 
length of the bar
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Eyes are never still

Retina

Optic 
nerve
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Small eye movements are 
significant

• Peak amplitude of 40-100 Hz power (with μ-
saccades removed) is ~6 arc-sec, similar to Vernier 
acuity threshold

1636 
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Fig. I. A typical recording of horizontal eye movements during monocular fixation. Eye position is shown 
every millisecond, the trace shows (I) three microsaccades (a, b, c); (2) microsaccadic overshoot (d); (3) 

drift in eye position (e, f); and (4) a mixture of physiological tremor and apparatus noise. 

RESULTS 

Figures 2(A) and 3(A) show typical power spectra 
of drift and tremor eye movements for two subjects 
fixating straight-ahead. In these and the remaining 
figures, a change of 20dB on the power ordinate 
corresponds to a tenfold change in the amplitude of 
the horizontal component of eye position. The 
+ IOdB ordinate is equivalent to an amplitude of 

3.33 arc min/Hz. In Fig. 2(A) the power spectra of the 
artificial eye is also plotted. Spectral measurements 
on the artificial eye established - 30 dB (2 arc set/Hz) 
to be the minimum resolvable amplitude. The general 
form of the power spectra of ocular drift and tremor 
is that power declines with frequency roughly as l/f*. 
Superimposed on this trend are a number of narrow 
spectral peaks, but none of them are significant if the 
control spectrum for the artificial eye is subtracted. 

Spectrum Estimation of Drift and Tremor Eye Movements 

40 rA 

Eye Position = 0.0” 
(Straight Ahead Fixation) 

20 
It 

Eye Position = 14.00 Temporally 

Frequency (Hz) 

Fig. 2. Power spectra of horizontal components of ocular tremor and drift for subject HD. (A) Fixation 
straight ahead and (B) fixation 14 deg temporally. The reference power spectra for the artificial eye is 
shown by the dashed line (A). Notice the overlap of sharp spectral peaks in the human and artificial eye 
power spectra estimates. The human power spectra estimates and its 9% confidence interval (B), were 
calculated by averaging the periodogramr of 104 disjoint segments. The artificial eye power spectra 
estimates were evaluated by averaging the periodograms of 107 segments. Due to the large number of 
averaged periodograms the same power spectra plots were obtained by using either the Tukey or the 

rectangular spectral windows. 

Eizenman et al. (1985)

μ-saccades
drift

overshoot
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calculating the slope of a log-log plot of D2 versus Dt. It is important to
note that the value of D2 cannot be biased by errors in absolute gaze

position due to calibration errors of the eye tracker, because D2 is a

measure of the relative distance of data points within a trajectory (i.e.,

not distance to an intended fixation position).

Detection of Microsaccades
Microsaccades were detected in 2D velocity space using thresholds

for peak velocity and minimum duration (Engbert & Kliegl, 2003b).

We used a relative threshold of 6 SDs of the velocity and a minimal

duration of 8 ms (or four data samples). Velocities f~vvig were computed
from the series of eye positions f~xxig as~vvi ¼ T0ð~xxiþ1 $~xxi$1Þ=2, where
T0 was the sampling rate of 500 Hz. Furthermore, we considered only

binocular microsaccades, that is, microsaccades detected in both eyes

with temporal overlap (Engbert & Kliegl, 2003a). We also performed a

control analysis using a 4-SD threshold to rule out a potential bias

from undetected microsaccades. This variation of the detection

threshold did not change the pattern of results.

RESULTS

Random-Walk Analysis
We started with an analysis of the combined effect of drift and mi-

