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Questions that (should have)
kept Cajal up at night

Santiago Ramon y Cajal, ca. 1900

[What limits optical resolution?
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Outline: Acuity and Resolution

l. Visual acuity

* What are the fundamental, statistical limits on
performance in visual hyperacuity amid
fixational eye movements!?

* A biologically plausible neural network
decoder for fine scale vision.

|l. Super-resolution microscopy

* What fundamental limits apply to conventional
and super-resolution techniques?
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Vernier calipers
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Humans achieve hyperacuity in
Vernier tasks

Photoreceptor/ganglion cell
spacing in the fovea (30”)

Wehrhahn and Westheimer (1990)
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Hering’s theory of Vernier
acuity

* Ewald Hering (1899)
proposed integration of
information from multiple
photoreceptors along the
length of the bar
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Eyes are never still
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Small eye movements are
significant

Fixation Eye Movements
15

B o | u-saccades \ 4 V

B ) /d drlft AM \/\"
g 5t \ 4 all \ '/ _

g L'\s./\-s '\a—-——-—-—-—-"\"""_’ b/ ¢ :
<

0

2

[a

or ; f A
a P .

i | ! 1

Eye Position

S

]

Il 1 1
0 150 300 450 600 750 900 1050
Time (ms)

! I _
1200 1350 1500

Eizenman et al. (1985)

® Peak amplitude of 40-100 Hz power (with p-
saccades removed) is ~6 arc-sec, similar to Vernier

acuity threshold
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Eye movements approximate
a random walk
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Engbert and Kliegl (2004)
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Fixational eye movements
are comparable to
photoreceptor spacing

Fixational eye movement
trace lasting 500 ms,
sampled every 2 ms

|
5 arcmin

Pitkow, Sompolinsky and Meister, 2007
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Open problems in
visual hyperacuity

|. How does fine-scale visual acuity depend on:
® Photoreceptor spacing?
® Fixational eye movement amplitude!?
® Spike train statistics!?

2. What is the optimal decoder of retinal spike
trains?

3. Is there a near-optimal, biologically feasible
decoder!
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A statistical model of neural
encoding for fine vision

Retina

¢ Noisy spikes
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Key assumptions:

|. Linear, Gaussian receptive fields
2. Poisson spiking in retinal ganglion cells
3. Diffusive (random walk) eye movements
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Parameters of the model for
the Vernier task

|. Receptive field spread
O =~ 2.5- 3.5 arc-min

2. Eye movement amplitude

. 2
D =100 arc-min

E(?) S

3. Ganglion cell spike rate

® p <100 Hz

® 4. Number of ganglion cells
N =1
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A single dimensionless
parameter sets the difficulty of
Vernier estimation

The mean squared displacement of the eyes
between individual spikes, in units of the
receptive field size
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Simulated trajectories and

spike trains
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A simple averaging estimator
fails to achieve hyperacuity

dNaive = <xi>Bar1 - <xi>Bar2
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Evidence from individual
spikes accumulates over time

True gap size, d

<

Total evidence
(Posterior

distribution)
Evidence from

one spike

Estimated gap size, (| =

®  Gaussian evidence from each spike leads to a Gaussian
posterior distribution.
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Posterior distribution for the
gap parameter is Gaussian

H O Estimator uncertainty

A 2\""> " Psychophysical
0= <(dML - d) > ” threshold

'\ A Maximum likelihood (optimal)
d M, estimate of gap size:
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The optimal estimator is a function
of all the spike times

A s'>7'x
dy, =2 T-1
S 2'S
where the decoder 5 T
matrix is: 2 =0 [Id + eAAA ]
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The optimal decoder achieves
hyperacuity amid eye movements
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Optimal decoders for slow and
fast eye movements

® In the limit of slow eye movements (¢ << |) the optimal
decoder simply averages each population:

c:’MLstX/N=(Exi+—Ex;)/N

® |n the limit of fast eye movements (¢ >> |) use only pairs
of nearly-coincident spikes in opposite populations,
weighted by the inverse inter-spike interval:

. Ax, Ax, 1
dMLz(E At 2 Ati) EAti

+ switches —switches switches
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Outline: Acuity and Resolution

l. Visual acuity

* What are the fundamental, statistical limits on
performance in visual hyperacuity amid
fixational eye movements!?

* A biologically plausible neural network
decoder for fine scale vision.

|l. Super-resolution microscopy

* What fundamental limits apply to conventional
and novel techniques?
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Diffraction-limited images
are blurry at the nano-scale

Two-photon Ca?*-imaging of
dendritic “hot-spots” in vivo

Beyond the limit: spines? vesicles! synapses?! receptors?

