Direct Neutrino Mass Measurements

Susanne Mertens KITP, 11/3/2014

100

Contraction State Research, Vol. 9

Knowledge of neutrino mass has an impact on both particle physics and cosmology

Neutrinos excluded as

Dark Matter

- Neutrinos excluded as Dark Matter
- Distinguish between hirarchical and degenerate scenario, impact on structure formation

- Neutrinos excluded as Dark Matter
- Distinguish between hirarchical and degenerate scenario, impact on structure formation
- Resolve neutrino mass hierarchy

General Idea

- A kinematic determination of the neutrino mass
- No model dependence on cosmology or nature of mass

9

Drexlin, V. Hannen, S. M., C. Weinheimer, Adv. High Energy Physics 2013, Article ID 293986, (2013)

 Spectroscopy (KATRIN)

Susanne Mertens

Susanne Mertens

Susanne Mertens

Karlsruhe Tritium Neutrino Experiment

- International Collaboration: 120 members
- 15 institutions in 5 countries: D, US, UK, CZ, RUS
- Reference v-mass sensitivity: $m(v_e) = 200 \text{ meV}$, after 3 years

KATRIN Overview

MAC-E Filter with < 1 eV energy resolution and large angle acceptance

Spectrometer system

2006: Arrival of Main Spectrometer in Karlsruhe

Mastrali

2011: fully commissioned Aircoil system

January 2012: Inner electrode system (24.000 wires) completely mounted (precision: 200 µm!)

WIIIIIIII

May 8, 2012 14:11 spectrometer pump ports are closed

Sec. 23. Oak

1 (B)

- Successful bake-out of spectrometer vessel at 300° C
- Inner electrode system: no broken wire
- NEG pump activated: pressure at 5x10⁻¹¹ mbar
- "First light" last summer

- Successful bake-out of spectrometer vessel at 300° C
- Inner electrode system: no broken wire
- NEG pump activated: pressure at 5x10⁻¹¹ mbar
- "First light" last summer

Transmission Properties

Background Rates

mean total rate: 0.78 ± 0.20 cps

Spectrometer transmits electrons as expected !

Background rate **COLD BAFFLES** mean total rate: 0.47 ± 0.09 cps 0.5 Radius in analyzing plan (m)

WARM BAFFLES

Background rate of order Hz (10 mHz desired). Greater reduction of backgrounds to come

Background Rates

Background rate of order Hz (10 mHz desired). Greater reduction of backgrounds to come

KATRIN and sterile neutrinos

KELE

KELE

KATRIN and sterile neutrinos

Upgraded KATRIN provides interesting statistical sensitivity to astrophysically allowed region for dark matter sterile neutrinos KATRIN **as is** probes the favored parameter space for light sterile neutrinos

J. A. Formaggio, J. Barret, PLB 706 (2011) 68 A. Esmaili, O.L.G. Peres, Phys. Rev. D 85, 117301 A. Sejersen Riis, S. Hannestad, JCAP02 (2011) 011

S. M. et al, arXiv:1410.7684, (2014) S. M. et al, arXiv:1409.0920, (2014)

31

Spectroscopy (KATRIN)

Frequency (Project 8)

Drexlin, V. Hannen, S. M., C. Weinheimer, Adv. High Energy Physics 2013, Article ID 293986, (2013)

Electron Capture on Holmium

Electron Capture on Holmium

Calorimetric measurement

Advantages:

- Source = detector
- All energy is detected
- No molecular final states
- Self-calibrating

Challenges:

- $\Delta E_{FWHM} < 10 \text{ eV}$
- T_{risetime} < 1 µs to avoid background due to pile-up
- Sufficient isotope production

Calorimetric measurement

The ECHo Experiment

Heidelberg (Univ., MPI-K), U Mainz, U Tübingen, TU Dresden

U Bratislava, INR Debrecen, ITEP Moscow, PNPI St Petersburg, IIT Roorkee, Saha Inst. Kolkata

- Metallic magnetic calorimeters (MMC)
- Fast rise times ($\tau = 130$ ns), good energy resolutions (7.6 eV @ 6keV), and linearity demonstrated
- **Microwave Multiplexing** ${}^{\bullet}$ techniques (RF-SQUID)

A. Fleischmann et al..

A, 711, 150-159 (2013)

S. Kempf et al, JLTP

1004 (2012)

