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Introduction.....

Post P5 report, many changes and churning in pre-P5 LBNE, mainly as a consequence
of full internationalization effort.

Details in M Diwan, this conf

An important consequence of this has been the re-opening of many issues previously
considered as settled, e.g baseline, beam design , physics priorities efc.

Quoting from recently concluded ITEB meeting decision,

"Two Flagship measurements...CP and Mass Hierarchy (in that order 5 sigma
for both) but also a broad program of supporting important science e.g.
mixing from atmospheric neutrinos, proton decay, SN neutrinos, cross
sections.... "

I will try to report on on-going physics discussions and calculations on the above
questions...



CP Violation and a long baseline: some general features.....

The determination of CP violation depends on the appearance probability , and
certain important and nice conclusions follow from an examination of the basic

expression : Marciano hep-ph 0108181 , Marciano and Parsa, hep-ph 0610258
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CP Violation and a long baseline: some general features.....

This allows us to write the CP asymmetry, defined as

By, o e oD

Acp =
e L P, )
in the form,
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Can define a (statistical) FOM,

Note the conclusions which follow:

To a reasonable approximation, the "goodness” of the CP measurement is
independent of L and sin©_13



CP Violation and a long baseline:

Look at first two oscillation maxima

some general features
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Once L / E is fixed to maxima, CP asymmetry due to to &, alone is constant with
baseline, while that due to matter grows with the baseline.

Thus, hierarchy determination will be benefited by a longer baseline, because the
intrinsic difference between neutrinos and anti-neutrinos increases, provided

appearance event rate is constant.



CP Violation and a long baseline: some general features

Look at first two oscillation maxima
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asymmetry for all baselines. Thus second oscillation max offers good CP

sensitivity for both hierarchies. However, rates at second max are typically

10% of those at the first max.



The “constant” event rate...........
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Event rate roughly indépendant of L ........



The Event rate...........(more realistic calculation)
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FIG. 5. Estimated v, (left) and 7. (right) appearance rates (with no detector effects) integrated over an energy region around
the first oscillation maximum (solid line) or the second oscillation maximum (dashed line) assuming the flux obtained from
a perfect-focusing system with a 120 GeV primary beam and a fixed decay pipe length of 380 m. The curves are shown for
different values of 6cp. Matter effects are included assuming normal hierarchy.

First oscillation max rates fall gradually for neutrinos with L after ~1000 km

Second oscillation max rates ramp up and then stay constant for neutrinos wit
L after ~1500 km

Second max important since it helps break degeneracy between matter Cp and
intrinsic CP



d.p Fraction

Mass Hierarchy Sensitivity & Baseline ...........
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Mass Hierarchy Sensitivity at 1300 km ...........
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Addition of atmospheric data has no significant effect on sensitivity

Precision ND plays a very significant role in enhancing sensitivity in favorable
region of CP space.

Addition of T2K + NoVa data has very small effect on sensitivity

Nothing helps much in unfavorable CP region.



CP Sensitivity & Baseline ......... ..
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Assumes hierarchy is unknown.No significant change in shape/magnitude if
hierarchy known if baseline is above 1300 km. At shorter baselines, this does
hold because access to second max is difficult since it is oo low in energy



CP Sensitivity with ND and combined data ...........
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Addition of atmospheric data has no significant effect on sensitivity

Precision ND plays a significant role in enhancing sensitivity

Combining data from NoVa and T2K has a large effect on sensitivity



LBNE ND Physics ...........
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Figure 3—-3: Candidate NC Event in NuTeV and NOMAD. In tracking charged particles
HIRESMNU will provide a factor of two higher segmentation along z-axis and a factor of six
higher segmentation in the transverse-plane compared to NOMAD.



Table 3-2: Expected Events in a 5-Year v-Run: Events in the fiducial volume for various inter-
actions are shown.

