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Understanding cortex -
the origin of the expanded intellectual repertoire of primates

Modified from Herculano-Houzel, Frontiers
in Human Neuroscience, 2009
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How does the cortex produce these proposed intellectual functions?



Significant progress in
deciphering cortical
computation has been
made at the 'low end’ of
the cortex, near the

sensory receptors
(Hubel and Wiesel, ...)
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But it is particularly the
high end of the cortical
hierarchy - the association
cortices - that has

expanded in mammalian e I
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However, computation at the high end of the cortex still appears quite inaccessible....



.. perhaps with an exception for some of the neural circuitry for space
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O’Keefe and Dostrovsky, 1971

The hippocampus contains place cells. The firing rates of these

cells are clearly related to a property of the outside world - the %
animal”s location.

Hippocampus



But where and how is the place signal generated?

wmfmummmm\_, AMdeg,

st UMY, “""" -

O’Keefe and Dostrovsky, 1971

We recorded in CAl after blocking the intrinsic 'trisynaptic’ circuit (X) of the
hippocampus to determine if the origin of the place signal is intra-hippocampal
(Brun et al., 2002)




CA1 cells continued to express place fields after lesion of the intrinsic
hippocampal pathway, suggesting that the source of the place signal is external

Brun et al. (2002). Science 296:2243-2246
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Best candidate: the entorhinal cortex
Particularly the medial part, which is strongly connected to visual regions




We recorded from dorsal medial entorhinal cortex, which
provides the strongest input to the dorsal hippocampus
where the place cells were found

Entorhinal cortex of a rat

brain (seen from behind):

intermediate

vental

{€) Derdloman, YWhiiock, Yaade, Moser & Moser, 2010

Fyhn et al. (2004). Science 305:1258-1264 Entorhinal cells had multiple fields and the fields

exhibited a regular pattern. But what was the
pattern?




Recording in larger environments revealed firing
fields with a periodic hexagonal (triangular) structure

Trajectory map Rate map Autocorrelation

Hafting et al. (2005). Nature 436:801-806



The cells formed a grid that covered the entire available space -
we called them grid cells

220 cm wide box



Grid cells have at least three dimensions of variation
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Phase, scale and orientation may vary between grid cells.
How are these variations organized in anatomical space?




The phase (x, y-locations) of the grid seems to be
represented non-topographically

3 co-localized
cells:

Cell 1
Cell 2
Cell 3

Hafting et al. (2005). Nature 436:801-806

.. Similar to the salt-and-pepper organization of many other cortical
representations (orientation selectivity in rodents, odours, place cells)



In contrast, the scale of the
grid increases topographically
along the dorso-ventral axis.
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Grid cells with similar
properties and a similar
organization have since been
reported in bats, monkeys
and humans, suggesting they
originated early in
mammalian evolution
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The facts that grid cells are found at the
peak of the cortical hierarchy, far away
from sensory inputs, and the absence of
anything gridlike in any of the sensory
inputs, point to an intrinsic mechanism for
the grid pattern.

The common orientation of local grid cells
and the coherent responses of local grid
cell ensembles (Fyhn et al 2007; Yoon et
al 2013) implies the involvement of
network mechanisms.




NETWORK MODELS FOR LOCALIZED FIRING HAVE TWO COMPONENTS

1. Localized activity is
generated spontaneously in
continuous attractor
networks with extensive
recurrent connections
(Tsodyks & Sejnowski,
Sompolinsky, K Zhang,
Samsonovitch and
McNaughton, ...).

Place cells arranged according
to firing position (x,y). Cells
with similar fields mutually
excite each other.
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Mexican hat

moving eastward no motion

2. Activity is translated
across the neural sheet in
proportion to the speed
and direction of the
animal’'s movement, based >
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McNaughton et alr, Nature Rev Neurosci, 7:663-678.



Origin of hexagonal structure

N,

Activity blobs may |
emerge many places in s
the network.
Competition between
blobs (with inhibitory
surrounds) may yield a
hexagonal pattern, in
which distances are
maximized.
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Fuhs and Touretzky, 2006

Again, when the activity bumps are translated across this network in accordance
with the animal's movement, it will yield grid fields in individual cells



However, the excitatory connections of the

Mexican hat are almost completely absent
between stellate cells in entorhinal corte
where the number of grid cells is largest.
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Quadruple patch recordings from more than 600 stellate-

cell pairs confirm this conclusion:

Excitatory connections are almost completely absent
between stellate cells. Connections are all inhibitory.
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Couey, Witoelar, Zhang, Zheng, Ye, Dunn, Czajkowski, Moser,
Moser, Roudi and Witter, Nature Neurosci 16, 318-324
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Competitive inhibitory interactions, with a constant
magnitude and a fixed radius, are sufficient for neural
network activity to self-organize into a stable hexagonal
grid pattern (closest packing)....

