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Where (and how) are they accelerated?
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Cosmic Rays

‣ Charged particles with energies 
up to 1021 eV (ZeV) (!) 

‣ Their sources (especially at the 
highest energies) are still mostly 
unknown



Observing astrophysical neutrinos allows conclusions about the 
acceleration mechanism of  Cosmic Rays
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TeV Neutrinos

‣ Neutrinos from cosmic ray interactions in: 
• Atmosphere 
• Cosmic Microwave Background 
• Gamma Ray Bursts (Acceleration Sites) 
• Active Galactic Nuclei (Acceleration Sites) 
• ?
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(can also be from leptonic processes…)



Neutrinos are ideal astrophysical messengers
Why Neutrinos?

‣ Travel in straight lines 

‣ Very difficult to absorb in flight
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Interesting Neutrinos above 1 TeV

‣ Atmospheric neutrinos 
(π/K) 

• dominant < 100 TeV 
‣ Atmospheric neutrinos 

(charm) 
• “prompt” ~ 100 TeV 

‣ Astrophysical neutrinos 
• maybe dominant 

> 100 TeV 
‣ Cosmogenic neutrinos 

• >106 TeV
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Deployed in the deep glacial ice at the South Pole
The IceCube Neutrino Observatory

‣ 5160 PMTs 

‣ 1 km3 volume 

‣ 86 strings 

‣ 17 m vertical 
spacing between 
PMTs 

‣ 125 m string 
spacing 

‣ Completed 2010
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Neutrinos are detected by looking for Cherenkov radiation from 
secondary particles (muons, particle showers)

The IceCube Neutrino Observatory
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Neutrinos are detected by looking for Cherenkov radiation from 
secondary particles (muons, particle showers)

The IceCube Neutrino Observatory
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time delay 
vs. direct light

“on time” delayed



Drill camp

South Pole station

Skiway

IceCube Lab (ICL)

IceCube’s footprint
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The IceCube Neutrino Observatory



Signatures of  signal events
Neutrino Event Signatures
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CC Muon Neutrino Neutral Current /
Electron Neutrino CC Tau Neutrino

track (data) 

factor of  ≈ 2 energy resolution  
< 1° angular resolution at high 

energies

cascade (data) 

≈ ±15% deposited energy resolution  
≈ 10° angular resolution  
(at energies ⪆ 100 TeV)

“double-bang” (⪆10PeV) and other 
signatures (simulation) 

(not observed yet) 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Backgrounds and Systematics

‣ Backgrounds: 
• Cosmic Ray Muons 
• Atmospheric Neutrinos 

‣ Largest Uncertainties: 
• Optical Properties of  Ice 
• Energy Scale Calibration 
• Neutral current / νe degeneracy
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A bundle of muons from a 
CR interaction in the atmosphere 

(also observed in the “IceTop” surface array)



Various calibration devices/methods to control detector systematics
Calibration

‣ LED flashers on each DOM 

‣ In-ice calibration laser 

‣ Cosmic ray energy spectrum 

‣ Moon shadow 

‣ Atmospheric Neutrino Energy 
Spectrum 

‣ Minimum-ionizing muons
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Moon Shadow in Cosmic Rays 
Muons in IceCube (59 strings)



Many possible analyses!
Studying Neutrinos

‣ High-energy: 
• Point-source searches looking for clustering in the sky 
• Diffuse fluxes above the atmospheric neutrino background 
• Gamma-ray bursts searches (models excluded by IceCube: 

Nature 484 (2012) ) 
• Ultra-high energy “GZK” neutrinos from proton interactions 

on the CMB 
‣  Low energy: 

• Neutrino oscillations + more with PINGU upgrade! 
‣ Others: 

• Dark Matter / WIMPs 
• …
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The (Very) High-Energy Tail 
Searching for a signal above the atmospheric neutrino 
background



Signals and Backgrounds
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Signal Background

‣ Dominated by showers 
(~80% per volume) from 
oscillations 

‣ High energy (benchmark 
spectrum is typically E-2) 

‣ Mostly in the Southern Sky 
due to absorption of  high-
energy neutrinos in the 
Earth