Interaction Events Cuts
Inclusive v,-CC || 38.2x10° FV
v,-QE 8.1x 10° FV
v,-Res 11.0x10° FV
v, Coherent-w™ | 0.63x10° FV
Inclusive v,,-NC 41x10°% | FV & Epaqg > 3 GeV
Coherent-7° 0.32x10° FV
IMD {04 SV TGS
v,-e NC 4700 FV
Contaminant CC's
v,-CC 4.2%10° FV
v,-CC 4.2 %104 FV
5,-CC 2.5% 10° FV




Neutrino-nucleon Cross-section measurements in the ND
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Neutrino-nucleon Cross-section measurements in the ND
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ND will attempt to resolve the large exisiting discrepancy between NOMAD
and MiniBoone



Precision Neutrino Interaction measurements.........

Mixing Angle

The Weak

The weak mixing angle can be extracted by the ND using 3 NC processes

. Deep Inelastic Scattering off quarks inside nucleons: vIN — v.X;

. Elastic Scattering off electrons: ve™ — ve;

. Elastic Scattering off protons: vp — vp.

Low systematics, since no nucleus
involved, but also low statistics, since

xsec is low
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The Search for New Physics....... Light Dark Matter
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Production

Mediator can be a vector or a scalar, leading to:
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Detection
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FIG. 12. Expected number of neutral current-like dark matter nucleon scattering events through direct V production for the

MINOS near detector with two different vector mediator masses (my = 1 GeV on the left and my = 2 GeV on the right). The
contours are described in Fig. 8.



Conclusions ...........

Sensitivity to CP is approximately the same for baselines between 1000-2000 km

The ve appearance rate falls gradually with baseline as a result of increased hadro-
production in the target and decay kinematics.

The second maxima, while typically yielding a event rate which is only about 10%
of that from the first maximum, is important because it helps break the
degeneracy between the matter and intrinsic CP asymmetries.

The appearance rate at the second maxima is roughly constant beyond 1500 km

Sensitivity to CP is best between 750 km-1300 km. It drops gradually beyond this.

Exposure needed to reach a specific sensitivity to CP is lowest between 1000 km - 13

Precision ND plays a significant role in enhancing sensitivity

Combining data from NoVa and T2K has a large effect on sensitivity



Conclusions ...........

5o determination of the hierarchy should be possible with a baseline = 1300 km,
although exposure necessary is significantly larger than that at =z 2000 km (factor of about 4)

Precision ND has significant effect in enhancing hierarchy sensitivity in favorable region of CP
space.

Addition of atmospheric, NoVa and T2K data has negligible effect on hierarchy sensitivity of
LBN*

On its own, LBNE-ND would provide both excellent systematics reduction for the
FD oscillation measurements, as well as a host of precision measurements to test
electroweak and hadronic physics.



Switch gears....... Brief update on status of INO
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New analysis with hadrons included improves sensitivity
to hierarchy. 3o in about 12 years running.



Additional physics possible....

Complementary support to contemporaneous accelerator based neutrino
experiments for atmospheric parameters

Bounds on CPT

Measurements of VHE muons



Status.........

Road, fencing, power and water-supply work started at site. Civil
consultants for tunnel/cavern short-listed.

Work on 1/8 scale prototype initiated.

Land procured and initial planning for Inter-Institutional Centre for High
Energy Physics (IICHEP) at Madurai started . This will be the R&D, training,
and project monitoring center for the experiment.

0
4 year time estimate for tunnel and cavern completion. 1 module per year

estimate for assembly.

Full funding approval expected very soon. (o ~ months)

First neutrinosiin D=6 yearsafter to . ..o il v il



Back-up slides



LBNE-ND........ The highest precision neutrino detector

(More in tomorrow's talks)

Currently, the highest precision neutrino detector is NOMAD.

When built, HIRESMNU will be a generational advance over
NOMAD in particle identification capability and precision vector
momentum measurement.
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(c) Impact of Matter Effects on Oscillations (3., = 0)
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