Neural Substrates of Memory and Decisions

Loren Frank Center for Integrative Neuroscience University of California, San Francisco

- What is a memory?
 - Reactivation of a pattern of neural activity related to that present during the actual experience
 - Fast
- What is a memory good for?
 Guiding decisions

Learning and the Hippocampal Circuit

What patterns of neural activity support encoding, consolidation and retrieval?

Example of CA1 Neural Activity

Cell

10 .

Activity Patterns in the Hippocampus

Place Fields and Theta

Sharp-Wave Ripples (Ripples / SWRs)

Replay / Reactivation of memory sequences during SWRs

Methods - Behavior

Mattias Karlsson

Karlsson and Frank, Nature Neuroscience (2009)

Distinct Representations of Distinct Environments

Awake Replay Activity

Awake Replay of Remote Experiences

256 / 580 (44%) candidate events significant. $p < 10^{-10}$

Karlsson and Frank, *Nature Neuroscience* (2009)

Awake Replay of E1 in E2

Karlsson and Frank, Nature Neuroscience (2009)

Awake Replay Across Environments

Replay and Anatomical Pathways to CA1

Reactivation enhanced by

Novelty (Cheng and Frank, Neuron, 2008) Reward (Singer and Frank, Neuron, 2009) Do awake SWRs contribute to memoryguided decision-making?

 How does memory replay during SWRs inform subsequent decisions? Do awake SWRs contribute to memoryguided decision-making?

How does memory replay during SWRs inform subsequent decisions?

Hypotheses

• Awake replay could serve as a continuous mechanism for memory consolidation

• Awake replay could be important for memory recall for guiding ongoing behavior.

Carr, Jadhav and Frank, Nature Neurosci. (2011)

Question:

Does specific disruption of hippocampal SWRs in the awake state impair learning?

Behavioral Paradigm

W-track : Hippocampus dependent spatial alternation task

Kim and Frank, PLoS One, 2009

 $\begin{array}{l} \text{left} \rightarrow \text{center} \\ \text{(inbound)} \end{array}$

 $\begin{array}{c} \text{right} \rightarrow \text{center} \\ \text{(inbound)} \end{array}$

 $\begin{array}{l} \text{center} \rightarrow \text{left} \\ \text{(outbound)} \end{array}$

 $\begin{array}{c} \text{center} \rightarrow \text{right} \\ (\text{outbound}) \end{array}$

Outbound Trials

W-Track Task – Effect of lesions

Lesion Animal

Control Animal

Kim and Frank, *PLoS One (2009)* Method: Smith et. al., *J. Neurosci.* (2004)

Methods: Specific Disruption of Awake SWRs

- Real-time fast detection of ripples
 - Simultaneous detection of SWRs on multiple electrodes in CA1 (n = 6).
 - Speed threshold to avoid false positives.
- Disruption of ripple activity triggered by real-time detection.
 - Stimulation in ventral Hippocampal Commissure (vHC) disrupts ripple activity and associated hippocampal output.

Zugaro, et al., 2005; Girardeau, et al., 2009; Ego-Stengel, et al., 2010

Shantanu Jadhav

Caleb Kemere

Ripple Disruption During Behavior

8 days of behavior for each animal

Behavioral Groups

Ripple Disruption Group (n=6)

```
Control Stimulation Group (n=4)
Stimulation follows each ripple by 150-200 ms
```

Normal Group (n=4) Unoperated, unstimulated Controls

Jadhav et. al., Science (2012)

Effect of Ripple Disruption

Effect of Control Stimulation

Control Group

 Similar stimulation protocol with real-time detection of ripples and vHC stimulation <u>after</u> ripples with a delay of ~150 ms.

Learning – Outbound

Outbound Trials

Learning – Outbound

Learning – Outbound

Perfect separation between disruption and control groups (p < 0.001)

Learning – Final Two Days Outbound

- O Ripple Disruption
- Control Stimulation
- Unstimulated Control

Perfect separation between disruption and control groups (p < 0.001)

Learning – Inbound

Inbound Trials

Learning – Inbound

- Ripple Disruption
- Control Stimulation
- Unstimulated Control

Stable Place Fields Across Run Sessions

Conclusions – Awake ripple disruption

- We are able to specifically disrupt hippocampal ripples in the awake state during behavior.
- Ripple disruption during behavior in the W-task leads to an impairment in the outbound component of the task.
- Ripple disruption does not affect the inbound component of the task.
- Activity during awake ripples plays a role in learning.

• Do awake SWRs contribute to memoryguided decision-making?

 How does memory replay during SWRs inform subsequent decisions?

Why are Awake SWRs Important for Outbound Performance?

Awake replay could be providing information about

Annabelle Singer

Singer et. al., Neuron (2013)

Behavior and SWRs on Outbound Trials

Analyzing Pair-wise Activity during SWRs

Activity before

For each cell pair, compute, across all SWRs and trials

$$\hat{p}_{correct} = \frac{n_{coactive_{correct}}}{N_{SWRs_{correct}}} \& \hat{p}_{incorrect} = \frac{n_{coactive_{incorrect}}}{N_{SWRs_{incorrect}}}$$

Greater Coordinated Activity on Correct Trials

Future correct trial Future incorrect trial

----> Path animal took to center well

Path animal will take from center well

Performance Category

Similar Times and Numbers of SWRs Before Decisions

Pattern of activity during SWRs more consistent with

Outbound direction and future possible paths

Inbound direction and past paths

No Bias Toward Correct Outbound Trajectories

Consistent with Karlsson and Frank (2009), Davidson et. al. (2009), Gupta et. al. (2010)

Conclusions – SWRs and Decision Making

- There is greater coordinated reactivation during SWRs preceding correct trials during learning.
- This reactivation tends to activate both possible outbound paths
- These results suggest that awake reactivation provides information about future possibilities to other brain regions.

Different patterns of hippocampal activity support different types of memory:

Awake replay – remote memory retrieval, planning and consolidation

Sleep replay – consolidation of memories.

Place field activity – learning and associations related to current location.

Lab members and collaborators

Lab Members

Emily Anderson Jason Chung P. Walter German Irene Grossrubatscher Sheri Harris Shantanu Jadhav Kenny Kay Mattias Karlsson Daniel Liu Gideon Rothschild Demetris Roumis Marielena Sosa Jai Yu

Former Lab Members

Margaret Carr Sen Cheng Yuri Dabaghian **Caleb Kemere** Steve Kim Annabelle Singer

Collaborators

<u>Stanford</u> Karl Deisseroth

<u>LLNL</u>

Vanessa Tolosa Kedar Shah

Funding: McKnight Foundation, John Merck Fund, NIH

New High Density Recording Probes

Vanessa Tolosa, LLNL