crosaccades by applying the random-walk analysis to the recorded eye

movement trajectories. A double-logarithmic plot of displacement D2

as a function of time lag Dt uncovered two different time scales, in-

dicated by two different slopes in Figures 2a and 2b. On the short time

scale from 2 ms to 20 ms, we found persistent behavior (HS > 1),

whereas fixational eye movements were antipersistent (HL < 1) on the

long time scale between 100 ms and 400 ms. (The subscripts ‘‘S’’ and

Fig. 2. Diffusion plots of the displacement D2 versus time lag Dt. The plots in (a) and (b) show displacement of
the right eye for all time series (black lines) for Participants 1 and 2, respectively; the gray line in each plot
indicates the median over all trials. Two linear parts are evident in each plot, a short time scale (2 to 20 ms) and a
long time scale (100 to 400 ms). Values of the scaling exponent for these two time scales for all 5 participants are
presented in Table 1. The graph in (c) shows the median diffusion plots of the right eye for Participant 1 and for
randomly shuffled surrogates. In randomly shuffled surrogates, all correlations are destroyed, which yields an
exponent close to 1. The graph in (d) shows the median diffusion plots for the left eye, the right eye, and
binocular disparity for Participant 1. On the short time scale, random walks of the left and right eyes are
persistent, whereas the disparity is an uncorrelated random walk. On the long time scale, all three trajectories
are antipersistent (see Table 1 for numerical values).
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Eye movements approximate 
a random walk

Engbert and Kliegl (2004)

Δx2 ≈ DΔt

D ≈ 100 arc-min
2

s

Effective diffusion 
coefficient:
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Fixational eye movements 
are comparable to 

photoreceptor spacing

Pitkow, Sompolinsky and Meister,  2007

Fixational eye movement 
trace lasting 500 ms, 
sampled every 2 ms
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Open problems in 
visual hyperacuity

1. How does fine-scale visual acuity depend on:

• Photoreceptor spacing?

• Fixational eye movement amplitude? 

• Spike train statistics?

2. What is the optimal decoder of retinal spike 
trains?

3. Is there a near-optimal, biologically feasible 
decoder?
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A statistical model of neural 
encoding for fine vision

Noisy spikes

Retina

Optic 
nerve

Key assumptions:
1. Linear, Gaussian receptive fields
2. Poisson spiking in retinal ganglion cells
3. Diffusive (random walk) eye movements
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Parameters of the model for 
the Vernier task

covariance matrix as spikes are emitted. These rules show how the 
accuracy of gap estimation improves over time. We also express the 
optimal estimate of the gap as an explicit function of the previous 

The optimal decoding strategy depends on a single dimensionless 
parameter that characterizes the two sources of uncertainty about the 
position of the lines: the root mean squared displacement of the eyes 
between subsequent spikes in any two ganglion cells, divided by the 
width of a ganglion cell receptive field. In the limit of very slow eye 
movements, the optimal decoder makes equal use of all observed 
spikes to estimate the position of each line and find their separation. 
In the opposite limit of fast eye movements, the decoder uses only 

2d
(t)

}
}

1. Receptive field spread

2. Eye movement amplitude

3. Ganglion cell spike rate

4. Number of ganglion cells

σ ≈ 2.5 − 3.5 arc-min

D ≈ 100 arc-min
2

s

ρmax ≤ 100 Hz

N ≈ 1
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A single dimensionless 
parameter sets the difficulty of 

Vernier estimation

The mean squared displacement of the eyes 
between individual spikes, in units of the 
receptive field size

ε =
D

Nρσ 2 ≈ 0.1−1
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Simulated trajectories and 
spike trains

ε = 10

Fast eye 
movements

5σ
5〈Δt〉

D〈Δt〉
σ

= 0.01

D〈Δt〉
σ

= 10

Regular spikes (CV=0.1) Poisson spikes (CV=1)
Slow eye movement

Rapid eye movement

Time

R
et

in
al

 p
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iti
on

ε = 0.1

5 ISIs
Spikes from bar 1

Spikes from bar 2

Slow eye 
movements:

Eye movement trajectory
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A simple averaging estimator 
fails to achieve hyperacuity

d̂Naive = xi Bar1 − xi Bar2
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Evidence from individual 
spikes accumulates over time

Evidence from 
one spike

• Gaussian evidence from each spike leads to a Gaussian 
posterior distribution.

Estimated gap size, 

True gap size, d

d̂

Total evidence 
(Posterior 

distribution)
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Posterior distribution for the 
gap parameter is Gaussian

σ Estimator uncertainty

Maximum likelihood (optimal) 
estimate of gap size: d̂ML

σ = d̂ML − d( )2
1/2

∝ Psychophysical 
threshold
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The optimal estimator is a function 
of all the spike times

d̂ML = 2
sTΣ−1x
sTΣ−1s

Conclusions

ti 1 ti .A

1 0 0
1 1 0
1 1 1 ,

diagonal matrix of inter-spike intervals:

Σ = σ 2 Id + εAΔAT⎡⎣ ⎤⎦
where the decoder 
matrix is:
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The optimal decoder achieves 
hyperacuity amid eye movements

var(d̂Naive ) ≈
σ 2

ρT
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Optimal decoders for slow and 
fast eye movements

d̂ML ≈ s
Tx / N = xi

+∑ − xi
−∑( ) / N

• In the limit of slow eye movements (ε << 1) the optimal 
decoder simply averages each population:

• In the limit of fast eye movements (ε >> 1) use only pairs 
of nearly-coincident spikes in opposite populations, 
weighted by the inverse inter-spike interval:

Exact statistical analysis shows how the maximum likelihood estimator 

() xi
ti

xi
tiswitchesswitches

1
tiswitches

(d̂ML ! s
Tx / N = xi

+" # xi
#"( ) / N
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Outline: Acuity and Resolution

I. Visual acuity

• What are the fundamental, statistical limits on 
performance in visual hyperacuity amid 
fixational eye movements?

• A biologically plausible neural network 
decoder for fine scale vision.

II. Super-resolution microscopy

• What fundamental limits apply to conventional 
and novel techniques?
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Diffraction-limited images 
are blurry at the nano-scale 

Jia et al., Nature (2010)

Two-photon Ca2+-imaging of 
dendritic “hot-spots” in vivo

Beyond the limit: spines? vesicles? synapses? receptors?
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The classical diffraction limit 
characterizes optical blurring

ResolvableNot resolvable

d

Barely resolvable

σ

Real-space: Lord Rayleigh, Ernst Abbe (1870s)

Frequency domain: (1950s)

A(x) = I(x)h(x − ʹ′x )d ʹ′x∫ ⇒ A(k) = I(k)h(k)

Point-spread function
(incoherent, translation-invariant imaging)

P(k) = h(x) 2 I(x) 2

Modulation transfer function
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Optical imaging at the 
nano-scale

• Ways to beat the diffraction limit:

1. Shorter wavelength (X-ray, EM)

2. Near-field optics

3. Multiphoton microscopy (e.g. 
two-photon, STED)

4. Stochastic localization microscopy 
(e.g. STORM, PALM, etc.)
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Stochastic localization is a new 
imaging paradigm

Wilt et al., Ann. Rev. Neurosci. (2009)
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Example of stochastic 
localization data

Raw data
Conventional

image
Super-resolution

0.5 µm
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Beating the diffraction limit 
by localization microscopy

 E.  Betzig et al.,  Science  313, 1642 -1645 (2006)    

Fig. 2. Comparative summed-molecule TIRF (A) and PALM (B) images of the same region within a 
cryo-prepared thin section from a COS-7 cell expressing the lysosomal transmembrane protein 
CD63 tagged with the PA-FP Kaede

Summed
fluorescence

Single-molecule
reconstruction

COS-7 cell expressing FP-tagged lysosomal trans-membrane protein membrane
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Where did Rayleigh and 
Abbe (and Born, Wolf, et al.) 

go wrong?

• If diffraction is a fundamental “limit,” how 
does localization transcend it?
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Rayleigh’s criterion ignores 
signal/noise ratio

d < σ d ~ σ d > σ
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Estimation theory bounds 
localization performance

• Start with a statistical model of measurement:

P({x1,
x2 ,...} |θ)

Observed Hidden

P({x1, x2 ,...} |θ) = h(xi −θ)
i
∏

Microscope point spread function

Fluorophore locationPhotons

– For example, a good model of stochastic localization 
microscopy:
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Fundamental theorem of estimation 
theory bounds error

Bias = 0 ⇒ Var[θ̂] ≥ Jθ
−1

Jθ =
d
dθ
logP({xi} |θ)]

⎡

⎣⎢
⎤

⎦⎥

2

{ xi }

The Fisher information, J, measures the sensitivity 
of the observations to the parameter:

In general, the maximum likelihood estimator achieves 
the fundamental bound in the limit of large N.

