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Characterizing neurons in
networks with noisy input

Thursday 7 October 2010

Fleur Zeldenrust



This Is unfinished work

* Please interrupt me for any hints,
suggestions, corrections, etc
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Bursting

Different theories
* Lisman: bursts are code, spikes are noise

 Sherman: bursts are ‘wake-up call’ (feature
detection versus stimulus estimation)

« Reliability, STDP, resonance, parallel
coding



Main goal

* \What do spikes and bursts code for?

* How is this influenced by the surrounding
network?

 Two model systems
— Thalamus
— CA3 Hippocampus



Outline

* Robustness and precision

* Regime changes in thalamo-cortical (tc-
relay) relay cells
— experiments
— models



In-vitro Experiments (brain-slice)

* Inject frozen noise input
— In experiment
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Compare with computational models

* Inject frozen noise input
— In experiment or model
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Set-up

* Find current that keeps neuron at desired
membrane potential

* Inject noise on top

* Noisy input current
—o=750r 100 pA
— exponential filter, 7=10 ms



Main goal

* \What do spikes and bursts code for?

* How is this influenced by the surrounding
network?

 Two model systems
— Thalamus

— CA3 Hippocampus



Thalamocortical relay cells
A

 Two response modes:

— single spike
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Main goal

* \What do spikes and bursts code for?

* How is this influenced by the surrounding
network?

 Two model systems
— Thalamus
— CA3 Hippocampus



Inhibition in the hippocampus

* CA3 pyramidal neurons to burst as a result
of ‘ping-pong’ effect between soma and
dendrite

* WWhen do these neurons respond with a
single spike and when with a burst?

* How does inhibition influence this?



Hippocampus (CA3)

 Models:

Feedback inhibition Feed-forward inhibition
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Do cells respond in a stereotypical
manner?

Do neurons respond stochastically or
deterministically?

If every neuron has its ‘own code’ — hard
to generalize

If all neurons exactly the same — how
does a neuron adapt to environment?

|deally: every neuron type/class responds
In a similar way



Do cells respond in a stereotypical
manner?

* Inject frozen noise multiple times

* Bin spike trains, look for coincident spikes

 Coincidence factor e Ngine = { Negine) 1

— 1 if spike trains are the same
— O if train 2 is random (Poisson)
— negative for correlations<0  (Ngine) = 2% v, * precision* N,

1 N
E(Nl_l_ N,)

— precision (expected # coincidences
(Kistler, Gerstner & van Hemmen 1997) Poisson process)

(Jolivet et al 2006) T |
N,, =#of spikesintranl,2

N =1-2*v,* precision



coincidence factor

Precision and robustnhess

robustness

precision



Precision and robustnhess

Proposal

» fit to single
exponent

R —

y =a(l—exp(-b- precision))

 a=robustness

coincidence factor

* b="precision
coefficient’

precision



Tc relay cells

* Inject the same noise multiple times
* Increase mean: shift bursting-> spiking
 NB Burst is counted as single event
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fraction of total ISIs (2012)

fraction of simultaneocus events
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coincidence factor
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Are bursts less precise/robust than
spikes?

Single spikes Bursts
1 - ' - 1 '
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Coincidence factor: thalamus

Coincidence Factor between TC relay cells
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Hippocampal CA3 pyramidal cell
How robust is a cell? . Inject the same
’ ’ | noise multiple
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fraction of total ISIs (3079)

Burstiness
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colnclaence 1aclar

Coincidence factor: hippocampus

How robust is a single cell?
Pyramidal: increasing mean voltage — increasing robustness

O-LM (no bursting): increasing mean voltage — increasing
robustness and precision?
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Summary: stereotypical behaviour
of cells

* Increasing the mean membrane potential
makes the response of these neurons more
robust

* In tc-relay cells it also makes the response
more precise

* Bursts seem to be more robust than single
spikes at low membrane potentials in both
pyramidal and tc relay cells



Do cells respond in a stereotypical
manner?

* So the answer is yes:

— Cells seem to respond to specific features In
the input

— Different cells of the same type respond in a
similar way



Main goal

* \What do spikes and bursts code for?

* How is this influenced by the surrounding
network?

 Two model systems

— Thalamus
a \)OC/ N
basa.l m) | thalamus - cortex
ganglia =
\ ' € )




TC relay cells

* Cells seem to respond to specific features
In the input

* Increasing the mean voltage results in
— Shift bursting to spiking
— More precise firing
— Earlier firing
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Do bursts and spikes code for
different input features?

« Bursts need both
more negative
and longer
positive input
than spike: ‘wake-
up call’

« Spikes in burst
need input at two
timescales

average input current (pA/cm®)
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Results: Do bursts and spikes code
for different input features?

* Threshold for bursts higher: ‘wake-up call’

Probability Distributions
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Conclusions

In a mixed regime, (spikes in) bursts code
for more ‘extreme’ events, with a higher
threshold: wake-up call?

Two separate timescales play a role: slow
one for T-current, fast for spike generation

How does this change in the different
regimes?
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Probability Distributions
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How does negative (basal ganglia)
input influence spikes?

Negative input 01— Features _ Probabilty Distibutions
from the basal 4 o5 AN e
ganglia makes
spikes less
selective to the
second
fluctuating filter,
but more to the
first integrating

filter Increasing
(negative) basal ;
gang“a inpUt tim:g}e;‘grl-;i?'ostggikg(ms) projec-tzion vall,?e (std 02f prior)




How does negative (basal ganglia)
input influence bursts?

