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correlation is not connection

The vote share of the German Social Democratic Party (SPD) equals the index of 
the crude steel production in the Western federal states (source: Wikipedia)

Mierscheid Law
J. M. Mierscheid 
(1983)
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• observing the covariation of the activities cannot directly tell 
us about the network connectivity.
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can we use this type of data to infer connections?
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outline

• A simple model, equilibrium inverse Ising problem, and its 
shortcomings.

• Fitting the kinetic Ising model.

• Mean-Field and TAP approximations for the kinetic model and 
quantifying their errors.

• On real data.
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equilibrium inverse Ising problem
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Boltzmann Machine
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• how to find  hi, Jij  for large N?

Exact method: Boltzmann learning

€ 

δJij =η SiS j data
− SiS j current J ,h[ ]

δhi =η Si data − Si current J ,h[ ]

requires long Monte Carlo runs to compute model statistics

fast and reliable approximate methods exist

Ackley, Hinton, Sejnowski 85
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• nMFT
hi = tanh−1 mi −
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• high absolute magnetization expansion
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1

Roudi et al 09

• independent-pairs Roudi et al 09

• TAP
hi = tanh−1 mi −
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j

Jijmj +mi
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j

J2
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C−1
ij = −Jij − 2J2
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Kappen & Rodriguez 98, Tanaka 98

• Sessak-Monasson, BP, SusP 

Sessak & Monasson 09 Mezard & Mora 09 Aurell, Olion & Roudi 10
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binary representation of spike trains

time
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. . 
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• for each neuron i, if it 

spiked in bin t→ 
did not spike in bin t →

si(t) = 1

si(t) = −1

• a binary representation of spike 
trains S(t) = (s1(t), s2(t), . . . , sN (t))

• bin the spike train 

�si�data =
1
T

�

t

si(t)

�sisj�data =
1
T

�

t

si(t)sj(t)

• compute experimental means and corr.

S(t = 2) = (1,−1, . . . ,−1)
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Prpair(S) =
1

Zpair
exp
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

fit the Ising distribution (find hs and Js)

such that 

�sisj�pair = �sisj�data

�si�pair = �si�data

functional couplings

this yields the simplest probability model for the spike trains that 

the maximum entropy distribution given means and correlations.

Schneidman et al Nature 05, Shlens et al J. Neurosci. 06
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• how good are these approximations 
compared to the exact learning for neural 
data?

Friday, November 12, 2010



Excitatory
Popula.on

Inhibitory
Popula.on

External
Input
(Exc.)

simplified	
  model	
  of	
  circuitry	
  in	
  a	
  small	
  	
  	
  	
  	
  	
  
(~0.5	
  mm)	
  region	
  of	
  neocortex

2	
  popula.ons	
  in	
  network:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Excitatory,	
  Inhibitory

Excitatory	
  external	
  drive	
  (“rest	
  of	
  brain”)

realis;c	
  modeling:	
  Hodgkin-­‐Huxley-­‐like	
  
neurons,	
  conductance-­‐based	
  synapses

Random	
  connec.vity:
Probability	
  of	
  connec;on	
  between	
  any	
  two	
  
neurons	
  is	
  c = K/N,	
  where	
  N	
  is	
  the	
  size	
  of	
  

the	
  popula;on	
  and	
  K	
  is	
  the	
  average	
  
number	
  of	
  presynap;c	
  neurons.

Results	
  here	
  for	
  
c = 0.1, N = 1000
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comparing the approximations

 

N=20                                δt=10 ms

nMFT ind pair

low-rate TAP

SM TAP/SM

 N =200

nMFT ind pair

low-rate TAP

SM TAP/SM the
winner!
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SM/TAP

SM

SM/TAP
SM

TAP

TAP

nMFT

nMFT

low-rate

low-rate

ind pair

ind pair

N-dependence of error measures
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we have fast approximations that can work for 
large networks 

but what can we learn from the inferred 
connections?
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relation to real network connectivity
~ inferring gene regulatory network

Lazon et al 06
microarray expression data from Saccharomyces cerevisiae

~ Reconstructing protein complexes from co-evolution of 
contacting residues (#a.a. ~ 102;  #data ~ 103-104)

 Weigt, White, Szurmant, Hoch, Hwa (PNAS 2009)
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neural data

~ forcing the connections to be symmetric
~ equilibrium vs non-equilibrium
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• the equilibrium inverse Ising model is not a 
good model for inferring the connections

parentheses

• is it a good probability model?
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qualitative picture

Schneidman et al, Nature 2006
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quantitative picture

• Compute DKL(Prtrue||Prpair).

• Normalise it by DKL(Prtrue||Prind) 

Prind(S) =
1

Zind
exp

�
�

i

bisi

�
bi = tanh−1(�si�data)

• pairwise model quality

Δ=
DKL(Prdata||Prpair)

DKL(Prdata||Prind)

Entropy   - Entropy 

Entropy   - Entropy 

pair data

dataind

=

Δ near one ====> pairwise model is bad

Δ near zero ====> pairwise model is good
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“pairwise models are exceptionally powerful”

This was calculated for small number of 
neurons N ≤ 10.

• can we conclude that pairwise models are good for real 
sized systems?

•    EXPERIMENTAL DATA: Δ≈0.01 - 0.1

Schneidman et al, Nature 2006
Shlens et al, J. Neuro. 2006

Tang et al, J. Neuro. 2008
Shlens et al, J. Neuro. 2009

Roudi et al, PLoS Comp. Biol.,  2009
Roudi et al, Phys. Rev. E.,  2009
Roudi et al, Frontiers in CN,  2009
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N

Δ

1

0

?

extrapolation problem
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perturbation for small 

•  assume Nδ << 1.

• compute DKL(Ptrue||Ppair) and DKL(Ptrue||Pind) 
perturbatively.

δ average number of spikes per bin

Nδ

experiments were done in this 
regime.

N number of neurons

DKL(Ptrue||Ppair)∝N (N-1) (N-2) δ3

DKL(Ptrue||Pind)∝N (N-1)δ2
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Δ∝ (N-2) δ << 1

Δ is guaranteed to be small for small subsystems, Δ is guaranteed to be small for small subsystems, Δ is guaranteed to be small for small subsystems, Δ is guaranteed to be small for small subsystems, Δ is guaranteed to be small for small subsystems, 

Δ is guaranteed to be small for small subsystems, but it 
has no predictive power.
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the experimentally observed power of pairwise models 
cannot be extrapolated to large systems.

N

Δ

1

0

?
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δ=0.073 δ=0.019
δt=10 ms δt=2 ms

* data
 theory

5 10 150

0.02

0.04

0.06

5 10 150

2

4

x 10−3

10 150

0.05

0.1

5 10 150

2

4 x 10−3

5 10 150

0.5

1
x 10−4

10 150

0.05

0.1

5 5

pa
ir pa
ir

(a)

(b)

(c)

(d)

(e)

(f )

Friday, November 12, 2010



• equilibrium model does not help you find the 
connections.

• it is not a good probability model for data unless 
you’re dealing with a brain of N~10-20.

Friday, November 12, 2010



~ forcing the connections to be symmetric
~ equilibrium vs non-equilibrium

study kinetic models
GLM models

network of IF neurons
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kinetic Ising model

Pr({si(t+ 1)}|{si(t)}) =
�
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asynchronous, continuous time

β=1
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Mean Field Theory For Non-Equilibrium Network Reconstruction

Yasser Roudi1 and John Hertz1, 2

1NORDITA, Stockholm, Sweden
2The Niels Bohr Institute, Copenhagen, Denmark

There has been recent progress on the problem of inferring the structure of interactions in complex
networks when they are in stationary states satisfying detailed balance, but little has been done for
non-equilibrium systems. Here we introduce an approach to this problem, considering, as an exam-
ple, the question of recovering the interactions in an asymmetrically-coupled, synchronously-updated
Sherrington-Kirkpatrick model. We derive an exact iterative inversion algorithm and develop effi-
cient approximations based on dynamical mean-field and Thouless-Anderson-Palmer equations that
express the interactions in terms of equal-time and one time step-delayed correlation functions.

PACS numbers: 05.10.-a,02.50.Tt,75.10.Nr

Introduction.— Finding the connectivity in complex
networks is an important step in understanding how they
operate. The types of data required for reconstructing
many biological networks have become available recently,
thanks to advances in recording technology, e.g., gene mi-
croarrays and multi-electrode arrays. These techniques
allow us to observe simultaneously the activity of many
elements in a system. What is needed now is appropriate
theoretical tools for analyzing these data and extracting
the connectivity.

In much recent work on this subject [1–4], the prob-
lem has been posed as that of inferring the parameters of
a stationary Gibbs distribution modeling the system. In
this case, techniques from equilibrium statistical mechan-
ics can be exploited to develop fast and efficient inference
methods [3–6]. In biological systems, however, the as-
sumption of Gibbs equilibrium is unlikely to hold, due to
several factors: these systems are usually driven by time-
dependent external fields, the interactions may not sat-
isfy detailed balance, or the system may only be observed
while the dynamics is dominated by transients. Applying
the equilibrium approach to these non-equilibrium cases
usually yields effective interactions that do not bear any
obvious relationship to the real ones [3].

In this paper we study how the parameters of a dy-
namical system which is not necessarily in Gibbs equi-
librium can be efficiently inferred from observing it. A
convenient platform to illustrate our approach is a kinetic
Ising model with random asymmetric interactions (Jji in-
dependent of Jij), driven by an external field which may
be time-dependent. This case is of interest for analyzing
multiple neural spike trains recorded while the animal is
subjected to a time-varying stimulus. Even if the field
is time-independent and the model is in a steady state,
this system is not in a Gibbs equilibrium because de-
tailed balance does not hold for asymmetric interactions.
However, we show that, like its equilibrium counterpart,
the non-equilibrium inverse problem for this model can
be solved using a gradient descent method. We then go
on to build systematic approximations using dynamical
mean-field (MF) and Thouless-Anderson-Palmer (TAP)

equations. We show that for both the stationary and non-
stationary systems these methods provide efficient and
effective reconstruction of interactions from state sam-
ples.