Tuesday, October 5, 2010



Examples of estimators:

An example of the 
fundamental bound

P(x |θ )∝ exp −
(x −θ )2

2σ 2

⎡

⎣
⎢

⎤

⎦
⎥

Gaussian noise in 1D:

Jθ =
1
σ 2

Fisher information:

Var(θ̂ ) ≥ σ 2

Fundamental bound:

!̂A = x1

!̂B = Median[{xi}]

!̂C =
1
N

xi
i=1

N

"

!̂A = x1

!̂B = Median[{xi}]

!̂C =
1
N

xi
i=1

N

"!̂A = x1

!̂B = Median[{xi}]

!̂C =
1
N

xi
i=1

N

"
!̂A = x1

!̂B = Median[{xi}]

!̂C =
1
N

xi
i=1

N

"

!̂A = x1

!̂B = Median[{xi}]

!̂C =
1
N

xi
i=1

N

"
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Single-molecule localization 
techniques are stochastic

• The biological tissue is 
stochastically labeled by 
fluorophores

• Each fluorophore 
stochastically generates 
photons

• The image estimate 
reconstructs the sample 
from the photons
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Information transfer function (ITF) 
bounds image estimation

Î (k) − I(k)⎡⎣ ⎤⎦
2
≥ [J−1]k ,k

F(k) = 1 / [J−1]k ,k

Information transfer function (ITF):
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The effect of imaging parameters 
on a biological image estimate 

50 nm

Microtubules
(True image) More emitters

Estimates

M
or

e 
ph

ot
on

s/
em

itt
er

X. Zhuang et al. Curr. Op. 
Chem. Bio. (2008)
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Simultaneously active 
emitters degrade estimation

Estimate

STORM Data courtesy of Babcock, Zhuang et al. 
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Separation (dx/σ)

Localization of two emitters 
depends on their separation

(x0,y0)

(dx,dy)

Separation (dx/σ)
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Fisher information bounds 
estimation for multiple emitters

2

FIG. 1. (color online). Real-space analysis of localization

accuracy. (a) A scene with two emitters has 4 degrees of free-

dom (inset). The Cramér-Rao lower bound (CRLB) on error

variance for a Gaussian PSF (solid curves) matches the per-

formance of a maximum-likelihood procedure (squares). (b-d)

Real-space analysis of the Fisher information for an example

scene containing six emitters. (b) Observed intensity at each

pixel. (c) Fisher information matrix for the 12 degrees of

freedom. (d) Localization accuracy, determined by simulat-

ing 100 independent estimates of the emitters’ locations, with

n = 100 photons per emitter. Contours denote 2 s.d. from

the true position of each emitter, as determined by [Jij ]
−1

.

−
�

∂2

∂qi∂q∗j
logP ({zk}|{qi})

�

{zk}
is the Fisher information

matrix, and q̂i is assumed unbiased, i.e. �q̂i� = qi. The

CRLB states [E−J−1
] is positive semi-definite, implying

for the mean squared errors, Eii = �|q̂i − qi|2� ≥ [J−1
]ii.

This inequality constrains the estimation accuracy for

any set of image parameters, such as the emitters’ loca-

tions (qi ≡ xi), or the real-space (qx ≡ I(x)) or spatial

frequency (qk ≡ I(k)) components.

To illustrate, consider a 2D scene composed of two

equally bright emitters [5]. We choose a coordinate sys-

tem in which the emitters lie on the x-axis at (x, y) =

(±dx, 0). J is diagonal in the basis given by the center of

mass and separation vector (Fig. 1(a), inset). Fig. 1(a)

shows the corresponding CRLBs in units of the standard

deviation of the Gaussian PSF, σ [9]. Qualitatively sim-

ilar results hold for an Airy disk PSF, as well as for un-

equal emitter brightness [9]. If the emitters are well sep-

arated, dx � σ, J ≈ N
σ2 for each coordinate. But if the

two photon distributions overlap extensively, dx � σ,
one cannot unambiguously assign each photon to its cor-

rect emitter and Jdy,dy ,Jdx,dx both vanish. This loss

of information is the reason why in stochastic localiza-

tion microscopy one typically uses a very dilute density

of simultaneously active emitters, ρa � σ−2
, to prevent

emitters’ images overlapping.

The above analysis extends to scenes of more emitters

(Fig. 1(b-d)), but alas in the general case localization

accuracies vary with the scene’s details. The Fisher in-

formation for m emitters is a 2m × 2m matrix whose

entries, Jqi,qj , depend on the emitters’ 2m position co-

ordinates. For m > 2 there is no general coordinate sys-

tem making J diagonal. This is unsatisfactory, since a

resolution measure that varies from sample to sample is

neither consistent with traditional concepts of resolution

nor permits general usage.

