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Animals explore alternating straight runs and turns
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Random walks are widespread in the animal kingdom




Random walks in trace fossils

Cretaceous Cosmorhaphe
s ¥ % g L

2

1[]—1 m

2

Proportion of steps with length > |
2

3

1 10 100 L.
, Self avoiding random walk plus
random obstructions (rocks or

food gaps or innate cueing)

emerges as Lévy-like movement
Sims et al. PNAS 2014 pattern



Frequency

Different types of random walks
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How might chances be maximised when knowledge is incomplete?

A model of random

searches — .
Specialized random walk (the so- 13 _
called Pareto-Lévy distribution) 2-D T
P(l) _ l » _ 1oL ,/ Optimum efficiency g
J J < / closeto u=2
> /III -
& /
with 1< 4 < 3 o 1F I
. : S Normal diffusion
where /; is the flight length (move = L B . h
step length), u the power law LL rownian searc
exponent 1 . | . | . | . |
q 0 1.5 2.0 25 3.0
il

From: GM Viswanathan et al. (1999) Optimizing the success of random searches. Nature 401: 911-914



Different strategy linked to environmental context
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What are the generative mechanisms?

If movement patterns resembling Lévy walks are so widespread among diverse
animals, how are they generated?

Intrinsic Hypothesis: it arises from endogenous neuronal activity resulting that can
adapt to different resource distributions.

Extrinsic Hypothesis: sensory interactions of animals moving in simple, straight line
paths in fractal environments, for example, power-law distributions of resource
patches, give rise to Lévy patterns as an emergent phenomena



Drosophila larvae executes a search routine, which consists of
crawls and pause turns




Motor patterns during crawl and turn
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Hypothesis: LW-like movements arise from endogenous
neurophysiological processes
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Neuronal activity can be manipulated in distinct regions of the nervous
system

Brain lobes (BL-gal4) Panneural (elav-Gal4)
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’ ’ elav-GAL4/ UAS-mCD8-GFP
cha3.3-GAL80, UAS-mCD8-GFP Berni et al., Curr Biol. 2012



Effect of blocking neuronal activity in entire nervous system

Berni et al., Curr Biol. 2012



Exploration is autonomously generated by the thoracic and abdominal
neuromeres

Berni et al., Curr Biol. 2012



Chemotaxis is affected when brain activity is blocked by Halorhodopsin
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Circuitry for exploration

Central Pattern Generator
In ventral nerve cord

/ Pause turn
Left-right coordination

< >

Sensing of environmental

' cues/clues

Brain modulation of
movement in response to
cues

CNS

Thorax/

ntero-posterior
coordination

\ Abdomen

/IA




The experimental method to test the Lévy walk generative hypothesis

Frustrated total internal Schematic of the setup Image of larvae using FIM
reflection (FIM)
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Modified from Risse et al. 2012

* Long recordings (50 min) — 10 larvae per experiment — 3 replicates
« Large spatial scale (240 x 240 mm?2 arenas compare to larva 2.3 mm)
« Recordings infrared light

« Stable temperature



Hypothesis: LW-like movements arise from endogenous
neurophysiological processes
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Exploration strategy in an environment with minimal external cues

Control larva (shi/ + 22 °C))
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Complex path at several scales, reminiscent of self-similar fractal
patterns — Levy walk is the signature of a fractal

Control larva (BL/ + 33 °C)
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Sims,,,Berni, Elife 2019



Hypothesis: LW-like movements arise from endogenous
neurophysiological processes
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Long-term movements resembling Lévy walks consistent in
BL > shi* larva
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Summary data of truncated power law exponents across treatments
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Results summary

» A free running programme for exploration operates independently of the brain
» The brain modulates the exploratory routine in response to environmental cues

» Control larvae show movement patterns resembling LW in simple environment with
minimal sensory inputs (visual, olfactory, gustatory)

» LW-like movement pattern is a routine independent of sensory processing by the brain or

the sensory system.

» Supports Hypothesis that such patterns arise from autonomous neuronal activity of the
central pattern generators located in the ventral nerve cord.



Different strategy linked to environmental context
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Circuitry for exploration
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Questions

If animals adapt their foraging to the environment How is this achieved?

How is foraging modulated in response to different distribution and
quality of resources?

Can genetic polymorphisms in the population confer an advantage in
particular conditions?



Drosophila foraging dimorphism: rovers vs. sitters
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Drosophila foraging polymorphism: rovers vs. sitters
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Exploratory behavior in different substrates

240 mm
Exploratory trajectories with identified turning points
B /2 /2 /2
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Wosniack et al., under revision



Behavioral elements that adapt in different food substrates
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A phenomenological model of crawling in different substrates
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At each time step, the simulated larva either
(all distributions sampled from the data):

1. Crawls with crawling speed sampled from
distribution

2. Turns a turning angle 6 that follows a von
Mises distribution with a probability Py

3. Pauses with probability Ppa,se



Sample trajectories generated by the model in the different substrates
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Model trajectories in patchy substrates
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Sample trajectories generated by the model in 2 patches substrates
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Experiments with patchy substrates
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« What element of the behavior in patchy substrates is not captured by our model?



Larvae have higher probability to turn inwards the patch at the border
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Including higher inward turn probability in the model

* More realistic larval trajectories * Higher residence times compatible
with experimental observations
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Is olfaction sole responsible for the reorientation mechanism?

« Experiments with mutant larvae
(anosmic)
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Results summary

» Characterized larval exploratory behavior in different homogeneous/patchy substrates

» Designed a model to investigate exploration in heterogeneous (patchy) environments

» Food quality controls the travelled distance by modulating crawling speed and
frequency of pauses and turns.

» Food distribution, and in particular the food-no food interphase, controls turning
behaviour, stimulating turns towards the food when reaching the patch border and
increasing the proportion of time spent within patches of food.

» Small effect of foraging polymorphism



In silico experiment: How does the foraging strategy changes
when resources are fragmented?

» Test the efficiency when the food resources are more fragmented
» Kept fixed food surface area and distributed it into N patches

N=8 ® =0.63




Avg. fraction of time spent

inside patches

Further fragmentation

Further fragmentation - less time within patches.
Increase the time spent within more nutritious patches
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More patches are visited when the food quality is lower
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EXPERIMENTS

SIMULATIONS

Testing the predictions

2T
." q. {,,»" 5 l",r —~y a7, é,.‘
R \ W L D
| 'S \_.\_.\O \k\ &..:,Y - x’-_’ ‘
& 7 Q}.
0”@ ®e a @
&
Raover_exp2 Sitier_exp1 Rower_exp3 Siter_expd
@
Raver Sitter Rover Silter

Oulside palches:

Inside patches:

Yeast




Larvae experience a trade-off between exploitation and
exploration
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Results summary

» when food is fragmented larvae experience a trade-off between
exploitation and exploration

e Larvae increase the time spent within more nutritious patches

« Larvae enhance exploration when food quality is low
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