The model and the exact learning rule.— Con-
sider the following discrete-time, synchronously updated
kinetic Ising model composed of N spins si = ±1:

Pr(s(t+ 1)|s(t)) =
∏

i

exp[si(t+ 1)θi(t)]

2 cosh(θi(t))
(1)

where θi(t) = hi(t) +
∑

j Jijsj(t) and the couplings Jij
are independent Gaussian variables with variance g2/N .
A model like this can be readily applied to time-binned
neural spike trains, where t labels the bins, si(t) = ±1
represents a spike or no spike by neuron i in bin t [1]. The
temperature has been set equal to 1, since any effects of
changing the temperature can be realized by changing
the coupling parameter g and the field strengths.

Suppose that we have observed R realizations of du-
ration L time steps of this system. We denote the ob-
served state of the system at time t of realization r by
s
r(t) = {sr1(t), · · · , srN (t)}, r = 1 . . . R. We further as-

sume that all realizations are generated with the same
initial condition and external fields, and that they only
differ in the realization of thermal noise. To find the
couplings and external fields that best fit these data, we
maximize the log-likelihood of the observed states under
the model in Eqn. (1)

L(h, J) =
∑

t,r,i

[

his
r
i (t+ 1) +

∑

j

Jijs
r
i (t+ 1)srj(t)

− log 2 cosh(hi(t) +
∑

j

Jijs
r
j(t))

]

. (2)

This maximization can be done using an iterative algo-
rithm, analogous to Boltzmann learning for the equilib-
rium model. One starts from an initial set of couplings
and fields and adjusts them iteratively by steps of sizes

suppose we have observed R repeats each of length L

2

δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)
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∂Jij

, that is
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∑

k

Jiksk(t))]〉r]
}
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∑
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where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
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Introduction.— Finding the connectivity in complex
networks is an important step in understanding how they
operate. The types of data required for reconstructing
many biological networks have become available recently,
thanks to advances in recording technology, e.g., gene mi-
croarrays and multi-electrode arrays. These techniques
allow us to observe simultaneously the activity of many
elements in a system. What is needed now is appropriate
theoretical tools for analyzing these data and extracting
the connectivity.

In much recent work on this subject [1–4], the prob-
lem has been posed as that of inferring the parameters of
a stationary Gibbs distribution modeling the system. In
this case, techniques from equilibrium statistical mechan-
ics can be exploited to develop fast and efficient inference
methods [3–6]. In biological systems, however, the as-
sumption of Gibbs equilibrium is unlikely to hold, due to
several factors: these systems are usually driven by time-
dependent external fields, the interactions may not sat-
isfy detailed balance, or the system may only be observed
while the dynamics is dominated by transients. Applying
the equilibrium approach to these non-equilibrium cases
usually yields effective interactions that do not bear any
obvious relationship to the real ones [3].

In this paper we study how the parameters of a dy-
namical system which is not necessarily in Gibbs equi-
librium can be efficiently inferred from observing it. A
convenient platform to illustrate our approach is a kinetic
Ising model with random asymmetric interactions (Jji in-
dependent of Jij), driven by an external field which may
be time-dependent. This case is of interest for analyzing
multiple neural spike trains recorded while the animal is
subjected to a time-varying stimulus. Even if the field
is time-independent and the model is in a steady state,
this system is not in a Gibbs equilibrium because de-
tailed balance does not hold for asymmetric interactions.
However, we show that, like its equilibrium counterpart,
the non-equilibrium inverse problem for this model can
be solved using a gradient descent method. We then go
on to build systematic approximations using dynamical
mean-field (MF) and Thouless-Anderson-Palmer (TAP)

equations. We show that for both the stationary and non-
stationary systems these methods provide efficient and
effective reconstruction of interactions from state sam-
ples.

The model and the exact learning rule.— Con-
sider the following discrete-time, synchronously updated
kinetic Ising model composed of N spins si = ±1:

Pr(s(t+ 1)|s(t)) =
∏

i

exp[si(t+ 1)θi(t)]

2 cosh(θi(t))
(1)

where θi(t) = hi(t) +
∑

j Jijsj(t) and the couplings Jij
are independent Gaussian variables with variance g2/N .
A model like this can be readily applied to time-binned
neural spike trains, where t labels the bins, si(t) = ±1
represents a spike or no spike by neuron i in bin t [1]. The
temperature has been set equal to 1, since any effects of
changing the temperature can be realized by changing
the coupling parameter g and the field strengths.

Suppose that we have observed R realizations of du-
ration L time steps of this system. We denote the ob-
served state of the system at time t of realization r by
s
r(t) = {sr1(t), · · · , srN (t)}, r = 1 . . . R. We further as-

sume that all realizations are generated with the same
initial condition and external fields, and that they only
differ in the realization of thermal noise. To find the
couplings and external fields that best fit these data, we
maximize the log-likelihood of the observed states under
the model in Eqn. (1)

L(h, J) =
∑

t,r,i

[

his
r
i (t+ 1) +

∑

j

Jijs
r
i (t+ 1)srj(t)

− log 2 cosh(hi(t) +
∑

j

Jijs
r
j(t))

]

. (2)

This maximization can be done using an iterative algo-
rithm, analogous to Boltzmann learning for the equilib-
rium model. One starts from an initial set of couplings
and fields and adjusts them iteratively by steps of sizes
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log likelihood of this data is
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δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)
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the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving
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Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
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JMF, we get

JMF
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δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
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i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.
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by assuming that the mi satisfy the TAP equations
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∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
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ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where
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i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
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i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =
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where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
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JMF, we get
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likelihood as cost function), one for each spin; see sec-
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for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
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equal to zero. Assume first that the magnetizations mi =
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(4) can be solved to give JMF = A−1DC−1. This is our
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These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
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be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
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ij are the true couplings and Jij are those found
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We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving
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Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
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where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
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equal-time correlation matrix) and Aij = (1 − m2
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(4) can be solved to give JMF = A−1DC−1. This is our
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These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
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tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
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where J0
ij are the true couplings and Jij are those found
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We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving
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dominant contributions in the sum over k, l, and m are
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likelihood as cost function), one for each spin; see sec-
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for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.
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be exact for N → ∞ and infinite data. We also quantify
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and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
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For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)

€ 

Si = mi + δSi

2

δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑
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TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of
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k J
TAP
ik δsk +

mi
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TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where
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These equations cannot be solved directly as in the MF
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This determines ATAP
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i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields
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2 =
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, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
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stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
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equal-time correlation matrix) and Aij = (1 − m2
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by assuming that the mi satisfy the TAP equations
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into account the Onsager reaction field. It was proved
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though usually derived for the equilibrium (symmetric-
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tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
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where J0
ij are the true couplings and Jij are those found
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We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving
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Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get
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where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give
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Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of
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ATAP
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These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
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This determines ATAP
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i )(1 − Fi), so we can
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ij = JMF
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root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0
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2 =
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(1−m2
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, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑
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Jik〈sksn〉 − 1
3

∑
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Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get
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where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+
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. We write the si that occur in Eqn. (3) as mi + δsi
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equal-time correlation matrix) and Aij = (1 − m2
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(4) can be solved to give JMF = A−1DC−1. This is our
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To get the TAP inversion formula, we start instead
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These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
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J) SK model, also hold for the asynchronously updated,
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tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields
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2 =
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where J0
ij are the true couplings and Jij are those found
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of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.
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where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
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The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+
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vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
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To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
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ik mk −mi
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These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑
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TAP
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mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
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i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑
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JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get
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, that is
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, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+
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. We write the si that occur in Eqn. (3) as mi + δsi
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These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of
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k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
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These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
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Fi(1− F 2
i ) = (1−m2
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∑
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(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑
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Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
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, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+
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MF
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. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
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Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑
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TAP
ik δsk +
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∑

k(J
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k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑
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(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
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Fi(1− F 2
i ) = (1−m2
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j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑
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JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
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FIG. 1. The quality of the exact algorithm, the MF approxi-
mation (a) and the TAP approximation (b), versus the length
of data L. Results are shown for g = 0.1 (blue stars), 0.12
(magenta crosses), 0.14 (red circles) and 0.16 (black x) and
all for N = 20. The solid lines are the theoretical predictions,
in the TAP case together with the finite size corrections.

with corrections of relative order 1/N . This yields the
TAP-approximation couplings found above, showing that
the TAP reconstruction indeed corrects the leading MF
errors. To leading order the sum on k is just g2, and the
asymptotic mean square MF error is

ε∞MF = (Jij − JMF
ij )2 =

g6

N
. (9)

The solid curves in Fig. 1a are 1/L + g6/N ; the fit is
evidently good.

Fig. 2 illustrates the systematic nature of the MF er-
rors in a scatter plot of the JMF

ij s against the true Jijs:
One can see that MF systematically underestimates the
magnitude of the couplings. The factor 1−Fi in the TAP
formula corrects for this to relative order g2.
The error using the TAP reconstruction is much lower

than that for the MF one and reaches its minimum at
much larger L: for N = 20 and the coupling strengths
we studied, we had to go to L > 109 to see the error flat-
ten; see Fig. 1b. To calculate the asymptotic reconstruc-
tion error for TAP, we can expand the tanh to 5th order
and proceed to evaluate the averages in the same way.
The MF error terms analyzed above are compensated
(for N → ∞) for by the TAP equations, leading to an
asymptotic ε∞TAP = 4g10/N . However, the errors found
by applying the TAP algorithm to a simulated network
of N = 20 (Fig. 1b) are much larger than this. We have
traced this discrepancy to a finite-size effect of relative
order 1/N2: In making that TAP correction, the term
in (7) with k = l = m has been counted three times in
obtaining (8) instead of once. The resulting mean square

error is (2/3)2J6
ij = (20g6)/(3N3). These corrections will

be negligible relative to the asymptotic g10/N term only
for N $ 1/g2, which is not generally satisfied for the
weak coupling strengths used in our simulations. Taking
into account this finite size correction, we can predict the
TAP error reasonably well, as shown in Fig. 1b.