‣ Track-like events from 
Cosmic Ray muons and 
atmospheric νμ 

‣ Soft spectrum (E-3.7 - E-2.7) 

‣ Muons in the Southern Sky, 
neutrinos from the North



Appearance of  ~1 PeV cascades as an at-threshold background
Results

‣ Two very interesting events in IceCube 
(between May 2010 and May 2012) 

• shown at Neutrino ’12 

• 2.8σ excess over expected background in 
GZK analysis 

• (PRL 111, 021103 (2013)) 

‣ There should be more 
• GZK analysis is only sensitive to very 

specific event topologies at these energies
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“Ernie”~1.1PeV

“Bert”~1.0PeV



Shower directions reconstructed from timing profile
Directional Resolution for Showers
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time delay 
vs. direct light

“on time” delayed



Another Shower
Directional Resolution for Showers
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time delay 
vs. direct light

“on time” delayed



This is how it would look in sea water (just for fun..)
Directional Resolution for Showers
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time delay 
vs. direct light

“on time” delayed
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What are they? 
Studying individual events in IceCube



What are they?
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Energy Reconstruction of EM showers
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Statistical uncertainties in angular reconstruction for showers is 
small. Dominated by ice systematics!
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Directional Resolution for ShowersAngular Resolution

N. Whitehorn, UW Madison IPA 2013 - 34

plot shows statistical error only
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Directional Resolution for Showers
resolution for an individual exam

ple event from
 re-sim

ulation
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Zenith Resolution for Showers

Preliminary

resolution for an individual event from
 re-sim

ulation

‣ Angular error 
distributions on the 
order of 10°-15° 
depending on the 
ice model 
assumption 

• two ice examples 
are shown 

• aggregate 
resolution in black



25

Things We Know

‣ At least two PeV neutrinos in a 2-year dataset 

‣ Events are downgoing 

‣ Seems not to be GZK (too low in energy) 

‣ Higher than expected for atmospheric background 

‣ Spectrum seems not to extend to much higher energies 
• (in tension with unbroken E-2)
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Things We Wanted to Learn

‣ Isolated events or tail of spectrum? 

‣ Spectral slope/cutoff 

‣ Flavor composition 

‣ Where do they come from? 

‣ Astrophysical or air shower physics (e.g. charm)? 

‣ Need more statistics to answer all of these!
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High-Energy Contained Vertex Search 
How we found more...



Specifically designed to find these contained events.

‣ Explicit contained search at high 
energies (cut: Qtot>6000 p.e.) 

‣ 400 Mton effective fiducial mass 

‣ Use atmospheric muon veto 

‣ Sensitive to all flavors in region 
above 60TeV deposited energy 

‣ Three times as sensitive at 1 PeV 

‣ Estimate background from data
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Follow-up Analysis
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Mostly incoming atmospheric muons sneaking in through the main 
dust layer

Background 1 - Atmospheric Muons

‣ Reject incoming muons when “early charge” in veto region 
‣ Control sample available: tag muons with part of the 

detector - known bkg. 
‣ 6±3.4 muons per 2 years (662 days)
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Very low at PeV energies
Background 2 - Atmospheric Neutrinos

30

‣ Typically separated by energy 

‣ Very low at PeV energies (order of 0.1 events/year) 

‣ Large uncertainties in spectrum at high energies 

‣ 4.6+3.7-1.2 events in two years (662 days) 

‣ Rate accounts for events vetoed by accompanying muon 
from the same air shower in the Southern Sky 

‣ Baseline model (prompt neutrinos): Enberg et al. (updated 
with cosmic-ray Knee model)



Vetoing Atmospheric Neutrinos

‣ Atmospheric neutrinos are made in 
air showers 

‣ For downgoing neutrinos, the 
muons will likely not have ranged 
out at IceCube 

‣ High-energy downgoing events that 
start in the detector are extremely 
unlikely to be atmospheric
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Schönert et al., 
arXiv:0812.4308

• Note: optimal use requires minimal overburden to have the 
highest possible rate of  cosmic ray muons!



Fully efficient above 100 TeV for CC electron neutrinos 
About 400 Mton effective target mass

Effective Volume / Target Mass
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What Did We Find? 
26 more events!