U Milano-Bicocca, INFN Milano/Genova/Roma, U Lisboa, U Miami, NIST, JPL

- Transition-Edge Sensors (TES)
- Microwave Multiplexing with Kinetic Inductance Detectors (MKIDs).
- Successful funding received for one thousand channel Ho detector experiment

M. Ribeiro Gomes et al., IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 23, NO. 3, JUNE 2013

The NuMecs Experiment

- Transition-Edge Sensors (TES)
- Good energy resolution (6 eV @ 6 keV with 55Fe surrogate).
- Concentration on high purity ¹⁶³Ho production – proton activation of dysprosium
- Show scalability through a demonstrator experiment with 4 x 1024 TES array of Ho-implanted detectors with RF-SQUID multiplexing

Los Alamos, NIST, U Madison and others

J.W. Engle et al. NIM B 311 (2013) 131–138 http://fsnutown.phy.ornl.gov/fsnufiles/positionpapers/FS Nu_Project8.pdf

Spectroscopy (KATRIN)

Calorimetry→ (HOLMES, ECHO &NUMECS)

Drexlin, V. Hannen, S. M., C. Weinheimer, Adv. High Energy Physics 2013, Article ID 293986, (2013)

Frequency (Project 8)

- Use cyclotron frequency to extract electron energy
- Non-destructive measurement of electron energy

UW/Seattle, MIT, UC/Santa Barbara Yale, Pacific NW, Livermore, NRAO, KIT

$$\omega(\gamma) = \frac{\omega_0}{\gamma} = \frac{eB}{K + m_e}$$

B. Monreal and Joe Formaggio, Phys. Rev D80:051301

Project 8 Setup

Test measurement with Krypton

First electron detection

First electron detection

First electron detection

 $FWHM \sim 140 eV$

http://lanl.arxiv.org/abs /1408.5362

Future perspective of Project 8

http://fsnutown.phy.ornl. gov/fsnufiles/positionpap ers/FSNu_Project8.pdf

Joining efforts ...

KATRIN selects the electrons....

... and Project 8 measures their energy

1) Trigger the electron \rightarrow close the trap

2) Measure the energy

Summary

- In 2016 KATRIN will start neutrino mass measurements and will probe the entire degeneracy scale
- Cryogenic techniques are advancing to achieve the sub-eV sensitivity
- Project 8 proved a completely new concept via frequency measurement. Very promising to reach sub-eV sensitivity

Thanks for your attention

KATRIN Backup slides

First Transmission Measurement

First Background Measurement

Radon-induced Background

219Rn

IIIIIIII

Radon-induced Background

 $t_{1/2}(^{219}Rn) = 3.96 s$ $t_{1/2}(^{220}Rn) = 55.6 s$ EHT = 10.00 kV Signal A File Name = St707_16.6f O UNI KARLSRUHE 200 M 219Rn

Getter pump

N. Wandkowsky et al., New J. Phys. 15 (2013) 083040

N. Wandkowsky et al., J. Phys. G 40 (2013) 8

S. M. et al., Astropart. Phys. 41 (2013) 52

Passive Reduction Technique

Cosmic muon induced Background

Magnetic shielding **Electric** shielding

е

Effect of wire electrode

Signature of eV neutrinos

KATRIN - summary

- KATRIN is designed to reach a sensitivity of 200 meV (90%CL) after 3 years of measurement time
- Successful commissioning of main spectrometer
- Next measurement phase began last week
- Start of Neutrino mass measurements 2016
- Promising potential to search for eV to keV sterile neutrinos in a model-independent way

Holmium backup slides

ECHo: First Setup

ECHo: First Setup

ECHo: Some details

100 pixel with 10 - 100 Bq per pixes

Neutrino activation of erbium 162, purification and mass separation, implantation Er161 Er162 Er163 Er164 Er16

Er161	Er162	Er163	Er164	Er165	Er166
3/2-	0.	5/2	0+	5/2-	0+
EC	0.14	EC	1.61	EC	33.6
Ho160	Ho161	Ho162	10163	Ho164	Ho165
25.0 m 5+	7/2-	15.0 m l+		k	(AN)
EC *	EC *	EC *	EC	EC,	1 0
Dy159	Dy160	Dy161	Dy162	Dy 163	Dy .64
144.4 d 3/2-	0+	5/2+	0+	5 !-	0 -
EC	2.34	18.9	25.5	24.9	28.2

Project 8 backup slides

Simulated tritium frequency spectrum

Future Perspectives...