Non-stationary case.— The magnetizations,
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FIG. 2. The systematic nature of MF and TAP errors. We
show the couplings inferred using MF (black dots) and TAP
(red squares) vs the true ones for a network of N = 20 with
g = 0.35 using (a) L = 104 and (b) L = 106 samples.

mi(t) = 〈sri (t)〉r, are now time-dependent and, for MF,
solve

mi(t+ 1) = tanh[hi(t) +
∑

j

JMF
ij mj(t)]. (10)

We have also proved [9] that the TAP equations hold
even in a nonstationary state, in the form

mi(t+ 1) = tanh[hi(t) +
∑

j

JTAP
ij mj(t)

− mi(t+ 1)
∑

j

(JTAP)2ij(1−m2
j (t))]. (11)

Thus, we can extend both our inversion algorithms to
nonstationary systems, as we show in the following.

We start by defining time-dependent correlation ma-
trices Dij(t) ≡ 〈δsri (t + 1)δsrj(t)〉r and Cij(t) ≡
〈δsri (t)δsrj(t)〉r. For MF, using the same procedure that
lead to Eqn. (4), we find

〈Dij(t)〉t =
∑

k

JMF
ik 〈(1−m2

i (t+ 1))Ckj(t)〉t. (12)

One can still solve for J by simple matrix algebra:

JMF
ij =

∑

k

〈Dik(t)〉t[(B(i))−1]kj , (13)

where B(i)
kj = 〈(1 − m2

i (t + 1))Ckj(t)〉t. The problem is
more complex than the stationary one only because one
has to invert a different matrix B(i) for each i.
For TAP, analogously to the stationary case, the B(i)

acquire an extra factor inside the time average:

B(i)
kj = 〈(1−m2

i (t+ 1))(1− Fi(t))Ckj(t)〉t, (14a)

Fi(t) = (1−m2
i (t+ 1))

∑

l

(JTAP)2il(1−m2
l (t)). (14b)

Exact TAP inversion requires iterative solution of Eqn.
(13), with JTAP

ij instead of JMF
ij , together with Eqn. (14).

We have found, however, that effective reconstruction is
still possible under the simplifying approximation that

after the learning is converged

2

δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
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∑
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TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑
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(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
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∑
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ikJij , (8)
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and δJij = ηJ
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∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
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k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)
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of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving
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dominant contributions in the sum over k, l, and m are
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where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
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overline, instead, indicates averaging over the spins.
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stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+
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. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give
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i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
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To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of
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root of Eqn. (5) can not exceed 2/(3
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3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields
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ij ≡ (Jij − J0
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2 =
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, (6)

where J0
ij are the true couplings and Jij are those found
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We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving
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∑
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Correlations here are at equal times, except forDin. The
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overline, instead, indicates averaging over the spins.
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stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+
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equal-time correlation matrix) and Aij = (1 − m2
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(4) can be solved to give JMF = A−1DC−1. This is our
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These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
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fied that they are also valid in our synchronously-updated
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asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields
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2 =
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ij are the true couplings and Jij are those found
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of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.
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The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+
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. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give
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delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +
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TAP
ik mk −mi

∑
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TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑
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Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
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∑

k

J2
ikJij , (8)
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follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.
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stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
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r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
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equal to zero. Assume first that the magnetizations mi =
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. We write the si that occur in Eqn. (3) as mi + δsi
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Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
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equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
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These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
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can derive a cubic equation for the quantities Fi =
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evaluate JTAP
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3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields
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where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
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For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving
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Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
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FIG. 1. The quality of the exact algorithm, the MF approxi-
mation (a) and the TAP approximation (b), versus the length
of data L. Results are shown for g = 0.1 (blue stars), 0.12
(magenta crosses), 0.14 (red circles) and 0.16 (black x) and
all for N = 20. The solid lines are the theoretical predictions,
in the TAP case together with the finite size corrections.

with corrections of relative order 1/N . This yields the
TAP-approximation couplings found above, showing that
the TAP reconstruction indeed corrects the leading MF
errors. To leading order the sum on k is just g2, and the
asymptotic mean square MF error is

ε∞MF = (Jij − JMF
ij )2 =

g6

N
. (9)

The solid curves in Fig. 1a are 1/L + g6/N ; the fit is
evidently good.

Fig. 2 illustrates the systematic nature of the MF er-
rors in a scatter plot of the JMF

ij s against the true Jijs:
One can see that MF systematically underestimates the
magnitude of the couplings. The factor 1−Fi in the TAP
formula corrects for this to relative order g2.
The error using the TAP reconstruction is much lower

than that for the MF one and reaches its minimum at
much larger L: for N = 20 and the coupling strengths
we studied, we had to go to L > 109 to see the error flat-
ten; see Fig. 1b. To calculate the asymptotic reconstruc-
tion error for TAP, we can expand the tanh to 5th order
and proceed to evaluate the averages in the same way.
The MF error terms analyzed above are compensated
(for N → ∞) for by the TAP equations, leading to an
asymptotic ε∞TAP = 4g10/N . However, the errors found
by applying the TAP algorithm to a simulated network
of N = 20 (Fig. 1b) are much larger than this. We have
traced this discrepancy to a finite-size effect of relative
order 1/N2: In making that TAP correction, the term
in (7) with k = l = m has been counted three times in
obtaining (8) instead of once. The resulting mean square

error is (2/3)2J6
ij = (20g6)/(3N3). These corrections will

be negligible relative to the asymptotic g10/N term only
for N $ 1/g2, which is not generally satisfied for the
weak coupling strengths used in our simulations. Taking
into account this finite size correction, we can predict the
TAP error reasonably well, as shown in Fig. 1b.

Non-stationary case.— The magnetizations,
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FIG. 2. The systematic nature of MF and TAP errors. We
show the couplings inferred using MF (black dots) and TAP
(red squares) vs the true ones for a network of N = 20 with
g = 0.35 using (a) L = 104 and (b) L = 106 samples.

mi(t) = 〈sri (t)〉r, are now time-dependent and, for MF,
solve

mi(t+ 1) = tanh[hi(t) +
∑

j

JMF
ij mj(t)]. (10)

We have also proved [9] that the TAP equations hold
even in a nonstationary state, in the form

mi(t+ 1) = tanh[hi(t) +
∑

j

JTAP
ij mj(t)

− mi(t+ 1)
∑

j

(JTAP)2ij(1−m2
j (t))]. (11)

Thus, we can extend both our inversion algorithms to
nonstationary systems, as we show in the following.

We start by defining time-dependent correlation ma-
trices Dij(t) ≡ 〈δsri (t + 1)δsrj(t)〉r and Cij(t) ≡
〈δsri (t)δsrj(t)〉r. For MF, using the same procedure that
lead to Eqn. (4), we find

〈Dij(t)〉t =
∑

k

JMF
ik 〈(1−m2

i (t+ 1))Ckj(t)〉t. (12)

One can still solve for J by simple matrix algebra:

JMF
ij =

∑

k

〈Dik(t)〉t[(B(i))−1]kj , (13)

where B(i)
kj = 〈(1 − m2

i (t + 1))Ckj(t)〉t. The problem is
more complex than the stationary one only because one
has to invert a different matrix B(i) for each i.
For TAP, analogously to the stationary case, the B(i)

acquire an extra factor inside the time average:

B(i)
kj = 〈(1−m2

i (t+ 1))(1− Fi(t))Ckj(t)〉t, (14a)

Fi(t) = (1−m2
i (t+ 1))

∑

l

(JTAP)2il(1−m2
l (t)). (14b)

Exact TAP inversion requires iterative solution of Eqn.
(13), with JTAP

ij instead of JMF
ij , together with Eqn. (14).

We have found, however, that effective reconstruction is
still possible under the simplifying approximation that

2

δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)
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overline, instead, indicates averaging over the spins.
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stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+
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. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give
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delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2
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(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +
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ik mk −mi
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k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of
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be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields
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where J0
ij are the true couplings and Jij are those found
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We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
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Jik〈sksn〉 − 1
3
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JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −
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2
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and δJij = ηJ
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, that is

δhi(t) = ηh
{
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}

(3a)

δJij = ηJ
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〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
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}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give
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Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2
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(4) can be solved to give JMF = A−1DC−1. This is our
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by assuming that the mi satisfy the TAP equations
mi = tanh[hi +
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k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of
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This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP
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root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
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where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
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likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
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well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
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For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
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where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
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overline, instead, indicates averaging over the spins.
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stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
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equal-time correlation matrix) and Aij = (1 − m2
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by assuming that the mi satisfy the TAP equations
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TAP
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These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
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tions after the Jij have been obtained, just as in the
equilibrium problem [5].
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fied that the algorithm (3) recovers the couplings of an
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(L → ∞) for a wide range of coupling strengths g, ex-
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of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
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For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
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likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.
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based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.
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for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
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be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
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r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
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Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +
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TAP
ik mk −mi
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k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of
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This determines ATAP
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i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0
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2 =
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, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
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be exact for N → ∞ and infinite data. We also quantify
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likelihood as cost function), one for each spin; see sec-
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for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
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equal to zero. Assume first that the magnetizations mi =
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equal-time correlation matrix) and Aij = (1 − m2
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(4) can be solved to give JMF = A−1DC−1. This is our
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These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
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J) SK model, also hold for the asynchronously updated,
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(L → ∞) for a wide range of coupling strengths g, ex-
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and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.
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MF error, ε∞MF, analytically as follows. We present the
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stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
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(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
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asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)