37 events in 3 years of  IceCube data 
(988 days between 2010–2013)

What Did We Find?

‣ 36(+1) events observed! 

‣ Estimated background: 
‣ 6.6+5.9

-1.6  atm. neutrinos 
‣ 8.4±4.2   atm. muons 

‣ One of them is an obvious (but 
expected) background 
‣ coincident muons from two CR air 

showers 

‣ Gaps like the one between 400TeV 
and 1PeV appear in 43% of re-
simulations from best-fit of 
continuous power-law
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combining with 2.8σ from GZK result: 
4.8σ for 35+2 events 

full likelihood fit of all components: 
5.7σ for 36(+1) events



Some examples
What Did We Find?
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declination: -0.4° 
deposited energy: 71TeV

declination: -13.2° 
deposited energy: 82TeV

declination: 40.3° 
deposited energy: 253TeV



Charge Distribution

‣ Fits well to tagged 
background estimate from 
atmospheric muon data 
(red) below charge 
threshold (Qtot>6000) 

‣ Hatched region includes 
uncertainties from 
conventional and charm 
atmospheric neutrino flux 
(blue)

36

muon bkg. 
estimated 
from data



Compatible with benchmark E-2 astrophysical model
Energy Spectrum

‣ Harder than any expected 
atmospheric background 

‣ Merges well into background at 
low energies 

‣ Potential cutoff at about 2-5 
PeV (or softer spectrum) 

‣ Best fit assuming E-2 (per-flavor 
flux): 

• 0.95 ± 0.3 10-8 E-2 GeV cm-2 s-1 sr-1 

‣ Best fit spectral index: E-2.3
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An attempt to plot the spectrum: unfolded to true neutrino energy, 
simultaneously fitting for backgrounds

Unfolding to Neutrino Energy

38
assumption: 1:1:1 flavor ratio, 1:1 neutrino:anti-neutrino



Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant

39



Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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IceCube Preliminary



Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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IceCube Preliminary



Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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IceCube Preliminary



Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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IceCube Preliminary



Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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IceCube Preliminary



Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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IceCube Preliminary



Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant

51

IceCube Preliminary



Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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IceCube Preliminary



Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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IceCube Preliminary



Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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IceCube Preliminary



Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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IceCube Preliminary



Or: “zenith distribution” because we are at the South Pole
Declination Distribution
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flux 
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from Northern 
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compared to isotropic, but 
not significant
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IceCube Preliminary



Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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IceCube Preliminary



Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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IceCube Preliminary



Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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IceCube Preliminary



Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 
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not significant
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IceCube Preliminary



Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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IceCube Preliminary



Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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IceCube Preliminary



Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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IceCube Preliminary



Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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IceCube Preliminary



Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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IceCube Preliminary



Or: “zenith distribution” because we are at the South Pole
Declination Distribution

‣ Compatible with isotropic 
flux 

‣ Events absorbed in Earth 
from Northern 
Hemisphere 

‣ Minor excess in south 
compared to isotropic, but 
not significant
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IceCube Preliminary



No significant clustering observed (three years)
Skymap / Clustering
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shower events 
p-value: 7%

all events 
p-value: 84%

(all p-values are post-trial)



No significant clustering observed (three years)
Skymap / Clustering

69(all p-values are post-trial)



No significant clustering observed
Skymap / Clustering

‣ Analyzed with a variant of the standard PS method (w/o 
energy) (i.e. scrambling in RA) 

‣ Most significant excess close to (but not at!) the Galactic 
Center 

‣ Significance: 7% (not significant) 

‣ Other searches (multi-cluster, galactic plane, time 
clustering, GRB correlations) not significant either
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(arXiv:1410.1749) 
Improved Veto Techniques

‣ What happens to the astrophysical flux below 60 TeV? 

‣ How large is the neutrino flux from atmospheric charm? 

‣ -> Need to observe lower-energy neutrinos, especially from 
the southern sky.
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What happens to the astrophysical flux below 60 TeV? 
Improved Veto Techniques
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283 cascade and 105 track events in 2 years of  data
Results

‣ 106 > 10 TeV, 9 > 100 TeV (7 of 
those already in high-energy 
starting event sample) 

‣ Conventional atmospheric neutrino 
flux observed at expected level with 
starting events 

‣ Astrophysical excess continues 
down to 10 TeV in the southern sky 

‣ Deviation from model at 30 TeV 
(statistical fluctuation) 

‣ Model-dependent upper limit on 
flux from charmed meson decay: 
1.4 x ERS prediction
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Most of  the “starting” sample consists of  showers, with a high 
acceptance in the southern sky

Other Channels?

