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Morris Water Maze test of spatial memory 

• Distal visual cues provide information about spatial location. 
• NMDAR within hippocampus are required for this learning. 
• Behavior changes with experience and place cells’ activity 

depends on behavior. 
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Effect of learning on place cells when 
neither behavior nor stimuli change 

 



Rapid, experiential changes in place 
cells’ activity 

Mehta, McNaughton comp Neuro 1996, PNAS 1998 



Computational Model of Effect of STDP on CA1 
place cells’ activity 
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Predictions of computational models of sequence learning 
via STDP: Asymmetric place field plasticity 
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Experimental tests of the model:  
Rapid, experiential, place cell plasticity Mehta et al.,  

Comp Neuro 1996,  
PNAS 1997,  

Neuron 2000,  
Comp Neuro 2001, 

Neuroscientist 2001,  
Nature 2002 

 
Knierim et al., 
Neuron 2004 
Neuron 2006 

 
Frank et al. 

J. Neuro 2008 
 

Other brain regions 
Merzenich et al. 

Y. Dan et al. 
M. Poo et al. 
Engert et al. 



. 

A model for generating a temporal Code from a 
Rate code 
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Mehta et al., Neuroscientist 2001, Nature 2002 



A Model of generating a temporal Code: 
Interaction between asymmetric excitation & 
oscillations 
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Mehta et al., Neuroscientist 2001, Nature 2002 



Experimental evidence for the model 

Mehta et al., Nature 2002 



Place cell plasticity and synaptic plasticity 
• More than two-fold change in firing rate and the 

asymmetry of place fields within a couple of minutes. 
• Changes are environment and NMDAR-dependent. The 

results provide an evidence for how STDP can influence 
receptive fields. 

• Anticipatory changes in place cells’ activity could allow 
the animals to predict the future location and learn 
navigational maps of space. 

• Interaction between spatially asymmetric input and 
periodic inhibition can generate a temporal/phase code:  
– phase as a function of position, nonlinear dependence of phase 

on position, phase precession independent of hippocampal 
shutdown, model insensitive to oscillation frequency noise, 
does not require a unique network connectivity 



Asymmetric excitation + Delayed inhibition: 
Direction Selectivity, inseparable STRF in V1 
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Mehta et al. Neural comp. 2001, Neuroscientist 2001 Nature 2002 



Direction selective cells of hippocampus and V1 
have a similar spatio-temporal structure! 

(Livingstone, Neuron 1998) 

Mehta et al., Neurocomp 2000 



Z. Chen et al, PLoS One (2011) 
O. Ahmed & M. R. Mehta, J. Neurosci (2012) 

Speed modulates CA1 gamma amplitude, frequency and  
theta-phase 

γ Slow 

γ Fast 



Asymmetric LTP model predictions for grid cells 

• Dorso-ventral gradient of grid fields could arise due to increasing temporal 
integration of synaptic inputs within grid cells with reducing h current along more 
ventral position in MEC. 

• NMDAR-dependent synaptic plasticity is enhanced due to reduced h current 
resulting in an increase in the asymmetry of grid field, experience-dependence of 
grid field asymmetry, phase precession, and navigational learning. 
 

Smaller fields 
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Mehta, Cell 2011 
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(2011) 
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(2011) 



Asymmetric subthreshold membrane potential of 
CA1 place cells and MEC grid cells in 1D VR 

Harvey, Tank et al. Nature 2009 Schmidt-Heiber, Hausser  

Nature neuro 2012 
Intact spatial selectivity in 1D virtual reality in rats. 
Also see: Domnisoru/Tank 2012, Chen/O’keefe 2013  



Mechanisms of spatial learning 

Spatial  
learning 

Spatial  
selectivity 

Synaptic  
plasticity 

? 

? 

? 



Multisensory control of multimodal 
spatial behavior 



Multisensory maze: Audio-visual cues 

Cushman, Aharoni et al. PLoS1 2013 

Virtual 
soundscape in 
addition to 
virtual landscape 



Air 

Noninvasive, Quiet, Virtual Reality System 

Aharoni, Willers, Arisaka, Mehta, Patent pending (2011) 
Aharoni, Willers, Wang, Arisaka, Mehta, Patent pending (2011) 



Rats can quickly 
learn virtual 
visual random 
foraging on a 
small platform 
and avoid edges 

Cushman, Aharoni et al. PLoS1 2013 



Rats quickly 
learn virtual 
audio-visual 
navigation, 
nearly as fast as 
in the real world 
water maze 

Cushman, Aharoni et al. PLoS1 2013 



Visual stimuli are far more effective than auditory 
stimuli in generating spatial navigation map 

Cushman, Aharoni et al. PLoS1 2013 



With two visual cues 
rats learn navigational 
and reward 
expectancy maps 
 
With two auditory 
cues rats learn 
equally precise 
reward expectancy 
map but don’t learn 
navigational map 

Cushman et al. PLoS1 2013 



Conclusions and hypotheses 
• Rats can readily learn to avoid virtual edges defined by 

purely visual stimuli without any somatosensation. 
• Rats can learn a robust spatial navigational map based on 

only distal visual cues and minimal vestibular cues. 
• Rats’ behavior simultaneously expresses reward 

expectancy map and navigation map.  
• Rats are unable to learn a robust navigational map with 

four or two auditory cues. 
• But, reward expectancy map with auditory cues is as 

accurate as with visual cues. 
• The legs don’t always know what the tongue is doing. 

Cushman, Aharoni et al. PLoS1 2013 



Mechanisms of spatial learning 

Spatial  
learning 

Spatial  
selectivity 

Synaptic  
plasticity 

? 