2

δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )
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JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
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asymmetric-J model in a stationary state. We have veri-
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i )(1 − Fi), so we can
evaluate JTAP
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ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields
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2 =
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where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving
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where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+
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. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give
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i )
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Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of
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This determines ATAP
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i )(1 − Fi), so we can
evaluate JTAP
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root of Eqn. (5) can not exceed 2/(3
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3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑
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Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get
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, that is
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where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
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∑
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Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
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∑
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TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑
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(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑
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Jik〈sksn〉 − 1
3

∑
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(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
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FIG. 1. The quality of the exact algorithm, the MF approxi-
mation (a) and the TAP approximation (b), versus the length
of data L. Results are shown for g = 0.1 (blue stars), 0.12
(magenta crosses), 0.14 (red circles) and 0.16 (black x) and
all for N = 20. The solid lines are the theoretical predictions,
in the TAP case together with the finite size corrections.

with corrections of relative order 1/N . This yields the
TAP-approximation couplings found above, showing that
the TAP reconstruction indeed corrects the leading MF
errors. To leading order the sum on k is just g2, and the
asymptotic mean square MF error is

ε∞MF = (Jij − JMF
ij )2 =

g6

N
. (9)

The solid curves in Fig. 1a are 1/L + g6/N ; the fit is
evidently good.

Fig. 2 illustrates the systematic nature of the MF er-
rors in a scatter plot of the JMF

ij s against the true Jijs:
One can see that MF systematically underestimates the
magnitude of the couplings. The factor 1−Fi in the TAP
formula corrects for this to relative order g2.
The error using the TAP reconstruction is much lower

than that for the MF one and reaches its minimum at
much larger L: for N = 20 and the coupling strengths
we studied, we had to go to L > 109 to see the error flat-
ten; see Fig. 1b. To calculate the asymptotic reconstruc-
tion error for TAP, we can expand the tanh to 5th order
and proceed to evaluate the averages in the same way.
The MF error terms analyzed above are compensated
(for N → ∞) for by the TAP equations, leading to an
asymptotic ε∞TAP = 4g10/N . However, the errors found
by applying the TAP algorithm to a simulated network
of N = 20 (Fig. 1b) are much larger than this. We have
traced this discrepancy to a finite-size effect of relative
order 1/N2: In making that TAP correction, the term
in (7) with k = l = m has been counted three times in
obtaining (8) instead of once. The resulting mean square

error is (2/3)2J6
ij = (20g6)/(3N3). These corrections will

be negligible relative to the asymptotic g10/N term only
for N $ 1/g2, which is not generally satisfied for the
weak coupling strengths used in our simulations. Taking
into account this finite size correction, we can predict the
TAP error reasonably well, as shown in Fig. 1b.

Non-stationary case.— The magnetizations,
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FIG. 2. The systematic nature of MF and TAP errors. We
show the couplings inferred using MF (black dots) and TAP
(red squares) vs the true ones for a network of N = 20 with
g = 0.35 using (a) L = 104 and (b) L = 106 samples.

mi(t) = 〈sri (t)〉r, are now time-dependent and, for MF,
solve

mi(t+ 1) = tanh[hi(t) +
∑

j

JMF
ij mj(t)]. (10)

We have also proved [9] that the TAP equations hold
even in a nonstationary state, in the form

mi(t+ 1) = tanh[hi(t) +
∑

j

JTAP
ij mj(t)

− mi(t+ 1)
∑

j

(JTAP)2ij(1−m2
j (t))]. (11)

Thus, we can extend both our inversion algorithms to
nonstationary systems, as we show in the following.

We start by defining time-dependent correlation ma-
trices Dij(t) ≡ 〈δsri (t + 1)δsrj(t)〉r and Cij(t) ≡
〈δsri (t)δsrj(t)〉r. For MF, using the same procedure that
lead to Eqn. (4), we find

〈Dij(t)〉t =
∑

k

JMF
ik 〈(1−m2

i (t+ 1))Ckj(t)〉t. (12)

One can still solve for J by simple matrix algebra:

JMF
ij =

∑

k

〈Dik(t)〉t[(B(i))−1]kj , (13)

where B(i)
kj = 〈(1 − m2

i (t + 1))Ckj(t)〉t. The problem is
more complex than the stationary one only because one
has to invert a different matrix B(i) for each i.
For TAP, analogously to the stationary case, the B(i)

acquire an extra factor inside the time average:

B(i)
kj = 〈(1−m2

i (t+ 1))(1− Fi(t))Ckj(t)〉t, (14a)

Fi(t) = (1−m2
i (t+ 1))

∑

l

(JTAP)2il(1−m2
l (t)). (14b)

Exact TAP inversion requires iterative solution of Eqn.
(13), with JTAP

ij instead of JMF
ij , together with Eqn. (14).

We have found, however, that effective reconstruction is
still possible under the simplifying approximation that
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exact algorithm is satisfied when

2

δhi = ηh
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and δJij = ηJ
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, that is

δhi(t) = ηh
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}
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, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
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, that is
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}
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}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+
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MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑
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JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑
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TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)

2

δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)

at zero field

2

δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑
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JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of
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∑
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k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
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∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
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∑
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j ). (5)

This determines ATAP
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i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑
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ikJij , (8)
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where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑
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JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)

using yields

Friday, November 12, 2010



3

1E4 1E6 1E8 1E10
1E-9

1E-7

1E-5

L

ε
M
F

g=0.1
g=0.12

g=0.14
g=0.16

a)

ε
T
A
P

1E-9

1E-7

1E-5

1E4 1E6 1E8 1E10L
g=0.1
g=0.12

g=0.14
g=0.16

b)

FIG. 1. The quality of the exact algorithm, the MF approxi-
mation (a) and the TAP approximation (b), versus the length
of data L. Results are shown for g = 0.1 (blue stars), 0.12
(magenta crosses), 0.14 (red circles) and 0.16 (black x) and
all for N = 20. The solid lines are the theoretical predictions,
in the TAP case together with the finite size corrections.

with corrections of relative order 1/N . This yields the
TAP-approximation couplings found above, showing that
the TAP reconstruction indeed corrects the leading MF
errors. To leading order the sum on k is just g2, and the
asymptotic mean square MF error is

ε∞MF = (Jij − JMF
ij )2 =

g6

N
. (9)

The solid curves in Fig. 1a are 1/L + g6/N ; the fit is
evidently good.

Fig. 2 illustrates the systematic nature of the MF er-
rors in a scatter plot of the JMF

ij s against the true Jijs:
One can see that MF systematically underestimates the
magnitude of the couplings. The factor 1−Fi in the TAP
formula corrects for this to relative order g2.

The error using the TAP reconstruction is much lower
than that for the MF one and reaches its minimum at
much larger L: for N = 20 and the coupling strengths
we studied, we had to go to L > 109 to see the error flat-
ten; see Fig. 1b. To calculate the asymptotic reconstruc-
tion error for TAP, we can expand the tanh to 5th order
and proceed to evaluate the averages in the same way.
The MF error terms analyzed above are compensated
(for N → ∞) for by the TAP equations, leading to an
asymptotic ε∞TAP = 4g10/N . However, the errors found
by applying the TAP algorithm to a simulated network
of N = 20 (Fig. 1b) are much larger than this. We have
traced this discrepancy to a finite-size effect of relative
order 1/N2: In making that TAP correction, the term
in (7) with k = l = m has been counted three times in
obtaining (8) instead of once. The resulting mean square

error is (2/3)2J6
ij = (20g6)/(3N3). These corrections will

be negligible relative to the asymptotic g10/N term only
for N $ 1/g2, which is not generally satisfied for the
weak coupling strengths used in our simulations. Taking
into account this finite size correction, we can predict the
TAP error reasonably well, as shown in Fig. 1b.

Non-stationary case.— The magnetizations,
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mi(t) = 〈sri (t)〉r, are now time-dependent and, for MF,
solve

mi(t+ 1) = tanh[hi(t) +
∑

j

JMF
ij mj(t)]. (10)

We have also proved [9] that the TAP equations hold
even in a nonstationary state, in the form

mi(t+ 1) = tanh[hi(t) +
∑

j

JTAP
ij mj(t)

− mi(t+ 1)
∑

j

(JTAP)2ij(1−m2
j (t))]. (11)

Thus, we can extend both our inversion algorithms to
nonstationary systems, as we show in the following.

We start by defining time-dependent correlation ma-
trices Dij(t) ≡ 〈δsri (t + 1)δsrj(t)〉r and Cij(t) ≡
〈δsri (t)δsrj(t)〉r. For MF, using the same procedure that
lead to Eqn. (4), we find

〈Dij(t)〉t =
∑

k

JMF
ik 〈(1−m2

i (t+ 1))Ckj(t)〉t. (12)

One can still solve for J by simple matrix algebra:

JMF
ij =

∑

k

〈Dik(t)〉t[(B(i))−1]kj , (13)

where B(i)
kj = 〈(1 − m2

i (t + 1))Ckj(t)〉t. The problem is
more complex than the stationary one only because one
has to invert a different matrix B(i) for each i.
For TAP, analogously to the stationary case, the B(i)

acquire an extra factor inside the time average:

B(i)
kj = 〈(1−m2

i (t+ 1))(1− Fi(t))Ckj(t)〉t, (14a)

Fi(t) = (1−m2
i (t+ 1))

∑

l

(JTAP)2il(1−m2
l (t)). (14b)

Exact TAP inversion requires iterative solution of Eqn.
(13), with JTAP

ij instead of JMF
ij , together with Eqn. (14).