We introduce a measure, the information transfer func-

tion (ITF), that gives resolution bounds for all specimens

and generalizes the MTF to account for photon statis-

tics. The ITF provides the CRLB for image estimation

as a function of spatial frequency; this conception of res-

olution applies equally well to conventional or stochastic

localization microscopy.

Consider an image represented by a positive function,

I(x), normalized to have unit integral. In biological mi-

croscopy, I would represent, e.g., fluorescently labeled

cellular or protein structures. The microscopist wants to

discern this structure, so we seek bounds on the squared

error of an unbiased estimator, Î(k). The ITF, F (k),
bounds the error in estimating the image frequency com-

ponents: EI(k) ≡ �|Î(k)− I(k)|2� ≥ 1/F (k). (In practice

it may be difficult or impossible to define unbiased es-

timators for some image components, especially at high

spatial frequencies [9]. A generalization of the CRLB

relates F (k) to the minimum variance of a biased esti-

mator [8]. However, this issue arises only for high spatial

frequencies where F (k) vanishes [9]).
Physical intuition suggests the ITF should vanish at

large k and be proportional to N , since each photon car-

ries equal Fisher information. A third key parameter is

the number of photons, n, that can be reliably assigned

to an individual emitter. For now we ignore any pho-

tons that cannot be assigned to an emitter, e.g. due

to overlap; these will be considered below. The attain-

ment of super-resolution in stochastic localization mi-

croscopy hinges on the ability to have n > 1, and in

practice n ∼ 100 − 10
4
or more. In conventional mi-

croscopy, individual emitters may contribute more than

one photon to the image, but since photons cannot be re-

liably assigned to the correct emitter their statistics are

equivalent to the case n = 1. If the MTF is bounded

by a Gaussian, |h(k)| ≤ e−(2πkσ)2/2
, then we find [9]:

F (k) ≤ CAρee−(2πkσ)2/n, where A is the field of view

area, ρe is the total density of emitters, and C is a con-

stant that depends on the image but not on k, A or ρe.
(Note ρe appearing here is the density of all emitters,

whereas ρa introduced above is the density of simultane-

0 1
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FIG. 1. (color online). Real-space analysis of localization

accuracy. (a) A scene with two emitters has 4 degrees of free-

dom (inset). The Cramér-Rao lower bound (CRLB) on error

variance for a Gaussian PSF (solid curves) matches the per-

formance of a maximum-likelihood procedure (squares). (b-d)

Real-space analysis of the Fisher information for an example

scene containing six emitters. (b) Observed intensity at each

pixel. (c) Fisher information matrix for the 12 degrees of

freedom. (d) Localization accuracy, determined by simulat-

ing 100 independent estimates of the emitters’ locations, with

n = 100 photons per emitter. Contours denote 2 s.d. from

the true position of each emitter, as determined by [Jij ]
−1
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matrix, and q̂i is assumed unbiased, i.e. �q̂i� = qi. The

CRLB states [E−J−1
] is positive semi-definite, implying

for the mean squared errors, Eii = �|q̂i − qi|2� ≥ [J−1
]ii.

This inequality constrains the estimation accuracy for

any set of image parameters, such as the emitters’ loca-

tions (qi ≡ xi), or the real-space (qx ≡ I(x)) or spatial

frequency (qk ≡ I(k)) components.

To illustrate, consider a 2D scene composed of two

equally bright emitters [5]. We choose a coordinate sys-

tem in which the emitters lie on the x-axis at (x, y) =

(±dx, 0). J is diagonal in the basis given by the center of

mass and separation vector (Fig. 1(a), inset). Fig. 1(a)

shows the corresponding CRLBs in units of the standard

deviation of the Gaussian PSF, σ [9]. Qualitatively sim-

ilar results hold for an Airy disk PSF, as well as for un-

equal emitter brightness [9]. If the emitters are well sep-

arated, dx � σ, J ≈ N
σ2 for each coordinate. But if the

two photon distributions overlap extensively, dx � σ,
one cannot unambiguously assign each photon to its cor-

rect emitter and Jdy,dy ,Jdx,dx both vanish. This loss

of information is the reason why in stochastic localiza-

tion microscopy one typically uses a very dilute density

of simultaneously active emitters, ρa � σ−2
, to prevent

emitters’ images overlapping.