Features

Negative input
from the basal 4
ganglia makes
burst less
selective to the
second
fluctuating filter.

Increasing
(negative) basal
ganglia input
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amplitude(output)/amplitude(input)
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Coherence

* Bursts phase-lock
to low
frequencies,
spikes are more
broadband

coherence
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Conclusions

* Negative (basal * Positive input makes

ganglia) input makes tc relay neurons

tc relay neurons

— bursting — spiking

— less precise&robust — more precise&robust

— later — earlier

— less selective for fast — more selective for fast
fluctuations, more for fluctuations, less for
slower integration slower integration

— Phase-locking to low — Broadband phase-
frequencies locking

In a mixed regime, bursts code for more ‘extreme’
events: wake-up call?



But...

* Not really long enough traces

« Back to the encoding: What biophysical
properties make this happen?

— modelling



What is a good model?

 Transmits the same information, i.e.
spikes at the same time

Coincidence Factor between TC relay cells
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Model: Destexhe et al 1998

« 3 compartments e caveats

» Currents:
— Sodium (only soma)

— too many spikes In
burst

— Potassium (only soma) - tO(-) ?Ctive ip
ek spiking regime
— T-type (more dendrite) “ Lonodgfsehpoot after
—h spike

(Destexhe et al 1996)
NB checked STA, correlations, intrinsic

precision: all similar to experiments



coincidence factor

Precision and robustnhess
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Initial holding potential: -80 mV
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Conclusions: bursts and spikes in
tcrelay cells

* At low membrane potentials bursts are
more robust than single spikes; this can
also be simulated in a model

* Bursts seem to respond to more ‘extreme’
events than single spikes

* Bursts phase-lock to low frequencies,

whereas single spikes are more
broadband



Conclusions: negative input in
tcrelay cells
Neuron moves from spiking to bursting
regime
Events are later in time
Neuron becomes less precise and robust
Filtering becomes more low-pass

Neuron becomes less selective for
fluctuations, more of an ‘integrator’



Thanks to

* Wytse J. Wadman
 Pascal J.P. Chameau



Inhibition in the hippocampus

* CA3 pyramidal neurons to burst as a result
of ‘ping-pong’ effect between soma and
dendrite

* WWhen do these neurons respond with a
single spike and when with a burst?

* How does inhibition influence this?



Hippocampus
Inhibitory circuitry
 feed-forward and feedback inhibition
(Elfant, Pal, Emptage, & Capogna, 2008;
Wierenga & \Wadman, 2003)

» Fast and slow GABA, (Banks, Li, &
Pearce, 1998; Pearce, 1993).

* Perisomatic vs dendritic projection (Miles,
Toth, Gulyas, Hajos, & Freund, 1996;
Pouille & Scanziani, 2004)



Methods: Pyramidal cell model
Pinsky & Rinzel 1994

 Two compartments: soma and oo
dendrite " .IK—aDR
» Single spikes initiated in soma S
. \Z "lea
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. . *lamp
aCtIOn pOtentIaI (DAP) - *Injected current
Spike Burst
2« 20
= 200 —soma |
E 0 ——dendrite | 0O
820 20
%'4 40
%6 | e -6owyj N
=% 10 20 30 40 5 0 10 20 30 40 50
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Feedback inhibition

Events
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Probability distributions,bursts
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Feedback inhibition

Increasing strength in the loop moves
neuron from slow bursting to fast spiking
regime

Slow dendritic loop less effective than fast
somatic loop due to delays

Bursting mechanism and AHP current play
crucial role

Role of short-time plasticity (facilitation
and depression) depend strongly on firing
rate



Feed-forward inhibition

interneuron| == L

* fire more sp\ikres —
* fire spikes earlier in time

* NB interneuron spikes correlate more with
pyramidal single spikes than bursts



Feedforward inhibition
* Inhibition tends to suppress bursts

* Slow dendritic shunting inhibition can
e spike rate
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BURSTS
Cross-correlation difference (# bursts)

SPIKES
Cross-correlation difference (# spikes)

When are extra events created?

Variance interneuron=0.5 pA.fr:m2
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Filtering for single spikes with 2
types of inhibition

. Slow spikes Fast spikes
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Conclusion: inhibition in CA3

» Effects depend strongly on location,
timing, short-term plasticity and type (feed-
forward, feedback, shunting, inhibitory)

* Well-timed inhibition can shift the neuron
from a slow bursting to a fast spiking
regime
— Cossart et al (2001), Wendling et al (2002):

temporal lobe epilepsy: decreased inhibition
in pyramidal cell dendrites, but increased
inhibition around the soma.
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coincidence factor
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Coincidence factor: different cell

Pyramidal and TCrelay cells
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mean input current (pA)

st. dev. membrane potential (mV)
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Current experimental approach

Voltage recording

Amplifier/DAC/ADC

Closed loop

Current injection

Switch between noise and softclamp

Softclamp controls voltage noise noise

<+

Slow drift possible Slow drift possible




Need to be improved to:

Voltage recording

Wbk i

5[][] 1[][]0 15[]0 20[][] 250[] 3000

Amplfie/DAC/ADC | =  ———==

Current injection
desired | Closed loop }

membrane potential (mV)

Use second hardware DAC device Add electronically

noise noise

Softclamp controls voltage H H

Carefully limit and determine spectral response of the softclamp
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