We have found, however, that effective reconstruction is
still possible under the simplifying approximation that

exact 
algorithm
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with corrections of relative order 1/N . This yields the
TAP-approximation couplings found above, showing that
the TAP reconstruction indeed corrects the leading MF
errors. To leading order the sum on k is just g2, and the
asymptotic mean square MF error is

ε∞MF = (Jij − JMF
ij )2 =

g6

N
. (9)

The solid curves in Fig. 1a are 1/L + g6/N ; the fit is
evidently good.

Fig. 2 illustrates the systematic nature of the MF er-
rors in a scatter plot of the JMF

ij s against the true Jijs:
One can see that MF systematically underestimates the
magnitude of the couplings. The factor 1−Fi in the TAP
formula corrects for this to relative order g2.

The error using the TAP reconstruction is much lower
than that for the MF one and reaches its minimum at
much larger L: for N = 20 and the coupling strengths
we studied, we had to go to L > 109 to see the error flat-
ten; see Fig. 1b. To calculate the asymptotic reconstruc-
tion error for TAP, we can expand the tanh to 5th order
and proceed to evaluate the averages in the same way.
The MF error terms analyzed above are compensated
(for N → ∞) for by the TAP equations, leading to an
asymptotic ε∞TAP = 4g10/N . However, the errors found
by applying the TAP algorithm to a simulated network
of N = 20 (Fig. 1b) are much larger than this. We have
traced this discrepancy to a finite-size effect of relative
order 1/N2: In making that TAP correction, the term
in (7) with k = l = m has been counted three times in
obtaining (8) instead of once. The resulting mean square

error is (2/3)2J6
ij = (20g6)/(3N3). These corrections will

be negligible relative to the asymptotic g10/N term only
for N $ 1/g2, which is not generally satisfied for the
weak coupling strengths used in our simulations. Taking
into account this finite size correction, we can predict the
TAP error reasonably well, as shown in Fig. 1b.

Non-stationary case.— The magnetizations,
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mi(t) = 〈sri (t)〉r, are now time-dependent and, for MF,
solve

mi(t+ 1) = tanh[hi(t) +
∑

j

JMF
ij mj(t)]. (10)

We have also proved [9] that the TAP equations hold
even in a nonstationary state, in the form

mi(t+ 1) = tanh[hi(t) +
∑

j

JTAP
ij mj(t)

− mi(t+ 1)
∑

j

(JTAP)2ij(1−m2
j (t))]. (11)

Thus, we can extend both our inversion algorithms to
nonstationary systems, as we show in the following.

We start by defining time-dependent correlation ma-
trices Dij(t) ≡ 〈δsri (t + 1)δsrj(t)〉r and Cij(t) ≡
〈δsri (t)δsrj(t)〉r. For MF, using the same procedure that
lead to Eqn. (4), we find

〈Dij(t)〉t =
∑

k

JMF
ik 〈(1−m2

i (t+ 1))Ckj(t)〉t. (12)

One can still solve for J by simple matrix algebra:

JMF
ij =

∑

k

〈Dik(t)〉t[(B(i))−1]kj , (13)

where B(i)
kj = 〈(1 − m2

i (t + 1))Ckj(t)〉t. The problem is
more complex than the stationary one only because one
has to invert a different matrix B(i) for each i.
For TAP, analogously to the stationary case, the B(i)

acquire an extra factor inside the time average:

B(i)
kj = 〈(1−m2

i (t+ 1))(1− Fi(t))Ckj(t)〉t, (14a)

Fi(t) = (1−m2
i (t+ 1))

∑

l

(JTAP)2il(1−m2
l (t)). (14b)

Exact TAP inversion requires iterative solution of Eqn.
(13), with JTAP

ij instead of JMF
ij , together with Eqn. (14).

We have found, however, that effective reconstruction is
still possible under the simplifying approximation that
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much smaller than what simulations show
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with corrections of relative order 1/N . This yields the
TAP-approximation couplings found above, showing that
the TAP reconstruction indeed corrects the leading MF
errors. To leading order the sum on k is just g2, and the
asymptotic mean square MF error is

ε∞MF = (Jij − JMF
ij )2 =

g6

N
. (9)

The solid curves in Fig. 1a are 1/L + g6/N ; the fit is
evidently good.

Fig. 2 illustrates the systematic nature of the MF er-
rors in a scatter plot of the JMF

ij s against the true Jijs:
One can see that MF systematically underestimates the
magnitude of the couplings. The factor 1−Fi in the TAP
formula corrects for this to relative order g2.

The error using the TAP reconstruction is much lower
than that for the MF one and reaches its minimum at
much larger L: for N = 20 and the coupling strengths
we studied, we had to go to L > 109 to see the error flat-
ten; see Fig. 1b. To calculate the asymptotic reconstruc-
tion error for TAP, we can expand the tanh to 5th order
and proceed to evaluate the averages in the same way.
The MF error terms analyzed above are compensated
(for N → ∞) for by the TAP equations, leading to an
asymptotic ε∞TAP = 4g10/N . However, the errors found
by applying the TAP algorithm to a simulated network
of N = 20 (Fig. 1b) are much larger than this. We have
traced this discrepancy to a finite-size effect of relative
order 1/N2: In making that TAP correction, the term
in (7) with k = l = m has been counted three times in
obtaining (8) instead of once. The resulting mean square

error is (2/3)2J6
ij = (20g6)/(3N3). These corrections will

be negligible relative to the asymptotic g10/N term only
for N $ 1/g2, which is not generally satisfied for the
weak coupling strengths used in our simulations. Taking
into account this finite size correction, we can predict the
TAP error reasonably well, as shown in Fig. 1b.

Non-stationary case.— The magnetizations,
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mi(t) = 〈sri (t)〉r, are now time-dependent and, for MF,
solve

mi(t+ 1) = tanh[hi(t) +
∑

j

JMF
ij mj(t)]. (10)

We have also proved [9] that the TAP equations hold
even in a nonstationary state, in the form

mi(t+ 1) = tanh[hi(t) +
∑

j

JTAP
ij mj(t)

− mi(t+ 1)
∑

j

(JTAP)2ij(1−m2
j (t))]. (11)

Thus, we can extend both our inversion algorithms to
nonstationary systems, as we show in the following.

We start by defining time-dependent correlation ma-
trices Dij(t) ≡ 〈δsri (t + 1)δsrj(t)〉r and Cij(t) ≡
〈δsri (t)δsrj(t)〉r. For MF, using the same procedure that
lead to Eqn. (4), we find

〈Dij(t)〉t =
∑

k

JMF
ik 〈(1−m2

i (t+ 1))Ckj(t)〉t. (12)

One can still solve for J by simple matrix algebra:

JMF
ij =

∑

k

〈Dik(t)〉t[(B(i))−1]kj , (13)

where B(i)
kj = 〈(1 − m2

i (t + 1))Ckj(t)〉t. The problem is
more complex than the stationary one only because one
has to invert a different matrix B(i) for each i.
For TAP, analogously to the stationary case, the B(i)

acquire an extra factor inside the time average:

B(i)
kj = 〈(1−m2

i (t+ 1))(1− Fi(t))Ckj(t)〉t, (14a)

Fi(t) = (1−m2
i (t+ 1))

∑

l

(JTAP)2il(1−m2
l (t)). (14b)

Exact TAP inversion requires iterative solution of Eqn.
(13), with JTAP

ij instead of JMF
ij , together with Eqn. (14).

We have found, however, that effective reconstruction is
still possible under the simplifying approximation that
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with corrections of relative order 1/N . This yields the
TAP-approximation couplings found above, showing that
the TAP reconstruction indeed corrects the leading MF
errors. To leading order the sum on k is just g2, and the
asymptotic mean square MF error is

ε∞MF = (Jij − JMF
ij )2 =

g6

N
. (9)

The solid curves in Fig. 1a are 1/L + g6/N ; the fit is
evidently good.

Fig. 2 illustrates the systematic nature of the MF er-
rors in a scatter plot of the JMF

ij s against the true Jijs:
One can see that MF systematically underestimates the
magnitude of the couplings. The factor 1−Fi in the TAP
formula corrects for this to relative order g2.

The error using the TAP reconstruction is much lower
than that for the MF one and reaches its minimum at
much larger L: for N = 20 and the coupling strengths
we studied, we had to go to L > 109 to see the error flat-
ten; see Fig. 1b. To calculate the asymptotic reconstruc-
tion error for TAP, we can expand the tanh to 5th order
and proceed to evaluate the averages in the same way.
The MF error terms analyzed above are compensated
(for N → ∞) for by the TAP equations, leading to an
asymptotic ε∞TAP = 4g10/N . However, the errors found
by applying the TAP algorithm to a simulated network
of N = 20 (Fig. 1b) are much larger than this. We have
traced this discrepancy to a finite-size effect of relative
order 1/N2: In making that TAP correction, the term
in (7) with k = l = m has been counted three times in
obtaining (8) instead of once. The resulting mean square

error is (2/3)2J6
ij = (20g6)/(3N3). These corrections will

be negligible relative to the asymptotic g10/N term only
for N $ 1/g2, which is not generally satisfied for the
weak coupling strengths used in our simulations. Taking
into account this finite size correction, we can predict the
TAP error reasonably well, as shown in Fig. 1b.

Non-stationary case.— The magnetizations,
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mi(t) = 〈sri (t)〉r, are now time-dependent and, for MF,
solve

mi(t+ 1) = tanh[hi(t) +
∑

j

JMF
ij mj(t)]. (10)

We have also proved [9] that the TAP equations hold
even in a nonstationary state, in the form

mi(t+ 1) = tanh[hi(t) +
∑

j

JTAP
ij mj(t)

− mi(t+ 1)
∑

j

(JTAP)2ij(1−m2
j (t))]. (11)

Thus, we can extend both our inversion algorithms to
nonstationary systems, as we show in the following.

