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Effective connectivity reveals induced
network reorganization in behaving animals



Inferring Functional Connectivity
• High-density multi-electrode arrays:
• Record simultaneously one hundred neurons
• Characterize the dynamics of neural circuits.



Analysis of neural activity
• Consider a population of N neurons whose spiking activity
is observed during a time interval (0,T ].
• The interval is divided into K bins of size  Δ=T /K, labeled
by an index 1 ≤ k ≤ K.
• In each interval k we observe the number of spikes yi (k)
emitted by neuron i, for all 1 ≤ i ≤ N.
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Neural activity as a Poisson process
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• Data: {yi (k)}, for 1≤k≤K  and for 1≤i≤N.
• The spiking activity of neuron i at time interval k is modeled 
   as a Poisson process with mean λi (k). 
• The probability of observing precisely yi (k) spikes emitted by 
   neuron i at interval k is given by:
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Likelihood of spiking data
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What is the probability of the observed data             given
the parameters             ?
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The likelihood is defined as the logarithm of the probability: 



Maximum likelihood
Given the data {yi(k)}, find the parameters {λi(k)} that maximize LT :  
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MODEL:

! 

ln"i k( ) = #i0 + #ij

m=1

$N

%
j=1

N

% (m) y j(k &m)

Given the data {yi(k)}, find the parameters {α} that maximize LT :  



Generalized Linear Model (GLM)
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WHY??

The parameter     is the time-dependent mean of a
Poisson process. In a Generalized Linear Model,  it is the
logarithm (link function) of the mean that is expressed as a
linear combination of the observed variables. The likelihood
of the observed ensemble spiking activity can then be
expressed in terms of the various linear kernels, to obtain the
maximum likelihood Generalized Linear Model (GLM).
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GLM: exponential family
The exponential family of probability distributions is of the form:

Here, y is the random variable whose probability density function
is given by ρy . The distribution is parametrized by δ, the
canonical parameter, and ϕ, the dispersion parameter. The
functions a(.), b(.), and c(.,.) need to be specified, and define the
family.
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c(y,")The term              plays an important role: it provides a
normalization function that guarantees
for all δ, ϕ.



GLM: exponential family
Consider the family of canonical exponential distributions with
canonical parameter δ and dispersion parameter ϕ:
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WHY CARE? because the normal, Bernoulli, binomial,
multinomial, Poisson, gamma, geometric, chi-square,
beta, and a few other distributions are all exponential
distributions.



GLM: exponential family

Since                            for all δ,ϕ then:
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Note that the canonical parameter δ fully determines the
mean E(y), while the variance Var(y) requires additional
information provided by the dispersion parameter through
a(ϕ).

McCullagh, Nelder, Generalized Linear Models (1989)
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Poisson distribution
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The distribution is properly normalized:
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Poisson distribution

The relations: 
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hold for any probability density function within the exponential
family. When applied to the Poisson case, they imply:
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GLM: linear predictor
Since b(δ)= exp(δ)= λ, the canonical parameter is δ = log λ.
The dispersion parameter is not needed: a(ϕ) =1. Then:
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The normalization condition requires c(y)= - ln (y!) 

In a generalized linear model based on an exponential
distribution, the canonical parameter δ  is constructed as a
linear combination of all observed variables that can explain
the random variable y .  This linear predictor is related to the
expectation value E(y) through a link function g :
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GLM: Poisson distribution
In the Poisson case, δ = log λ = log (E(y )), and the nonlinear
link function g is the logarithm:
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At last!! This is why we write: 
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Here H (t) refers to the spiking history for all times t’ < t.  



Generalized Linear Model for
Poisson statistics
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Linear-Nonlinear (NL) model! Here, the kernel parameter
quantifies the effect that the spiking activity of neuron j at time
bin (t-m) has on the spiking activity of neuron i at time bin t.
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Likelihood of spike train
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Given the data {yi(k)}, find the parameters {α} that maximize LT .  

