Getting at the physics still hidden in the solar neutrino spectrum

R. Bruce Vogelaar Center for Neutrino Physics Virginia Tech

KITP November 3, 2014

A story of productive interplay between the Standard Solar Model (SSM) and Standard Particle Model (SM) with input from Astrophysics & Cosmology & Reactors & Accelerators

- Solar Neutrinos
- Oscillations
- Getting the Parameters
- New issues? (CNO neutrinos?)

- Atmospheric Neutrinos
- Oscillations
- Getting the Parameters
- New issues? (sterile neutrinos?)

- What is underway today (Borexino)?
- Next Generation Detectors?
- Other ideas?

Just so you know, I am currently a member of

- Borexino (23 years!)
- LENS (15 years!)
- NuLat (3 months)

Made use of excellent summary talks by Wick Haxton & Gabriel Orebi Gann

- Fundamental Symmetries, Neutrinos, Neutrons and related Nuclear Astrophysics Long-Range Plan Town Meeting
- Berkeley Solar Neutrino Workshop

and of course, see the next talk by Aldo Serenelli (Institute of Space Sciences) Solar Models and Neutrinos: Latest Developments

CNO chain: ¹³N, ¹⁵O, and ¹⁷F neutrinos

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 98

Vacuum Oscillation -or- "matter effect + MSW resonance"?

In free space:

$$E^2 = p^2 + m_{fr}^2$$

In matter, v_e interact with e⁻ through the charged weak current as well as the neutral weak current.

$$V = G\sqrt{2N_e}$$

In a potential:

$$(E - V)^2 = p^2 + m_{free}^2$$

 $E^2 = p^2 + m_{free}^2 + 2EV + V^2$

Colloquium, Sep 2003

Bruce Vogelaar, Virginia Tech

Pretty Compelling Evidence for Oscillations

Hata et al.

distribution, from Super-K. The amount by which the data fall short of the expectation (red line) increases as the distance travelled increases.

Explanations and Parameters

All and a second second

Nov 3, 2014

1

R. Bruce Vogelaar

sin²(2θ₁₃) = 0.092 ±0.017^[15]

- $\tan^2(\theta_{12}) = 0.457 + 0.040 + 0.029$. This corresponds to $\theta_{12} \equiv \theta_{sol} = 34.06 + 1.16 + 1.16 + 0.029 + 0.029$. This corresponds to $\theta_{12} \equiv \theta_{sol} = 34.06 + 0.029$
- sin²(2θ₂₃) > 0.92 at 90% confidence level, corresponding to θ₂₃ ≡ θ_{atm} = 45 ± 7.1° ("atm" stands for atmospheric)^[16]

•
$$\Delta m_{21}^2 \equiv \Delta m_{sol}^2 = 7.59 + 0.20 \times 10^{-5} \text{ eV}^{2[16]}$$

•
$$|\Delta m_{31}^2| \approx |\Delta m_{32}^2| \equiv \Delta m_{atm}^2 = 2.43 + 0.13 \times 10^{-3} \text{ eV}^{2[16]}$$

+ $\delta,\,\alpha_1,\,\alpha_2,$ and the sign of Δm^2_{32} are currently unknown

Extended Data Figure 2 | Survival probability of electron-neutrinos produced by the different nuclear reactions in the Sun. All the numbers are from Borexino (this paper for pp, ref. 17 for ⁷Be, ref. 18 for pep and ref. 19 for ⁸B with two different thresholds at 3 and 5 MeV). ⁷Be and pep neutrinos are mono-energetic. pp and ⁸B are emitted with a continuum of energy, and the reported $P(v_e \rightarrow v_e)$ value refers to the energy range contributing to the

measurement. 1 the MSW-LMA considering the other componen

Probing the Unknown

other componer represent the ± Non-standard physics effects can alter the shape / position of the "MSW rise" energy range us

Non-standard interactions (flavour changing NC)

Friedland, Lunardini, Peña-Garay, PLB 594, (2004)

Sterile Neutrinos

Holanda & Smirnov PRD 83 (2011) 113011

Mass varying neutrinos (MaVaNs)

M.C. Gonzalez-Garcia, M. Maltoni Phys Rept 460:1-129 (2008)

But there are some new issues...

Solar metallicity Helioseismology

LSND Reactor Anti-neutrino Anomaly

LSND and MiniBooNE

 $P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \simeq 0.003$

The L/E values correspond to a $\Delta m^2 \sim 0.1 - 10 \,\mathrm{eV}^2$

P. Huber - p. 15

Solar metallicity Helioseismology

- □ But abundances significantly reduced Z: $0.0169 \Rightarrow 0.0122$
- Makes sun more consistent with similar stars in local neighborhood
- □ Lowers SSM ⁸B flux by 20%

Solar metallicity Helioseismology

Solar metallicity Helioseismology

Figure 3 : Comparison of predicted solar v fluxes under the two abundance assumptions (from Ref. [Sal12]).

LSND Reactor Anti-neutrino Anomaly (and strange 5 MeV bump...)