We start by defining time-dependent correlation ma-
trices Dij(t) ≡ 〈δsri (t + 1)δsrj(t)〉r and Cij(t) ≡
〈δsri (t)δsrj(t)〉r. For MF, using the same procedure that
lead to Eqn. (4), we find

〈Dij(t)〉t =
∑

k

JMF
ik 〈(1−m2

i (t+ 1))Ckj(t)〉t. (12)

One can still solve for J by simple matrix algebra:

JMF
ij =

∑

k

〈Dik(t)〉t[(B(i))−1]kj , (13)

where B(i)
kj = 〈(1 − m2

i (t + 1))Ckj(t)〉t. The problem is
more complex than the stationary one only because one
has to invert a different matrix B(i) for each i.
For TAP, analogously to the stationary case, the B(i)

acquire an extra factor inside the time average:

B(i)
kj = 〈(1−m2

i (t+ 1))(1− Fi(t))Ckj(t)〉t, (14a)

Fi(t) = (1−m2
i (t+ 1))

∑

l

(JTAP)2il(1−m2
l (t)). (14b)

Exact TAP inversion requires iterative solution of Eqn.
(13), with JTAP

ij instead of JMF
ij , together with Eqn. (14).

We have found, however, that effective reconstruction is
still possible under the simplifying approximation that
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with corrections of relative order 1/N . This yields the
TAP-approximation couplings found above, showing that
the TAP reconstruction indeed corrects the leading MF
errors. To leading order the sum on k is just g2, and the
asymptotic mean square MF error is

ε∞MF = (Jij − JMF
ij )2 =

g6

N
. (9)

The solid curves in Fig. 1a are 1/L + g6/N ; the fit is
evidently good.

Fig. 2 illustrates the systematic nature of the MF er-
rors in a scatter plot of the JMF

ij s against the true Jijs:
One can see that MF systematically underestimates the
magnitude of the couplings. The factor 1−Fi in the TAP
formula corrects for this to relative order g2.

The error using the TAP reconstruction is much lower
than that for the MF one and reaches its minimum at
much larger L: for N = 20 and the coupling strengths
we studied, we had to go to L > 109 to see the error flat-
ten; see Fig. 1b. To calculate the asymptotic reconstruc-
tion error for TAP, we can expand the tanh to 5th order
and proceed to evaluate the averages in the same way.
The MF error terms analyzed above are compensated
(for N → ∞) for by the TAP equations, leading to an
asymptotic ε∞TAP = 4g10/N . However, the errors found
by applying the TAP algorithm to a simulated network
of N = 20 (Fig. 1b) are much larger than this. We have
traced this discrepancy to a finite-size effect of relative
order 1/N2: In making that TAP correction, the term
in (7) with k = l = m has been counted three times in
obtaining (8) instead of once. The resulting mean square

error is (2/3)2J6
ij = (20g6)/(3N3). These corrections will

be negligible relative to the asymptotic g10/N term only
for N $ 1/g2, which is not generally satisfied for the
weak coupling strengths used in our simulations. Taking
into account this finite size correction, we can predict the
TAP error reasonably well, as shown in Fig. 1b.

Non-stationary case.— The magnetizations,

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

Jtrueij

JM
F/
TA

P
ij

a)

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

JM
F/
TA

P
ij

Jtrueij

b)

FIG. 2. The systematic nature of MF and TAP errors. We
show the couplings inferred using MF (black dots) and TAP
(red squares) vs the true ones for a network of N = 20 with
g = 0.35 using (a) L = 104 and (b) L = 106 samples.

mi(t) = 〈sri (t)〉r, are now time-dependent and, for MF,
solve

mi(t+ 1) = tanh[hi(t) +
∑

j

JMF
ij mj(t)]. (10)

We have also proved [9] that the TAP equations hold
even in a nonstationary state, in the form

mi(t+ 1) = tanh[hi(t) +
∑

j

JTAP
ij mj(t)

− mi(t+ 1)
∑

j

(JTAP)2ij(1−m2
j (t))]. (11)

Thus, we can extend both our inversion algorithms to
nonstationary systems, as we show in the following.

We start by defining time-dependent correlation ma-
trices Dij(t) ≡ 〈δsri (t + 1)δsrj(t)〉r and Cij(t) ≡
〈δsri (t)δsrj(t)〉r. For MF, using the same procedure that
lead to Eqn. (4), we find

〈Dij(t)〉t =
∑

k

JMF
ik 〈(1−m2

i (t+ 1))Ckj(t)〉t. (12)

One can still solve for J by simple matrix algebra:

JMF
ij =

∑

k

〈Dik(t)〉t[(B(i))−1]kj , (13)

where B(i)
kj = 〈(1 − m2

i (t + 1))Ckj(t)〉t. The problem is
more complex than the stationary one only because one
has to invert a different matrix B(i) for each i.
For TAP, analogously to the stationary case, the B(i)

acquire an extra factor inside the time average:

B(i)
kj = 〈(1−m2

i (t+ 1))(1− Fi(t))Ckj(t)〉t, (14a)

Fi(t) = (1−m2
i (t+ 1))

∑

l

(JTAP)2il(1−m2
l (t)). (14b)

Exact TAP inversion requires iterative solution of Eqn.
(13), with JTAP

ij instead of JMF
ij , together with Eqn. (14).

We have found, however, that effective reconstruction is
still possible under the simplifying approximation that

+

finite size effect
negligible only for N>>1/g^2
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with corrections of relative order 1/N . This yields the
TAP-approximation couplings found above, showing that
the TAP reconstruction indeed corrects the leading MF
errors. To leading order the sum on k is just g2, and the
asymptotic mean square MF error is

ε∞MF = (Jij − JMF
ij )2 =
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N
. (9)

The solid curves in Fig. 1a are 1/L + g6/N ; the fit is
evidently good.

Fig. 2 illustrates the systematic nature of the MF er-
rors in a scatter plot of the JMF

ij s against the true Jijs:
One can see that MF systematically underestimates the
magnitude of the couplings. The factor 1−Fi in the TAP
formula corrects for this to relative order g2.
The error using the TAP reconstruction is much lower

than that for the MF one and reaches its minimum at
much larger L: for N = 20 and the coupling strengths
we studied, we had to go to L > 109 to see the error flat-
ten; see Fig. 1b. To calculate the asymptotic reconstruc-
tion error for TAP, we can expand the tanh to 5th order
and proceed to evaluate the averages in the same way.
The MF error terms analyzed above are compensated
(for N → ∞) for by the TAP equations, leading to an
asymptotic ε∞TAP = 4g10/N . However, the errors found
by applying the TAP algorithm to a simulated network
of N = 20 (Fig. 1b) are much larger than this. We have
traced this discrepancy to a finite-size effect of relative
order 1/N2: In making that TAP correction, the term
in (7) with k = l = m has been counted three times in
obtaining (8) instead of once. The resulting mean square

error is (2/3)2J6
ij = (20g6)/(3N3). These corrections will

be negligible relative to the asymptotic g10/N term only
for N $ 1/g2, which is not generally satisfied for the
weak coupling strengths used in our simulations. Taking
into account this finite size correction, we can predict the
TAP error reasonably well, as shown in Fig. 1b.

Non-stationary case.— The magnetizations,

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

Jtrueij

JM
F/
TA

P
ij

a)

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

JM
F
/T
A
P

ij

Jtrueij

b)

FIG. 2. The systematic nature of MF and TAP errors. We
show the couplings inferred using MF (black dots) and TAP
(red squares) vs the true ones for a network of N = 20 with
g = 0.35 using (a) L = 104 and (b) L = 106 samples.

mi(t) = 〈sri (t)〉r, are now time-dependent and, for MF,
solve
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We have also proved [9] that the TAP equations hold
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Thus, we can extend both our inversion algorithms to
nonstationary systems, as we show in the following.

We start by defining time-dependent correlation ma-
trices Dij(t) ≡ 〈δsri (t + 1)δsrj(t)〉r and Cij(t) ≡
〈δsri (t)δsrj(t)〉r. For MF, using the same procedure that
lead to Eqn. (4), we find

〈Dij(t)〉t =
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One can still solve for J by simple matrix algebra:
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〈Dik(t)〉t[(B(i))−1]kj , (13)

where B(i)
kj = 〈(1 − m2

i (t + 1))Ckj(t)〉t. The problem is
more complex than the stationary one only because one
has to invert a different matrix B(i) for each i.
For TAP, analogously to the stationary case, the B(i)

acquire an extra factor inside the time average:
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Exact TAP inversion requires iterative solution of Eqn.
(13), with JTAP
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with corrections of relative order 1/N . This yields the
TAP-approximation couplings found above, showing that
the TAP reconstruction indeed corrects the leading MF
errors. To leading order the sum on k is just g2, and the
asymptotic mean square MF error is

ε∞MF = (Jij − JMF
ij )2 =

g6

N
. (9)

The solid curves in Fig. 1a are 1/L + g6/N ; the fit is
evidently good.

Fig. 2 illustrates the systematic nature of the MF er-
rors in a scatter plot of the JMF

ij s against the true Jijs:
One can see that MF systematically underestimates the
magnitude of the couplings. The factor 1−Fi in the TAP
formula corrects for this to relative order g2.