• Why is this an easy problem?          • How do we solve it?
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Simple example: one neuron

Determine the background activity: no autoregressive kernel
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Here, n1(T ) is the total number of spikes emitted by neuron 1
during the total time T, and K =T /Δ is the number of bins.



Simple example: likelihood function
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Time-independent λ:
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spikes per bin.



Iterative gradient ascent
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Consider a network of N neurons. The data is of the form
{yi(k)}, for 1≤k≤K,1≤i≤N.  The GLM for the likelihood of the
data is:

We want to find the maximum likelihood parameters {α*}
using an iterative gradient ascent method with adaptive
step. To implement this algorithm, we need to compute the
first and second derivatives of the likelihood with respect to
the parameters {α}.



Likelihood: first derivative
The gradient that drives the uphill search is given by:
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The update of the parameter αij (m) is given by the product of
the activity yj(k-m) of the presynaptic neuron j at time lag m
and the difference between the actual activity yi(k) of the
postsynaptic cell and our current estimate of it. The rule
presynaptic activity x postsynaptic error is a famous learning
rule, called the Delta Rule.

I have italicized presynaptic and postsynaptic because I do
not mean to imply that the parameter αij (m) is an actual
synaptic strength.



Likelihood: second derivative
The components of the Hessian matrix of second derivatives
that controls the size of the uphill steps are given by:
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Now there are two presynaptic neurons: neuron j at time lag m
and neuron j ’ at time lag m’. Their activities are multiplied, and
this product is weighted by our current estimate of the activity
of the postsynaptic neuron. Note the overall minus sign! The
variables y represent number of spikes emitted during a bin of
size Δ. These variables, and their averages, are always non
negative. Thus, every component of the Hessian matrix is
negative - the surface is everywhere downward concave.



Likelihood maximization
The algorithm can now be written as follows:
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Here,     is a listing of all the parameters needed to specify
the model;        is the gradient of the likelihood function L,
obtained by taking a derivative of L with respect to every
parameter in     ; and E is the matrix of step sizes, obtained
by inverting the Hessian matrix of second derivatives of the
likelihood function.
If the model requires p parameters, then both     and
are p-dimensional vectors, and E is a p x p matrix. For
instance, p=1+τN for the autoregressive model:
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Uphill iteration
Given the data {yi(m)} and the current value {α(µ)} of the
parameters, construct:
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Once you have  the <yi(k)> (µ), you do  not need the parameters
any more.  Build the components of the gradient vector:
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Uphill iteration
Build the components of the Hessian matrix: 
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matrix Epsilon of step sizes:
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GLM model: functional connectivity

Generative model Connectivity kernels



(a)

(b)

(c) (d)
Cross Correlations Functional Connections

A
B
C

A
B
C

Functional connectivity:
beyond correlations



Functional connectivity:
network reconstruction

80 random draws of
N=6 neurons from a
network of n=10,000
Izhikevich neurons

actual

inferred
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R2 = 0.61 ± 0.25



Functional connectivity:
monitoring connectivity changes

R2 =0.81 ± 0.22 



Induced connectivity changes
GOAL: induce in vivo changes in functional connectivity 

SYSTEM: rat forelimb sensorimotor cortex

Fine wire electrodes used to record the activity of N = 4-9
neurons. One neuron is randomly chosen as the trigger and
used to control the stimulation. Every spike of the trigger
neuron was followed by a stimulation pulse delivered through
a target electrode at a fixed latency.

The electrical stimulation was an exact, time-lagged replica
of the trigger spike train.



Induced connectivity changes



Connectivity kernels



Connectivity changes: no stimulation



Connectivity changes induced
by stimulation



Induced connectivity changes



Induced connectivity changes



Summary

• In vivo activity-triggered stimulation has been shown to
induce changes consistent with STDP.

• Changes in synaptic efficacy have been detected without
invoking changes in stimulus-evoked postsynaptic activity.

• Generalized Linear Models have been shown to provide a
useful tool for monitoring induced changes in connectivity.