? 

? 



Contribution of distal visual cues and 
self motion cues to hippocampal 
spatio-temporal selectivity 



RW VR 

Silence! 

Ravassardd, Kees, Willers et al., Science, (2013) 

Following Results based on 2119 neurons from CA1 



Only half as many neurons  
are active in VR as in RW 



Competition: place cells in Real World show place- 
code, but in Virtual Reality show Disto-code 

Virtual Reality Real World 

Ravassardd, Kees, Willers et al., Science, (2013) 



Hippocampal ensemble code shows position-code in 
Real World but Disto-code in Virtual World 

Ravassardd, Kees, Willers et al., Science, (2013) 



Control: Population vector overlap is significant 
only along the diagonal 



Control: Majority of cells seemed to code for 
distance not time elapsed 



Control: Same cells 
show different 
spatial activity 

patterns in VR and 
RW 



Control: Same cells 
have similar mean 

rate, spatial 
information and 

directionality, but 
spatial selectivity 
is uncorrelated 

between VR and 
RW 



Control: Disto code 
is not due to the 

pillars at the track 
ends 



Control: Disto code 
is not due to 
passive scene 

reversal 



Control: CA1 is not treating the two movement 
directions as independent worlds in VR 



Control: Vestibular inputs should yield disto 
code in RW and its absence in VR 



Conclusions and hypotheses 

• Nearly 60% of neurons active in RW are silent in VR despite similar 
behavior and similar visual cues. 

• Distal visual stimuli are insufficient to drive CA1 robustly. 
• Active neurons are equally directional in VR and RW. 

• Two directions of track treated similarly in VR and RW. 
• Bidirectional neurons show an absolute position code in RW and 

disto code is suppressed. 
• Bidirectional cells show a relative distance, i.e. disto code in VR and 

position code is suppressed. 
• Other cues, e.g. olfactory stimuli on tracks, could generate more 

activity and absolute position code in RW. 
• Locomotion cues+ distal cues generate disto code in VR. 
• When spatially informative proximal cues are present (in RW) they 

have a veto power over locomotion + distal cues resulting in 
suppression of disto code in. 



Reduced theta 
frequency in 
virtual reality but 
no change in 
hippocampal 
temporal code  

Ravassardd, Kees, Willers et al., Science, (2013) 



Theta frequency 
depends on 
speed in RW but 
not in VR. 
 
Theta amplitude 
has similar 
dependence on 
speed in VR and 
RW 

Ravassardd, Kees, Willers et al., Science, (2013) 



Conclusions and hypotheses 
• Speed-dependence of theta amplitude does not require 

non-visual and non-self motion cues. 
• Speed-dependence of theta frequency is governed by 

cues that are non-visual and non-self motion. 
• Phase precession does not depend on the speed-

dependence of LFP theta frequency. 
• Results consistent with asymmetric ramp + theta 

inhibition model of phase precession. 

Ravassardd, Kees, Willers et al., Science, (2013) 


	Learning and Neural Coding �in Virtual Reality
	Mechanisms of spatial learning
	Morris Water Maze test of spatial memory
	Mechanisms of spatial learning
	Slide Number 5
	Rapid, experiential changes in place cells’ activity
	Computational Model of Effect of STDP on CA1 place cells’ activity
	Predictions of computational models of sequence learning via STDP: Asymmetric place field plasticity
	Experimental tests of the model: �Rapid, experiential, place cell plasticity
	A model for generating a temporal Code from a Rate code
	A Model of generating a temporal Code: Interaction between asymmetric excitation & oscillations
	Experimental evidence for the model
	Place cell plasticity and synaptic plasticity
	Asymmetric excitation + Delayed inhibition: Direction Selectivity, inseparable STRF in V1
	Direction selective cells of hippocampus and V1 have a similar spatio-temporal structure!
	Slide Number 16
	Asymmetric LTP model predictions for grid cells
	Asymmetric subthreshold membrane potential of CA1 place cells and MEC grid cells in 1D VR
	Mechanisms of spatial learning
	Slide Number 20
	Virtual soundscape in addition to virtual landscape
	Slide Number 22
	Rats can quickly learn virtual visual random foraging on a small platform and avoid edges
	Rats quickly learn virtual audio-visual navigation, nearly as fast as in the real world water maze
	Visual stimuli are far more effective than auditory stimuli in generating spatial navigation map
	With two visual cues rats learn navigational and reward expectancy maps��With two auditory cues rats learn equally precise reward expectancy map but don’t learn navigational map
	Conclusions and hypotheses
	Mechanisms of spatial learning
	Slide Number 29
	Silence!
	Only half as many neurons �are active in VR as in RW
	Competition: place cells in Real World show place- code, but in Virtual Reality show Disto-code
	Hippocampal ensemble code shows position-code in Real World but Disto-code in Virtual World
	Control: Population vector overlap is significant only along the diagonal
	Control: Majority of cells seemed to code for distance not time elapsed
	Control: Same cells show different spatial activity patterns in VR and RW
	Control: Same cells have similar mean rate, spatial information and directionality, but spatial selectivity is uncorrelated between VR and RW
	Control: Disto code is not due to the pillars at the track ends
	Control: Disto code is not due to passive scene reversal
	Control: CA1 is not treating the two movement directions as independent worlds in VR
	Control: Vestibular inputs should yield disto code in RW and its absence in VR
	Conclusions and hypotheses
	Reduced theta frequency in virtual reality but no change in hippocampal temporal code 
	Theta frequency depends on speed in RW but not in VR.��Theta amplitude has similar dependence on speed in VR and RW
	Conclusions and hypotheses