The error using the TAP reconstruction is much lower
than that for the MF one and reaches its minimum at
much larger L: for N = 20 and the coupling strengths
we studied, we had to go to L > 109 to see the error flat-
ten; see Fig. 1b. To calculate the asymptotic reconstruc-
tion error for TAP, we can expand the tanh to 5th order
and proceed to evaluate the averages in the same way.
The MF error terms analyzed above are compensated
(for N → ∞) for by the TAP equations, leading to an
asymptotic ε∞TAP = 4g10/N . However, the errors found
by applying the TAP algorithm to a simulated network
of N = 20 (Fig. 1b) are much larger than this. We have
traced this discrepancy to a finite-size effect of relative
order 1/N2: In making that TAP correction, the term
in (7) with k = l = m has been counted three times in
obtaining (8) instead of once. The resulting mean square

error is (2/3)2J6
ij = (20g6)/(3N3). These corrections will

be negligible relative to the asymptotic g10/N term only
for N $ 1/g2, which is not generally satisfied for the
weak coupling strengths used in our simulations. Taking
into account this finite size correction, we can predict the
TAP error reasonably well, as shown in Fig. 1b.

Non-stationary case.— The magnetizations,
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mi(t) = 〈sri (t)〉r, are now time-dependent and, for MF,
solve

mi(t+ 1) = tanh[hi(t) +
∑
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JMF
ij mj(t)]. (10)

We have also proved [9] that the TAP equations hold
even in a nonstationary state, in the form

mi(t+ 1) = tanh[hi(t) +
∑
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JTAP
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− mi(t+ 1)
∑
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j (t))]. (11)

Thus, we can extend both our inversion algorithms to
nonstationary systems, as we show in the following.

We start by defining time-dependent correlation ma-
trices Dij(t) ≡ 〈δsri (t + 1)δsrj(t)〉r and Cij(t) ≡
〈δsri (t)δsrj(t)〉r. For MF, using the same procedure that
lead to Eqn. (4), we find

〈Dij(t)〉t =
∑

k

JMF
ik 〈(1−m2

i (t+ 1))Ckj(t)〉t. (12)

One can still solve for J by simple matrix algebra:

JMF
ij =

∑
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〈Dik(t)〉t[(B(i))−1]kj , (13)

where B(i)
kj = 〈(1 − m2

i (t + 1))Ckj(t)〉t. The problem is
more complex than the stationary one only because one
has to invert a different matrix B(i) for each i.
For TAP, analogously to the stationary case, the B(i)

acquire an extra factor inside the time average:

B(i)
kj = 〈(1−m2

i (t+ 1))(1− Fi(t))Ckj(t)〉t, (14a)

Fi(t) = (1−m2
i (t+ 1))

∑

l

(JTAP)2il(1−m2
l (t)). (14b)

Exact TAP inversion requires iterative solution of Eqn.
(13), with JTAP

ij instead of JMF
ij , together with Eqn. (14).

We have found, however, that effective reconstruction is
still possible under the simplifying approximation that
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with corrections of relative order 1/N . This yields the
TAP-approximation couplings found above, showing that
the TAP reconstruction indeed corrects the leading MF
errors. To leading order the sum on k is just g2, and the
asymptotic mean square MF error is

ε∞MF = (Jij − JMF
ij )2 =

g6

N
. (9)

The solid curves in Fig. 1a are 1/L + g6/N ; the fit is
evidently good.

Fig. 2 illustrates the systematic nature of the MF er-
rors in a scatter plot of the JMF

ij s against the true Jijs:
One can see that MF systematically underestimates the
magnitude of the couplings. The factor 1−Fi in the TAP
formula corrects for this to relative order g2.

The error using the TAP reconstruction is much lower
than that for the MF one and reaches its minimum at
much larger L: for N = 20 and the coupling strengths
we studied, we had to go to L > 109 to see the error flat-
ten; see Fig. 1b. To calculate the asymptotic reconstruc-
tion error for TAP, we can expand the tanh to 5th order
and proceed to evaluate the averages in the same way.
The MF error terms analyzed above are compensated
(for N → ∞) for by the TAP equations, leading to an
asymptotic ε∞TAP = 4g10/N . However, the errors found
by applying the TAP algorithm to a simulated network
of N = 20 (Fig. 1b) are much larger than this. We have
traced this discrepancy to a finite-size effect of relative
order 1/N2: In making that TAP correction, the term
in (7) with k = l = m has been counted three times in
obtaining (8) instead of once. The resulting mean square

error is (2/3)2J6
ij = (20g6)/(3N3). These corrections will

be negligible relative to the asymptotic g10/N term only
for N $ 1/g2, which is not generally satisfied for the
weak coupling strengths used in our simulations. Taking
into account this finite size correction, we can predict the
TAP error reasonably well, as shown in Fig. 1b.
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mi(t) = 〈sri (t)〉r, are now time-dependent and, for MF,
solve

mi(t+ 1) = tanh[hi(t) +
∑

j

JMF
ij mj(t)]. (10)

We have also proved [9] that the TAP equations hold
even in a nonstationary state, in the form

mi(t+ 1) = tanh[hi(t) +
∑

j

JTAP
ij mj(t)

− mi(t+ 1)
∑

j

(JTAP)2ij(1−m2
j (t))]. (11)

Thus, we can extend both our inversion algorithms to
nonstationary systems, as we show in the following.

We start by defining time-dependent correlation ma-
trices Dij(t) ≡ 〈δsri (t + 1)δsrj(t)〉r and Cij(t) ≡
〈δsri (t)δsrj(t)〉r. For MF, using the same procedure that
lead to Eqn. (4), we find

〈Dij(t)〉t =
∑

k

JMF
ik 〈(1−m2

i (t+ 1))Ckj(t)〉t. (12)

One can still solve for J by simple matrix algebra:

JMF
ij =

∑
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〈Dik(t)〉t[(B(i))−1]kj , (13)

where B(i)
kj = 〈(1 − m2

i (t + 1))Ckj(t)〉t. The problem is
more complex than the stationary one only because one
has to invert a different matrix B(i) for each i.
For TAP, analogously to the stationary case, the B(i)

acquire an extra factor inside the time average:

B(i)
kj = 〈(1−m2

i (t+ 1))(1− Fi(t))Ckj(t)〉t, (14a)

Fi(t) = (1−m2
i (t+ 1))

∑

l

(JTAP)2il(1−m2
l (t)). (14b)

Exact TAP inversion requires iterative solution of Eqn.
(13), with JTAP

ij instead of JMF
ij , together with Eqn. (14).

We have found, however, that effective reconstruction is
still possible under the simplifying approximation that
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Fi(t) in Eq. (14a) can be represented by its temporal
mean. In this case, Fi ≡ 〈Fi(t)〉t solves the cubic equa-
tion

Fi(1− Fi)
2 =

∑

j

(JMF)2ij〈(1−m2
i (t+ 1))(1−m2

j (t))〉t.

Solving it and using it in Eq. (14a), one can calculate
JTAP
ij = JMF

ij /(1 − Fi). Similar to the stationary case,
after inferring the couplings, one can use the forward
dynamical MF and TAP equations Eqns. (10) and (11)
to infer the time-varying external field.
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FIG. 3. The inference in nonstationary case. (a) Couplings
of a network of N = 20 driven by a sinusoidal external field
inferred using the nonstationary MF, and (b) the stationary
MF. (c) Two periods of the external field (thin blue full curve)
and its reconstruction using the nonstationary MF couplings
(red dashed curve) and stationary MF (thick black full curve).

The result of reconstructing the couplings of a net-
work driven by a common sinusoidal external field to all
spins is shown in Fig. 3. Fig. 3a shows how well the cou-
plings are inferred by nonstationary MF using L = 105

and R = 100. Nonstationary TAP couplings (not shown)
have a lower mean squared error: 6.7× 10−7 versus 10−6

for MF. In Fig. 3b, we also plot the couplings inferred
using stationary MF inversion for each of the 100 repeats
and averaging over them. Not surprisingly, the station-
ary MF performs poorly on these nonstationary data.
Importantly, there is a systematic overestimation of the
couplings in this case, because the stationary method ac-
counts for the correlations induced by the common, time-
varying external field through adjusting the couplings.
Correspondingly, if one uses the couplings inferred us-
ing the stationary MF in Eq. (10), the amplitude of the
common input is underestimated, while the use of non-
stationary MF couplings yields very good reconstruction
of the external field; see Fig. 3c.

Summary and Discussion.— We have shown how
to infer interactions in a simple but nontrivial non-
equilibrium system: a kinetic Ising model with random

and potentially asymmetric interactions. We have de-
scribed both an exact iterative algorithm and two ap-
proximate ones, based on dynamical mean-field and TAP
equations, which are correct up to corrections of order
1/N . We calculated analytically the errors of these ap-
proximations for weak coupling. The method shows par-
ticular promise when applied to nonstationary states,
where it separates true interactions from the apparent
ones found by applying a stationary theory to a nonsta-
tionary state.

A kinetic Ising model, even when fit using the exact
algorithm and with infinite data, will show an intrinsic
error when applied to a different kind of system (e.g., a
real neural network). However, it is promising that even
the MF approximation for the simple model of Eqn. 1,
when applied to data generated by a biologically realistic
model, was found to identify successfully a substantial
fraction of the connections in the network [10].

In other recent non-equilibrium approaches to prob-
lems like this, Marre et al [11] extended the equilibrium
maximum-entropy approach [1] to include non-equal-
time correlations, and Cocco et al [4] developed an ap-
proximate scheme for finding the connection strengths in
a network of integrate-and-fire neurons. There has also
been work [12] on models which can be viewed as gener-
alizations of Eqn. 1 in which si(t+ 1) depends on linear
combinations of h(t′) and s(t′) at times t′ ≤ t. In all
these and other dynamical models, we expect that it will
be possible and useful to develop analogous approximate
inversion based on dynamical MF and TAP-like equa-
tions. This could be done using the approach of [8] or
the generating functional method [13].
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Fi(t) in Eq. (14a) can be represented by its temporal
mean. In this case, Fi ≡ 〈Fi(t)〉t solves the cubic equa-
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2 =

∑

j

(JMF)2ij〈(1−m2
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j (t))〉t.

