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Morris Water Maze test of spatial memory

Hidden platfarm

Wading pool

(a) Before learning (b) After leaming

e Distal visual cues provide information about spatial location.
e NMDAR within hippocampus are required for this learning.

e Behavior changes with experience and place cells’ activity
depends on behavior.
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Effect of learning on place cells when
neither behavior nor stimuli change



Rapid,

cells” activity
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Computational Model of Effect of STDP on CA1l
place cells’ activity
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Predictions of computational models of sequence learning

via STDP: Asymmetric place field plasticity
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Experimental tests of the model:
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A model for generating a temporal Code from a
Rate code
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A Model of generating a temporal Code:
Interaction between asymmetric excitation &
oscillations
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Experimental evidence for the model
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Place cell plasticity and synaptic plasticity

« More than two-fold change in firing rate and the
asymmetry of place fields within a couple of minutes.

e Changes are environment and NMDAR-dependent. The
results provide an evidence for how STDP can influence
receptive fields.

 Anticipatory changes in place cells’ activity could allow
the animals to predict the future location and learn
navigational maps of space.

 Interaction between spatially asymmetric input and
periodic inhibition can generate a temporal/phase code:

— phase as a function of position, nonlinear dependence of phase
on position, phase precession independent of hippocampal
shutdown, model insensitive to oscillation frequency noise,
does not require a unique network connectivity



Asymmetric excitation + Delayed inhibition:
Direction Selectivity, inseparable STRF in V1

LGN/Thalamus
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Direction selective cells of hippocampus and V1
have a similar spatio-temporal structure!
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Speed modulates CA1 gamma amplitude, frequency and
theta-phase
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Asymmetric LTP model predictions for grid cells

Entorhinal cortex
Grid fields
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Based on
Nolan/Kandel
(2004)
Giocomo/Hasselmo
(2009)
Hussaini/Kandel
(2011)
Giocomo/Moser
(2011)

Dorso-ventral gradient of grid fields could arise due to increasing temporal
integration of synaptic inputs within grid cells with reducing h current along more

ventral position in MEC.

NMDAR-dependent synaptic plasticity is enhanced due to reduced h current
resulting in an increase in the asymmetry of grid field, experience-dependence of
grid field asymmetry, phase precession, and navigational learning.



Asymmetric subthreshold membrane potential of
CAL1 place cells and MEC grid cells in 1D VR
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Intact spatial selectivity in 1D virtual reality in rats.
Also see: Domnisoru/Tank 2012, Chen/O’keefe 2013
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Multisensory control of multimodal
spatial behavior



Multisensory maze: Audio-visual cues
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Virtual
soundscape in
addition to
virtual landscape
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Noninvasive, Quiet, Virtual Reality System

Aharoni, Willers, Arisaka, Mehta, Patent pending (2011)
Aharoni, Willers, Wang, Arisaka, Mehta, Patent pending (2011)
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Rats quickly
learn virtual
audio-visual
navigation,
nearly as fast as
in the real world
water maze
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Visual stimuli are far more effective than auditory
stimuli in generating spatial navigation map
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Audio Only Visual Only

Hidden Reward
. Zone

With two visual cues
rats learn navigational
and reward
expectancy maps
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Conclusions and hypotheses

e Rats can readily learn to avoid virtual edges defined by
purely visual stimuli without any somatosensation.

e Rats can learn a robust spatial navigational map based on
only distal visual cues and minimal vestibular cues.

e Rats’ behavior simultaneously expresses reward
expectancy map and navigation map.

e Rats are unable to learn a robust navigational map with
four or two auditory cues.

e But, reward expectancy map with auditory cues is as
accurate as with visual cues.

e The legs don’t always know what the tongue is doing.

Cushman, Aharoni et al. PL0oS1 2013
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Contribution of distal visual cues and
self motion cues to hippocampal
spatio-temporal selectivity



Silence!
Following Results based on 2119 neurons from CAl
RW VR
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Baseline Units Active (%)

Only half as many neurons
are active in VR as in RW
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Competition: place cells in Real World show place-
code, but in Virtual Reality show Disto-code

Real World Virtual Reality
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Hippocampal ensemble code shows position-code in
Real World but Disto-code in Virtual World
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Control: Population vector overlap is significant
only along the diagonal
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Control: Majority of cells seemed to code for
distance not time elapsed
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Control: Same cells
have similar mean
rate, spatial
information and
directionality, but
spatial selectivity
is uncorrelated
between VR and
RW
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Control: CA1l is not treating the two movement
directions as independent worlds in VR
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Control: Vestibular inputs should yield disto
code in RW and its absence in VR
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Conclusions and hypotheses

Nearly 60% of neurons active in RW are silent in VR despite similar
behavior and similar visual cues.

e Distal visual stimuli are insufficient to drive CA1 robustly.
Active neurons are equally directional in VR and RW.

e Two directions of track treated similarly in VR and RW.
Bidirectional neurons show an absolute position code in RW and
disto code is suppressed.

Bidirectional cells show a relative distance, i.e. disto code in VR and
position code is suppressed.

Other cues, e.g. olfactory stimuli on tracks, could generate more
activity and absolute position code in RW.

Locomotion cues+ distal cues generate disto code in VR.

When spatially informative proximal cues are present (in RW) they
have a veto power over locomotion + distal cues resulting in
suppression of disto code in.
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Conclusions and hypotheses

e Speed-dependence of theta amplitude does not require
non-visual and non-self motion cues.

e Speed-dependence of theta frequency is governed by
cues that are non-visual and non-self motion.

e Phase precession does not depend on the speed-
dependence of LFP theta frequency.

e Results consistent with asymmetric ramp + theta
inhibition model of phase precession.

Ravassardd, Kees, Willers et al., Science, (2013)
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