Activity (arbitrary units): | I . |
0 05 1

Couey, Witoelar, Zhang, Zheng, Ye, Dunn, Czajkowski, Moser, .
Moser, Roudi and Witter, Nature Neurosci 16, 318-324 See also Burak and Fiete 2009



.. on one condition:
that the network gets tonic external excitation to enable

firing despite the intrinsic inhibition.

Removing external excitation in the model abolished the
grid pattern and made cells responsive to directional input
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We tested this experimentally by silencing the hippocampus,
one of the major excitatory inputs to the grid network.
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Bonnevie, Dunn, Fyhn, Hafting, Derdikman, Kubie, Roudi, Moser
and Moser, Nature Neurosci 16, 309-317



Hippocampal inactivation disrupted the grid pattern...

Grid cells (% of total)

Muscimol
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Bonnevie, Dunn, Fyhn,
Hafting, Derdikman,
Kubie, Roudi, Moser and
Moser, Nature Neurosci
16, 309-317



..at the same time as the former grid cells
became direction-tuned
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..consistent with a continuous
attractor mechanism where the
Mexican hat connectivity is
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Are grid cells formed by a continuous attractor mechanism then?

No, still a working
J@sea.  hypothesis.

Sww#®! A network mechanism is
BEBWI)  possible but the

W e detailed implementation
is not known.

Challenges:

(1) Preferential connectivity between grid cells with similar
phase has not been demonstrated. But such specificity exists in
other systems.

(2) Continuous attractor do not currently handle noise in the
connectivity - such noise might trap the attractor bump..

(3) Attractors do not exclude alternative mechanisms (Kropff
and Treves), especially at early developmental stages before
recurrent inhibitory connections are present






A prediction of the attractor-network models:

The correspondence between velocity of movement in the environment
and displacement in the neural sheet can only be maintained if the grid
network has a common grid scale and grid orientation

moving eastward no motion

&

McNaughton, Battaglia, Jensen, Moser and Moser, Nature Reviews Neuroscience, 2006



But grid cells have multiple scales




The scale of grid cells increases topographically along
the dorso-ventral axis of the medial entorhinal cortex

Is the topographic mapping of scale continuous or modular? Only a modular
organization, with constant spacing and orientation within each module,
would be consistent with the attractor models.

Samples of grid cells have generally been too small to tell (5-10 cells/ rat),
although early studies hinted at modularity (Barry et al 2007).




To determine if the grid scale is modular, we increased the sample size
to almost 200 grid cells per animal

Tangential approach: Multisite approach:
Large numbers of grid Large areas
cells successively at the same time

Stensola, Stensola, Solstad, Frgland, Moser, Moser, Nature, 492, 72-78 (2012)



Tangential approach:

The steps in grid spacing are discrete, suggesting that grid cells are
organized in modules
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Modules were identified by a
k-means clustering procedure
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Dorsoventral position (cell number, ranked) Rat: 14257

Stensola, Stensola, Solstad, Frgland, Moser, Moser, Nature, 492, 72-78 (2012)



Multisite approach:
Same result - steps in grid spacing are discrete

Grid modules on individual tetrodes
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How independent are the grid-space modules?
Do they differ on other grid properties?

Multisite recordings showed that individual animals have more than one grid orientation...
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.. and that grid-orientation is co-modular with grid scale
(i.e. scale modules and orientation modules have shared boundaries)
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But within modules, the grid map is rigid and universal: Scale, orientation
and phase relationships are preserved across environments...

Fyhn et al. (2007).
Nature 446:190-194.

.. in sharp contrast to the place-cell map of the hippocampus, which
shows a nearly-random selection of place field combinations




How many grid modules are there?

When grid cells were recorded across more than 50% of the medial
entorhinal cortex, discrete modules appeared at all locations...

Grid modules on individual tetrodes
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.. but the same ~4 clusters were expressed throughout
the sampled area of the entorhinal cortex

Grid modules on individual tetrodes
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Recording session

A total of 4+ modules was recorded
over more than 50% of medial
entorhinal space



How are these modules mapped onto the entorhinal surface?

Rat: 13855
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2. Recordings
along both axes
(dorsoventral and
mediolateral)
suggested that
grid modules
change only along
the dorsoventral
axis, i.e. are
organized as
horizontal bands
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3. But the modules exhibit anatomical overlap

Module1 Module3
Module2 = Module4
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How rigid is the grid map?
Absolute scale values differ between animals

All animals had discrete
modules but the exact
scale of the individual
modules varied between
animals....

...which explains why
modules were not visible
in group data.

Mean grid scale (cm)
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But the scale ratio across modules is constant!

Average
ratio: 1.421 Module: 1 2 4
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Although the set point is different for
different animals, modules scale up, on
. average, by a factor of ~1.42 (sqrt 2)
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A geometric progression may be the optimal way to represent the environment at high
resolution with a minimum number of cells (Mathis et al., 2012).
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