The above analysis extends to scenes of more emitters

(Fig. 1(b-d)), but alas in the general case localization

accuracies vary with the scene’s details. The Fisher in-

formation for m emitters is a 2m × 2m matrix whose

entries, Jqi,qj , depend on the emitters’ 2m position co-

ordinates. For m > 2 there is no general coordinate sys-

tem making J diagonal. This is unsatisfactory, since a

resolution measure that varies from sample to sample is

neither consistent with traditional concepts of resolution

nor permits general usage.

We introduce a measure, the information transfer func-

tion (ITF), that gives resolution bounds for all specimens

and generalizes the MTF to account for photon statis-

tics. The ITF provides the CRLB for image estimation

as a function of spatial frequency; this conception of res-

olution applies equally well to conventional or stochastic

localization microscopy.

Consider an image represented by a positive function,

I(x), normalized to have unit integral. In biological mi-

croscopy, I would represent, e.g., fluorescently labeled

cellular or protein structures. The microscopist wants to

discern this structure, so we seek bounds on the squared

error of an unbiased estimator, Î(k). The ITF, F (k),
bounds the error in estimating the image frequency com-

ponents: EI(k) ≡ �|Î(k)− I(k)|2� ≥ 1/F (k). (In practice

it may be difficult or impossible to define unbiased es-

timators for some image components, especially at high

spatial frequencies [9]. A generalization of the CRLB

relates F (k) to the minimum variance of a biased esti-

mator [8]. However, this issue arises only for high spatial

frequencies where F (k) vanishes [9]).
Physical intuition suggests the ITF should vanish at

large k and be proportional to N , since each photon car-

ries equal Fisher information. A third key parameter is

the number of photons, n, that can be reliably assigned

to an individual emitter. For now we ignore any pho-

tons that cannot be assigned to an emitter, e.g. due

to overlap; these will be considered below. The attain-

ment of super-resolution in stochastic localization mi-

croscopy hinges on the ability to have n > 1, and in

practice n ∼ 100 − 10
4
or more. In conventional mi-

croscopy, individual emitters may contribute more than

one photon to the image, but since photons cannot be re-

liably assigned to the correct emitter their statistics are

equivalent to the case n = 1. If the MTF is bounded

by a Gaussian, |h(k)| ≤ e−(2πkσ)2/2
, then we find [9]:

F (k) ≤ CAρee−(2πkσ)2/n, where A is the field of view

area, ρe is the total density of emitters, and C is a con-

stant that depends on the image but not on k, A or ρe.
(Note ρe appearing here is the density of all emitters,

whereas ρa introduced above is the density of simultane-
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FIG. 1. (color online). Real-space analysis of localization

accuracy. (a) A scene with two emitters has 4 degrees of free-

dom (inset). The Cramér-Rao lower bound (CRLB) on error

variance for a Gaussian PSF (solid curves) matches the per-

formance of a maximum-likelihood procedure (squares). (b-d)

Real-space analysis of the Fisher information for an example

scene containing six emitters. (b) Observed intensity at each

pixel. (c) Fisher information matrix for the 12 degrees of

freedom. (d) Localization accuracy, determined by simulat-

ing 100 independent estimates of the emitters’ locations, with

n = 100 photons per emitter. Contours denote 2 s.d. from

the true position of each emitter, as determined by [Jij ]
−1

.
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is the Fisher information

matrix, and q̂i is assumed unbiased, i.e. �q̂i� = qi. The

CRLB states [E−J−1
] is positive semi-definite, implying

for the mean squared errors, Eii = �|q̂i − qi|2� ≥ [J−1
]ii.

This inequality constrains the estimation accuracy for

any set of image parameters, such as the emitters’ loca-

tions (qi ≡ xi), or the real-space (qx ≡ I(x)) or spatial

frequency (qk ≡ I(k)) components.

To illustrate, consider a 2D scene composed of two

equally bright emitters [5]. We choose a coordinate sys-

tem in which the emitters lie on the x-axis at (x, y) =

(±dx, 0). J is diagonal in the basis given by the center of

mass and separation vector (Fig. 1(a), inset). Fig. 1(a)

shows the corresponding CRLBs in units of the standard

deviation of the Gaussian PSF, σ [9]. Qualitatively sim-

ilar results hold for an Airy disk PSF, as well as for un-

equal emitter brightness [9]. If the emitters are well sep-

arated, dx � σ, J ≈ N
σ2 for each coordinate. But if the

two photon distributions overlap extensively, dx � σ,
one cannot unambiguously assign each photon to its cor-

rect emitter and Jdy,dy ,Jdx,dx both vanish. This loss

of information is the reason why in stochastic localiza-

tion microscopy one typically uses a very dilute density

of simultaneously active emitters, ρa � σ−2
, to prevent

emitters’ images overlapping.