1.15 Bugey-13 Rovnog Rovnog PaloVerd CHOOZ -DoubleCF arXiv:1204.5379v1 **R**BVnba 1.1 Nucifer N^{OBS}/(N^{EXD}) 10,000 0.95 0.9 0.85 (2012)(3+0)(3+1)0.8 0.75 10⁰ 10² 10¹ 10³ Distance to Reactor (m)

Observed vs. expected \overline{v}_{e} rate as function of baseline

Gallium anomaly (2.80)

Calibration runs with radioactive neutrino sources at solar radiochemical experiments Gallex/SAGE \rightarrow deficit in the detected v_e rate: R = 0.76 ± 0.09

- Reactor antineutrino anomaly (~2.5\sigma) re-evaluation of reactor neutrino spectra results
 - → rate deficit in all short-baseline (L=10-100m) reactor neutrino experiments: R = 0.927 ± 0.23

Borexino is still running...

Detection principle

- Neutrino elastic scattering on electrons of liquid scintillator: $e^- + v \rightarrow e^- + v$;
- Scattered electrons cause the scintillation light production;

Advantages:

- Low energy threshold (~ 0.2 MeV);
- High light yield and a good energy resolution;
- Good position reconstruction;

Drawbacks :

- Info about the ν directionality is lost ;
- ν-induced events can't be distinguished from the events of β/γ natural radioactivity;

- Rn in Borexino ~ 1×10^{-10} Bq/kg
- Rn in air ~ 10 Bq/kg

External water tank

 γ and n shield, μ water Čerenkov d. 208 PMT in water V = 2100 m³

<u>Stainless Steel Sphere:</u> 2212 PMT + light concentrators V =1350 m³

<u>Nylon vessels (150 μm)</u> Internal: 4.25 m Outer: 5.50 m

<u>Scintillator:</u> 300 t PC+PPO Extreme radio-purity

The characteristic onion like structure of the detector, with fluid volumes of increasing radiological purity towards the center of the detector.

Energy spectrum with backgrounds

Backgrounds before & after Water Extraction + N₂ Stripping

Before re-purification 2008-2010 Rates in parentheses are in cpd/100t. Without ¹¹C cuts. See arXiv1308.0443v1. After re-purification 2012-2013 (with ¹¹C cuts)

DÀD

1.2

1.0

CNO

1.6

1.4

The ²³⁸U and ²³²Th Decay Chains

Radon in air deposits ²¹⁰Pb (22 yr) on nylon foil, which later contaminates scintillator with ²¹⁰Bi (1 MeV β) and ²¹⁰Po (5 MeV α).

²¹⁰Pb is 'invisible' to us

CNO rate (cpd/100t):– High metallicity: 4.5– Low metallicity: 3.0

Conjecture...

3 years of data we already have could allow first measurement of CNO *IF* we could determined the ²¹⁰Bi... (currently about 20 cts/100t/d)

Need to keep convective currents from mixing into fiducial volume on time-scales of over tens of days to get measurement.

This is HARD in practice with large open volumes.

With purification, we should be able to get the ²¹⁰Pb down first.

We are tantalizingly close.....

The reality of 'multi-tasking' at Borexino...

Expected signal for CrSOX

Expected distance distribution:

- geometry x 1/r² dependent flux
- oscillations shown for best-fit values → waves discernible
- spatial resolution: ~20 cm

Expected signal for CeSOX

Sensitvity of CrSOX/CeSOX

CrSOX

Activity: 10 MCi Fiducial radius: 3.3 m 1% source error 1% FV error 1% background error

CeSOX

Activity: 100 kCi Fiducial radius: 4 m 1% source error 1% FV error no relevant background

→ SOX could discover/exclude best fit value at >5 σ → 95% C.L. region of anomalies can be covered

Precision and/or Mult-task Detectors

SNO+ JinPing JUNO Cryogenic CC hybrid CC scintillator

Luminosity CNO **Transition Region** also Dark matter Proton Decay Geoneutrinos SN monitoring etc...

yet funding and time-scales remain daunting....

Wick Haxton captured it this way:

<u>summary</u>

Gabriel Orebi Gann captured it this way:

Physics Beyond the SNP

(1) Searching for new physics:
 V_e survival probability shape

(2) Understanding stellar formation: The metallicity of the Sun's core

(3) Confirming MSW:

The Day / Night effect

(4) Probing energy loss/generation mechanisms: Neutrino luminosity (\mathcal{L}_{v})

(5) Searching for symmetry: Precision flux & oscillation parameter measurements

Experimental Program

- Elastic Scattering detection
 - Large-scale water Cherenkov
 - Large-scale liquid scintillator
 - Inorganic scintillator

Experimental Program

- Elastic Scattering detection
 - Large-scale water Cherenkov
 - Large-scale liquid scintillator
 - Inorganic scintillator

- Charged Current detection
 - Segmented detector
 - Large-scale water-based LS

Large-Scale WCD

Super-Kamiokande

Super-Kamiokande Combined analysis of SK I-IV

PRL 112 (2014) 091805

 $A_{DN} = -3.2\%$ $\pm 1.1 (stat)$ $\pm 0.5 (syst)$ $= 2.7\sigma$

Large-Scale WCD

Super-Kamiokande

Super-Kamiokande Combined analysis of SK I-IV

PRL 112 (2014) 091805

 $A_{DN} = -3.2\%$ $\pm 1.1 (stat)$ $\pm 0.5 (syst)$ $= 2.7\sigma$

Hyper-Kamiokande

- 0.99e6 T (20* Super-K)
- I750 mwe depth
- 115,000 8B ES / year
- 0.5% sensitivity to D-N amplitude variation
- 4σ confirmation of MSW

arXiv: 1309.0184

Unprecedented low LS background!