‣ Deposited (i.e. measured) energies closely related to 
neutrino energies 
‣ Great for discovering a signal
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IceCube"results""
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•  Neutrino"events"(best"fit)"above"
100"TeV"muon"energy:""
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–  Atmospheric:"10"events/yr"
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Events'with'contained'vertex'

•  Mostly"Southern"hemisphere"

•  Neutrino"events"above"60"TeV:"
–  Astrophysical:""6"/yr"
–  Atmospheric:"1/yr"

•  Significance"in"first"2"years"of"data:"
4.1"sigma""

Highest"energy:"~550"TeV"
(neutrino"energy"likely"in"PeV"range)"

Highest"energy:"2"PeV"

High-Energy Starting Event Search (“HESE”)



We have now seen a similar flux in the muon channel - at 3.7σ
Other Channels?

‣ Similar flux in more “traditional” muon channel, accepting 
incoming muons, looking below the horizon (northern sky)

75

IceCube"results""
Through'going'muons'

•  Northern"hemisphere"

•  Neutrino"events"(best"fit)"above"
100"TeV"muon"energy:""
–  Astrophysical:"10"events/yr"
–  Atmospheric:"10"events/yr"

•  Significance"in"first"2"years"of"
data:"3.9"sigma"(prel.)"

Events'with'contained'vertex'

•  Mostly"Southern"hemisphere"

•  Neutrino"events"above"60"TeV:"
–  Astrophysical:""6"/yr"
–  Atmospheric:"1/yr"

•  Significance"in"first"2"years"of"data:"
4.1"sigma""

Highest"energy:"~550"TeV"
(neutrino"energy"likely"in"PeV"range)"

Highest"energy:"2"PeV"

Throughgoing M
uons

IceCube Preliminary



Two years of  data - for E-2 spectral assumption - best fit is E-2.2 
Normalization for E-2: 0.98+0.4-0.3 10-8 E-2 GeV cm-2 s-1 sr-1

Upgoing Muons - Spectral Components
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The Future 
Extending the sensitivity to higher energies



At the highest energies: “neutrino = extraterrestrial source”
The Future

‣ Lots of cascades, only a few tracks 
‣ cascades are limited by angular resolution O(10deg), dominated 

by ice systematics 

‣ great for measuring a diffuse flux, not so great for astronomy 

‣ We need more tracks! 
‣ (and of  course we need to continue improving our systematics 

on the ice for cascades)
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For pointing searches we can tolerate more background!
Note

‣ “Starting Event” analysis 
provides a sample with 
very low background 
(from atm. neutrinos and 
muons) 

‣ HE flux likely continues 
down to lower energies, 
hidden in the atm. 
background 

‣ Pointing searches can 
tolerate a bit more 
background!
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At the highest energies: “neutrino = extraterrestrial source”
The Future

‣ We have a few nice starting tracks! 
‣ e.g. “event #5” - starts three layers of  

strings inside the detector
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How do we get more tracks?
The Future

‣ Add a large surface array, extending 
several km - can act as a CR veto 
‣ enlarged volume for “starting” tracks
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How do we get more tracks?
The Future

‣ Add more strings, with wider spacing 
‣ enlarges volume for starting tracks (and 

“ordinary” tracks) 

‣ long lever arm ➔ better resolution
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How do we get more tracks?
The Future

‣ Or, of course, both!
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R&D for a surface array
The Future

‣ Similar to the current “IceTop” 
surface array 
‣ using simplified versions of  the 

current IceTop tanks 

‣ R&D is underway!
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“IceVeto”:)A)surface)veto)detector)for)IceCube?)