Jia et al., Nature (2010)
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The classical diffraction limit
characterizes optical blurring

Real-space: Lord Rayleigh, Ernst Abbe (1870s)

Not resolvable Barely resolvable  Resolvable

JANAWYA

d

Frequency domain: (1950s)
A(X) = fI(X)h(X - x)dx' = A(k) = I(k)h(k)

P(k) = |h(x)| [I(x)| Point-spread function

(incoherent, translation-invariant imaging)

Modulation transfer function
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Optical imaging at the
nano-scale

* Ways to beat the diffraction limit:
|. Shorter wavelength (X-ray, EM)
2. Near-field optics

3. Multiphoton microscopy (e.g.
two-photon, STED)

4. Stochastic localization microscopy
(e.g. STORM, PALM, etc.)
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Stochastic localization is a new
imaging paradigm

) Photo-
Optical activate

acquisition
9 Computation of Acquire

fluorophore images
position

=P Compute
E] i °

e

Super-
resolution
image

KiNC

Wilt et al.,Ann. Rev. Neurosci. (2009)
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Example of stochastic
localization data

Conventional :
Raw data : Super-resolution
image

0.5 um
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Beating the diffraction limit
by localization microscopy

Summed Single-molecule
fluorescence reconstruction

COS-7 cell expressing FP-tagged lysosomal trans-membrane protein membrane

E. Betzig et al.,, Science 313, 1642 -1645 (2006)
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Where did Rayleigh and
Abbe (and Born, Wolf, et al.)
g0 wrong?

e |f diffraction is a fundamental “limit,” how
does localization transcend it?
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Rayleigh’s criterion ighores
sighal/noise ratio

d<o d>0

=
33 3
22

low SNR

More photons/ Few photons/
higher SNR
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Estimation theory bounds
localization performance

e Start with a statistical model of measurement:
Observed Hidden
P({x,,x,,...} 10)

— For example, a good model of stochastic localization
MIiCroscopy:

Photons Fluorophore location

N
P({x,.%,..110) = [ T, - &5

N

Microscope point spread function
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Fundamental theorem of estimation
theory bounds error

Bias=0 = Var[é] > J;l

The Fisher information, J, measures the sensitivity
of the observations to the parameter:

d B 2
J, = <[%logP({xi} | 0)]} >{x}

In general, the maximum likelihood estimator achieves
the fundamental bound in the limit of large V.
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An example of the
fundamental bound

Gaussian noise in 1D: Examples of estimators:
N
(x-6Y j -]
P(x10) xexp|- 0, =— X,
) p[ 207 N lz::'
Fisher infolrmation: 0, = Median[{x, }]
JQ = —2
o n
0. =x,

Fundamental bound:

Var(é) >0’
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Single-molecule localization
techniques are stochastic

-—\Y}_ Sal".‘_P'e * The biological tissue is
(x) stochastically labeled by
g _ fluorophores
\'} " : | Emitters
| RS * Each fluorophore
s stochastically generates
\'» ‘&.» Photons photons
"'S“ {:”}

* The image estimate

z [ _ reconstructs the sample
s Estimate  from the photons
el I(x)
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Information transfer function (ITF)
bounds image estimation

<[i(k) - I(k)]2> =[J7'],,

Information transfer function (ITF):

F(k) = 1/[J_1]k,k
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The effect of imaging parameters
on a biological image estimate

Microtubules Estimates

(True image) More emitters

>

More photons/emitter

X. Zhuang et al. Curr. Op.
Chem. Bio. (2008)
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Simultaneously active
emitters degrade estimation

Fluorescence data

STORM Data courtesy of Babcock, Zhuang et al.
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Localization of two emitters
depends on their separation
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Fisher information bounds
estimation for multiple emitters

Observed image Fisher information Emitter location
5 matrix estimates
I(x)o
0 = 0.06
1
§ & o
00 1

x/o 1

 However, Fisher information for localization is inconvenient:
* A matrix quantity
* Depends on the configuration of emitters, not just density
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The information transfer
function measures resolution
for each spatial frequency

Limit I: Conventional imaging

p,0>1

lim F (k)= N exp [— —(2wko)’ ]

Limit 2: Super-resolution
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Estimation accuracy for image spatial
frequencies depends on density

Limit 1: Conventional imaging

p,0>1

lim F (k)= N exp [— —(2wko)’ ]

Limit 2: Super-resolution

lim F(k)= N :
p.O<l 2rko)

Information transfer function

Super-resolution
p,o0«l

Conventional
p,o»1
-'I'll‘ ----l'll‘ ----lﬂl ™71 T
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0.16

0.40

0.79
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Time is a key constraint for live-cell
and in vivo imaging

Photons increase with time and emitter density N X paT

Define the ITF in unit time:

_ Pa
Fr (k)= F(k)x 2

10

=N

Information transfer function
In unit time

2

pao=0.01
0.16

0.40

0.79
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Optimal emitter density depends
on spatial frequency

-t
o

Spatial frequency, ko
ITF in unit time
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Optimal emitter density depends
on spatial frequency
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Shaky, Spiky, STORM, & Sharp:
Conclusions

Visual acuity:

e Optimal decoder of retinal spiking must account for eye
movements.

® A biologically feasible, Reichardt-style decoder achieves near-
optimal performance.

e Temporal filtering in the retinal circuit requires lengthening the
decoder time constant.

Super-resolution microscopy:

e Estimation accuracy depends on spatial frequency, number of
photons, and density of emitters

® Speed-accuracy tradeoff sets the optimal emitter density.

Tuesday, October 5, 2010



Acknowledgments

Visual hyper-acuity:

® Yoram Burak ”"1”“1"”
® Markus Meister m “'W*
® Haim Sompolinsky

® Ofer Mazor

Super-resolution microscopy:

® Mark Schnitzer (Stanford)

Tuesday, October 5, 2010