Solving it and using it in Eq. (14a), one can calculate
JTAP
ij = JMF

ij /(1 − Fi). Similar to the stationary case,
after inferring the couplings, one can use the forward
dynamical MF and TAP equations Eqns. (10) and (11)
to infer the time-varying external field.
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FIG. 3. The inference in nonstationary case. (a) Couplings
of a network of N = 20 driven by a sinusoidal external field
inferred using the nonstationary MF, and (b) the stationary
MF. (c) Two periods of the external field (thin blue full curve)
and its reconstruction using the nonstationary MF couplings
(red dashed curve) and stationary MF (thick black full curve).

The result of reconstructing the couplings of a net-
work driven by a common sinusoidal external field to all
spins is shown in Fig. 3. Fig. 3a shows how well the cou-
plings are inferred by nonstationary MF using L = 105

and R = 100. Nonstationary TAP couplings (not shown)
have a lower mean squared error: 6.7× 10−7 versus 10−6

for MF. In Fig. 3b, we also plot the couplings inferred
using stationary MF inversion for each of the 100 repeats
and averaging over them. Not surprisingly, the station-
ary MF performs poorly on these nonstationary data.
Importantly, there is a systematic overestimation of the
couplings in this case, because the stationary method ac-
counts for the correlations induced by the common, time-
varying external field through adjusting the couplings.
Correspondingly, if one uses the couplings inferred us-
ing the stationary MF in Eq. (10), the amplitude of the
common input is underestimated, while the use of non-
stationary MF couplings yields very good reconstruction
of the external field; see Fig. 3c.

Summary and Discussion.— We have shown how
to infer interactions in a simple but nontrivial non-
equilibrium system: a kinetic Ising model with random

and potentially asymmetric interactions. We have de-
scribed both an exact iterative algorithm and two ap-
proximate ones, based on dynamical mean-field and TAP
equations, which are correct up to corrections of order
1/N . We calculated analytically the errors of these ap-
proximations for weak coupling. The method shows par-
ticular promise when applied to nonstationary states,
where it separates true interactions from the apparent
ones found by applying a stationary theory to a nonsta-
tionary state.

A kinetic Ising model, even when fit using the exact
algorithm and with infinite data, will show an intrinsic
error when applied to a different kind of system (e.g., a
real neural network). However, it is promising that even
the MF approximation for the simple model of Eqn. 1,
when applied to data generated by a biologically realistic
model, was found to identify successfully a substantial
fraction of the connections in the network [10].

In other recent non-equilibrium approaches to prob-
lems like this, Marre et al [11] extended the equilibrium
maximum-entropy approach [1] to include non-equal-
time correlations, and Cocco et al [4] developed an ap-
proximate scheme for finding the connection strengths in
a network of integrate-and-fire neurons. There has also
been work [12] on models which can be viewed as gener-
alizations of Eqn. 1 in which si(t+ 1) depends on linear
combinations of h(t′) and s(t′) at times t′ ≤ t. In all
these and other dynamical models, we expect that it will
be possible and useful to develop analogous approximate
inversion based on dynamical MF and TAP-like equa-
tions. This could be done using the approach of [8] or
the generating functional method [13].
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FIG. 1. The quality of the exact algorithm, the MF approxi-
mation (a) and the TAP approximation (b), versus the length
of data L. Results are shown for g = 0.1 (blue stars), 0.12
(magenta crosses), 0.14 (red circles) and 0.16 (black x) and
all for N = 20. The solid lines are the theoretical predictions,
in the TAP case together with the finite size corrections.

with corrections of relative order 1/N . This yields the
TAP-approximation couplings found above, showing that
the TAP reconstruction indeed corrects the leading MF
errors. To leading order the sum on k is just g2, and the
asymptotic mean square MF error is

ε∞MF = (Jij − JMF
ij )2 =

g6

N
. (9)

The solid curves in Fig. 1a are 1/L + g6/N ; the fit is
evidently good.

Fig. 2 illustrates the systematic nature of the MF er-
rors in a scatter plot of the JMF

ij s against the true Jijs:
One can see that MF systematically underestimates the
magnitude of the couplings. The factor 1−Fi in the TAP
formula corrects for this to relative order g2.

The error using the TAP reconstruction is much lower
than that for the MF one and reaches its minimum at
much larger L: for N = 20 and the coupling strengths
we studied, we had to go to L > 109 to see the error flat-
ten; see Fig. 1b. To calculate the asymptotic reconstruc-
tion error for TAP, we can expand the tanh to 5th order
and proceed to evaluate the averages in the same way.
The MF error terms analyzed above are compensated
(for N → ∞) for by the TAP equations, leading to an
asymptotic ε∞TAP = 4g10/N . However, the errors found
by applying the TAP algorithm to a simulated network
of N = 20 (Fig. 1b) are much larger than this. We have
traced this discrepancy to a finite-size effect of relative
order 1/N2: In making that TAP correction, the term
in (7) with k = l = m has been counted three times in
obtaining (8) instead of once. The resulting mean square

error is (2/3)2J6
ij = (20g6)/(3N3). These corrections will

be negligible relative to the asymptotic g10/N term only
for N $ 1/g2, which is not generally satisfied for the
weak coupling strengths used in our simulations. Taking
into account this finite size correction, we can predict the
TAP error reasonably well, as shown in Fig. 1b.

Non-stationary case.— The magnetizations,
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FIG. 2. The systematic nature of MF and TAP errors. We
show the couplings inferred using MF (black dots) and TAP
(red squares) vs the true ones for a network of N = 20 with
g = 0.35 using (a) L = 104 and (b) L = 106 samples.

mi(t) = 〈sri (t)〉r, are now time-dependent and, for MF,
solve

mi(t+ 1) = tanh[hi(t) +
∑

j

JMF
ij mj(t)]. (10)

We have also proved [9] that the TAP equations hold
even in a nonstationary state, in the form

mi(t+ 1) = tanh[hi(t) +
∑

j

JTAP
ij mj(t)

− mi(t+ 1)
∑

j

(JTAP)2ij(1−m2
j (t))]. (11)

Thus, we can extend both our inversion algorithms to
nonstationary systems, as we show in the following.

We start by defining time-dependent correlation ma-
trices Dij(t) ≡ 〈δsri (t + 1)δsrj(t)〉r and Cij(t) ≡
〈δsri (t)δsrj(t)〉r. For MF, using the same procedure that
lead to Eqn. (4), we find

〈Dij(t)〉t =
∑

k

JMF
ik 〈(1−m2

i (t+ 1))Ckj(t)〉t. (12)

One can still solve for J by simple matrix algebra:

JMF
ij =

∑

k

〈Dik(t)〉t[(B(i))−1]kj , (13)

where B(i)
kj = 〈(1 − m2

i (t + 1))Ckj(t)〉t. The problem is
more complex than the stationary one only because one
has to invert a different matrix B(i) for each i.
For TAP, analogously to the stationary case, the B(i)

acquire an extra factor inside the time average:

B(i)
kj = 〈(1−m2

i (t+ 1))(1− Fi(t))Ckj(t)〉t, (14a)

Fi(t) = (1−m2
i (t+ 1))

∑

l

(JTAP)2il(1−m2
l (t)). (14b)

Exact TAP inversion requires iterative solution of Eqn.
(13), with JTAP

ij instead of JMF
ij , together with Eqn. (14).

We have found, however, that effective reconstruction is
still possible under the simplifying approximation that

after we inferred the couplings, we can infer the 
fields

real field      Non-stat. MF            Stat. MF
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real data

• for in vivo and in vitro real data, we don’t know the 
connectivity

• so we use in silico real data.
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Excitatory
Popula.on

Inhibitory
Popula.on

External
Input
(Exc.)

simplified	
  model	
  of	
  circuitry	
  in	
  a	
  small	
  	
  	
  	
  	
  	
  
(~0.5	
  mm)	
  region	
  of	
  neocortex

2	
  popula.ons	
  in	
  network:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Excitatory,	
  Inhibitory

Excitatory	
  external	
  drive	
  (“rest	
  of	
  brain”)

realis;c	
  modeling:	
  Hodgkin-­‐Huxley-­‐like	
  
neurons,	
  conductance-­‐based	
  synapses

Random	
  connec.vity:
Probability	
  of	
  connec;on	
  between	
  any	
  two	
  
neurons	
  is	
  c = K/N,	
  where	
  N	
  is	
  the	
  size	
  of	
  

the	
  popula;on	
  and	
  K	
  is	
  the	
  average	
  
number	
  of	
  presynap;c	
  neurons.

Results	
  here	
  for	
  
c = 0.1, N = 1000
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one	
  example:	
  25	
  neurons

model	
  connec;ons:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  inferred	
  connec;ons:
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noise/signal	
  ra;o

σ1 σ2
ΔJ

€ 

nsr =
σ1 +σ 2

ΔJ
= 0.5212
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nsr	
  as	
  func;on	
  of	
  data	
  set	
  size

(1000-­‐200000	
  10-­‐ms	
  ;me	
  bins)

(95	
  neurons)

TAP	
  and	
  MFT
give	
  same
results	
  here
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summary

• we can develop exact, MF and TAP approximate learning rules for 
the non-equilibrium case.

• the error can be quantified in the weak couplings (high Y) regime, 
leading to an asymptotic error of g^6/N for MF and g^10/N for TAP 
(+ finite size).

• we can also extend everything to the nonstationary regime.

• for simulated data, we can infer the strong connections.
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from	
  some	
  point,	
  width	
  of	
  these	
  histograms	
  
does	
  not	
  shrink	
  with	
  increasing	
  data	
  set	
  
size:

Residual	
  error	
  reflects	
  misfit	
  between	
  
original	
  network	
  and	
  Ising	
  model
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future 

quantify the error for the non-stationary case.

the issue of subsampling, i.e. observing only  part of the 
system.

relation to non-equilibrium FDTs.

asynchronous (continuous time) dynamics (Erik Aurell et al)
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