Detectors)
would)be)simplified)
IceTop)detectors)

 Many+PeV++astrophysical+muon+neutrinos++
 More+suitable+for+astronomy+than+cascades+

all results/designs shown are preliminary



An upgraded IceCube detector for high energies
The Future

‣ Current threshold at about 1TeV 
‣ Can afford a slightly higher 

threshold of ~30 TeV
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assuming ~100 new strings

Ar+st"concep+on"
Here:"120"strings"at"300"m"spacing"

all results/designs shown are preliminary



An upgraded IceCube detector for high energies - in addition to low 
energies (PINGU!)

The Future

‣ “Next generation” detector upgrade, extending the energy range 
‣ PINGU 
‣ O(40) densely packed strings 
‣ Neutrino mass hierarchy, neutrino physics, dark matter,… 

‣ “High-Energy Upgrade” (to be named) 
‣ O(100) strings, 5-10 km3  
‣ Identify astrophysical sources of neutrinos (and cosmic 

rays!), neutrino and particle physics 
‣ Surface component: veto downgoing background, CR physics,…
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Signal region begins to dominate above ~80TeV
Neutrino and Muon Fluxes
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astrophysical neutrinos
atmospheric neutrinos

muons from astro. nus

muons from atmos. nus



All upgrades also include PINGU low-energy strings (not shown) — 
these use the current IceCube technology (1x large PMT modules)

Geometries
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IceCube “Sunflower” “Clusters”

top area (+60m border): 0.9km2  
volume: 0.9 km3  

strings: IC86  
spacing: ~125m

top area (+60m border): 5.3km2  
volume: 6.9 km3  
strings: IC86+96  
spacing: ~240m

top area (+60m border): 5.6km2  
volume: 7.3 km3  

strings: IC86+2x60  
spacing: ~240m

all results/designs shown are preliminary



for muons entering the detector (at fixed muon energies) 
(loose quality cuts)

Angular Resolution
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all results/designs shown are preliminary



for muons entering the detector (at fixed muon energies) 
(loose quality cuts)

Angular Resolution
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all results/designs shown are preliminary



for muons entering the detector (at fixed muon energies) 
(loose quality cuts)

Angular Resolution
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all results/designs shown are preliminary



for muons at fixed energies, loose cuts
Effective Area (muons)
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all results/designs shown are preliminary



for muons at fixed energies, loose cuts, accounting for 
1.3km-long strings with ~80 DOMs per string

Effective Area (muons)
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all results/designs shown are preliminary



for muons at fixed energies, loose cuts, accounting for 
1.3km-long strings with ~80 DOMs per string

Effective Area (muons)
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all results/designs shown are preliminary



for muons at fixed energies, loose cuts, accounting for 
1.3km-long strings with ~80 DOMs per string

Effective Area (muons)
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all results/designs shown are preliminary



Stay tuned!
Conclusions

‣ 36(+1) events with energies above ≈ 50 TeV 
found in three years of IceCube data 

‣ We see this in other channels (incoming 
muons) and down to energies of 10 TeV now! 

‣ Statistics are steadily increasing, we are now 
working on characterizing the flux better and 
better 

‣ We are planning future upgrades to measure 
this even better and look for the sources of 
these neutrinos!
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Thank you!
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2 PeV event - “Big Bird”
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Backup



Study using the “IC59” partial detector during construction: 1.8σ
Hint in Upgoing Muons
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Study using the “IC40” partial detector during construction: 2.4σ
Another Hint in Showers
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Simple search to look for extremely high energies (109 GeV) 
neutrinos from proton interactions on the CMB

GZK Neutrino Analysis

‣ Upgoing muons 
• Always neutrinos 

• Background: atm. neutrinos 

• High threshold (1 PeV) 

‣ Downgoing muons (VHE) 
• Cosmic Ray muon background 

• Very high threshold (100 PeV)
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Generic full-sky likelihood scan for each event (works with shower 
and track signatures)

Event Reconstruction
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‣ Fits for deposited energy along a “track” in each skymap direction 
based on hit pattern using a detailed model of the glacial ice optical 
properties 

‣ Result: direction with uncertainty and estimate for deposited energy
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Systematics in Energy Reconstruction

‣ Energy scale: better than ≈ 10% 
• From minimum ionizing muons: ±5% 
• Scales very well to higher energies over orders 

of  magnitude (measured with in-ice calibration 
laser) 

‣ Modeling of photon transport in ice 
• Measured with in-ice calibration LEDs and 

other devices (dust logger, ...) 