The above analysis extends to scenes of more emitters

(Fig. 1(b-d)), but alas in the general case localization

accuracies vary with the scene’s details. The Fisher in-

formation for m emitters is a 2m × 2m matrix whose

entries, Jqi,qj , depend on the emitters’ 2m position co-

ordinates. For m > 2 there is no general coordinate sys-

tem making J diagonal. This is unsatisfactory, since a

resolution measure that varies from sample to sample is

neither consistent with traditional concepts of resolution

nor permits general usage.

We introduce a measure, the information transfer func-

tion (ITF), that gives resolution bounds for all specimens

and generalizes the MTF to account for photon statis-

tics. The ITF provides the CRLB for image estimation

as a function of spatial frequency; this conception of res-

olution applies equally well to conventional or stochastic

localization microscopy.

Consider an image represented by a positive function,

I(x), normalized to have unit integral. In biological mi-

croscopy, I would represent, e.g., fluorescently labeled

cellular or protein structures. The microscopist wants to

discern this structure, so we seek bounds on the squared

error of an unbiased estimator, Î(k). The ITF, F (k),
bounds the error in estimating the image frequency com-

ponents: EI(k) ≡ �|Î(k)− I(k)|2� ≥ 1/F (k). (In practice

it may be difficult or impossible to define unbiased es-

timators for some image components, especially at high

spatial frequencies [9]. A generalization of the CRLB

relates F (k) to the minimum variance of a biased esti-

mator [8]. However, this issue arises only for high spatial

frequencies where F (k) vanishes [9]).
Physical intuition suggests the ITF should vanish at

large k and be proportional to N , since each photon car-

ries equal Fisher information. A third key parameter is

the number of photons, n, that can be reliably assigned

to an individual emitter. For now we ignore any pho-

tons that cannot be assigned to an emitter, e.g. due

to overlap; these will be considered below. The attain-

ment of super-resolution in stochastic localization mi-

croscopy hinges on the ability to have n > 1, and in

practice n ∼ 100 − 10
4
or more. In conventional mi-

croscopy, individual emitters may contribute more than

one photon to the image, but since photons cannot be re-

liably assigned to the correct emitter their statistics are

equivalent to the case n = 1. If the MTF is bounded

by a Gaussian, |h(k)| ≤ e−(2πkσ)2/2
, then we find [9]:

F (k) ≤ CAρee−(2πkσ)2/n, where A is the field of view

area, ρe is the total density of emitters, and C is a con-

stant that depends on the image but not on k, A or ρe.
(Note ρe appearing here is the density of all emitters,

whereas ρa introduced above is the density of simultane-

Emitter location
estimates

• However, Fisher information for localization is inconvenient:
• A matrix quantity
• Depends on the configuration of emitters, not just density
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The information transfer 
function measures resolution 

for each spatial frequency

Limit 1: Conventional imaging
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F(k) ≈ N exp −
1
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Limit 2: Super-resolution
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Estimation accuracy for image spatial 
frequencies depends on density

Limit 1: Conventional imaging

lim
ρaσ1

F(k) ≈ N exp −
1
2
(2πkσ )2⎡

⎣⎢
⎤

⎦⎥

Limit 2: Super-resolution

lim
ρaσ1

F(k) = N
(2πkσ )2
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Photons increase with time and emitter density

Time is a key constraint for live-cell 
and in vivo imaging

Define the ITF in unit time:

FT (k) = F(k)×
ρa
N
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Optimal emitter density depends 
on spatial frequency
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Optimal emitter density depends 
on spatial frequency
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Shaky, Spiky, STORMy & Sharp:
Conclusions

Visual acuity:

• Optimal decoder of retinal spiking must account for eye 
movements.

• A biologically feasible, Reichardt-style decoder achieves near-
optimal performance.

• Temporal filtering in the retinal circuit requires lengthening the 
decoder time constant.

Super-resolution microscopy:

• Estimation accuracy depends on spatial frequency, number of 
photons, and density of emitters

• Speed-accuracy tradeoff sets the optimal emitter density.
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