‣ Statistical error at 1 PeV is negligibly small
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What’s “early charge”?
Background 1 - Atmospheric Muons
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Use known background from atmospheric muons tagged in an outer 
layer to estimate the veto efficiency

Estimating Muon Background From Data
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‣ Add one layer of DOMs on the 
outside to tag known 
background events 

• Then use these events to 
evaluate the veto efficiency 

‣ Avoids systematics from  
simulation assumptions/
models! 

‣ Can be validated at charges 
below our cut (6000 p.e.) 
where background dominates

μ Veto Tagging Region



Differences at low energies between the flavors due to leaving events 
at constant charge threshold

Effective Area
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Systematic Studies and Cross-Checks

‣ Systematics were checked 
using an extensive per-
event re-simulation 

• varied the ice model and 
energy scale within 
uncertainties for each 
iteration and repeated 
analysis 

‣ Different fit methods 
applied to the events show 
consistent results

108

‣ Tracks: 
• good angular resolution 

(<1deg) 
• inherently worse resolution 

on energy due to leaving 
muon 

‣ Showers: 
• larger uncertainties on angle 

(about 10°-15°) 
• good resolution on deposited 

energy  
(might not be total energy 
for NC and ντ)



Cross-check with a fit method based on direct re-simulation of  
events

Systematic Studies and Cross-Checks

‣ Second fit method based on 
continuous re-simulation of events 

• Can include ice systematics like 
directional anisotropy in the scattering 
angle distribution and tilted dust 
layers directly in the fit! 

• Very slow, works for shower-like events 
‣ Shown: comparison with other 

method 
‣ Within these known bounds: all 

results are compatible to within 10%
109
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Uniform in fiducial volume
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Event Distribution in Detector
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Uniform in fiducial volume
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Event Distribution in Detector
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Uniform in fiducial volume
Event Distribution in Detector
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‣ Backgrounds from 
atm. muons would 
pile up  
preferentially at 
the detector 
boundary 

‣ No such effect is 
observed!
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Charge in veto region vs. total charge
Events Selection
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Fluxes normalized to 3 flavors (1:1:1) except atm. neutrinos
Fluxes and Limits
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Measured with IceCube in νμ and νe

Atmospheric Neutrino Spectrum
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FIG. 4. (Color online) The electron neutrino spectrum (green
open triangles). The conventional νe (red line) and νµ (blue
line) from Honda, νe (red dotted line) from Bartol and charm-
induced neutrinos (magenta band) [29] are shown. Previous
measurements from Super-K [30], Fréjus [4], AMANDA [31,
32] and IceCube [1, 33] are also shown.

TABLE III. The E2
νΦν flux. Eν is in GeV.

log10E
min
ν − log10E

max
ν ⟨Eν⟩ E2

νΦν(GeV cm−2s−1sr−1)

1.0 − 2.2 80 (7.5± 5.4) × 10−5

2.2 − 2.6 251 (1.8± 1.4) × 10−5

2.6 − 3.4 865 (4.1± 3.1) × 10−6

3.4 − 4.6 5753 4.8+2.6
−4.8 × 10−7

izing to the expected number of events from an average
of the Bartol and Honda fluxes. In each bin, the horizon-
tal bar indicates the bin width. The marker placement
shows the average reconstructed energy of the contribut-
ing events. The vertical error bars include the statistical
and systematic uncertainties (see Fig. 4 and Table III).
In conclusion, we have observed atmospheric neutrino-

induced cascades, produced by νe CC interactions and
NC interactions of all flavors in IceCube. The atmo-
spheric νe flux in the energy range between 80 GeV and
6 TeV is consistent with current models of the atmo-
spheric neutrino flux. More sophisticated event recon-
struction algorithms now in development, combined with
the additional information from the final two DeepCore
strings deployed in late 2010, should provide substan-
tially improved discrimination against the νµ CC back-
ground. This will provide both a more precise measure-
ment of the electron neutrino flux and a reduced energy
threshold, enabling observation of oscillation phenomena
in the cascade channel.
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