<0.8 counts per year /100t!</p> $\begin{cases}
2^{38}U < 8 \times 10^{-20} \text{ g/g} (^{214}\text{Bi}-^{214}\text{Po}) \\
2^{32}\text{Th} < I \times 10^{-18} \text{ g/g} (^{212}\text{Bi}-^{212}\text{Po}) \\
2^{10}\text{Bi} = 20 \pm 5 \text{ cpd}/100t \\
8^{5}\text{Kr} < 5 \text{ cpd}/100t
\end{cases}$

High stats Low t/h Low bkg

> Target: 300 tons of liquid scintillator confined by nylon vessel of R=4.25 m

non-scintillating buffer

stainless steel sphere 6.85 m in radius 2212 inward-facing PMTs

outer water tank 2.8 kt of water, 9 m radius

equipped with 208 PMTs for Muon Cherenkov Veto

High stats Low t/h Low bkg

Unprecedented low LS background!

<0.8 counts per year /100t!</p> $\begin{cases}
2^{38}U < 8 \times 10^{-20} \text{ g/g} (^{214}\text{Bi}-^{214}\text{Po}) \\
2^{32}\text{Th} < I \times 10^{-18} \text{ g/g} (^{212}\text{Bi}-^{212}\text{Po}) \\
2^{10}\text{Bi} = 20 \pm 5 \text{ cpd}/100t \\
8^{5}\text{Kr} < 5 \text{ cpd}/100t
\end{cases}$

Target: 300 tons of liquid scintillator confined by nylon vessel of R=4.25 m

non-scintillating buffer

stainless steel sphere 6.85 m in radius 2212 inward-facing PMTs

outer water tank

2.8 kt of water, 9 m radius equipped with 208 PMTs for Muon Cherenkov Veto

High stats Low t/h Low bkg

Unprecedented low LS background!

Target: 300 tons of liquid scintillator confined by nylon vessel of R=4.25 m

non-scintillating buffer

stainless steel sphere 6.85 m in radius 2212 inward-facing PMTs

outer water tank

2.8 kt of water, 9 m radius equipped with 208 PMTs for Muon Cherenkov Veto

High stats Low t/h Low bkg

Unprecedented low LS background!

, Target: 300 tons of liquid scintillator confined by nylon vessel of R=4.25 m

non-scintillating buffer

stainless steel sphere 6.85 m in radius 2212 inward-facing PMTs

outer water tank

2.8 kt of water, 9 m radius equipped with 208 PMTs for Muon Cherenkov Veto

High stats

Low t/h Low bkg

High stats

Low t/h

- 1 year livetime
- 50% fiducial volume (negligible external bkg)
- Assuming Borexino-level purification levels

High stats

Low t/h

(pp dependent on ¹⁴C, ⁸⁵Kr) (CNO dependent on ²¹⁰Bi)

	pep	⁸ B	⁷ Be	pp	CNO
l yr	9%	7.5%	4%	~ a	- 15 0/
2 yr	6.5%	5.4%	2.8%	few %	$\sim 15^{-70}$

High stats

ow bkg

Low t/h

- 50kT LS (30kT FV solar), 30% coverage
- Unprecedented statistics at low energy
 - 3σ discovery potential for 0.1%-amplitude temporal modulations in ⁷Be flux
 - CNO detection
 - Low-energy ⁸B spectrum (+ CC on ¹³C)

- Unprecedented statistics at low energy
 - 3σ discovery potential for 0.1%-amplitude temporal modulations in ⁷Be flux
 - CNO detection
 - Low-energy ⁸B spectrum (+ CC on ¹³C)

- 20kT LS detector
- 700m rock overburden
- Goal of 3% / \sqrt{E} resolution

	Current	JUNO
Δm_{12}^2	~3%	~0.6%
Δm_{23}^2	~5%	~0.6%
$sin^2\theta_{12}$	~6%	~0.7%
$sin^2 \theta_{23}$	~20%	N/A
$sin^2\theta_{13}$	~14% -> ~4%	~ 15%

Inorganic LS

High stats Low t/h Low bkg

LNe (CLEAN):

50-T scale Background-free fiducial volume

⇒ %-level (ES) pp measurement

Inorganic LS

LNe (CLEAN):

50-T scale Background-free fiducial volume

⇒ %-level (ES) pp measurement

Liquid xenon (XMASS, LZ):

T-scale experiments Requires *100 depletion of ¹³⁶Xe

High stats

Low t/h

Low bkg

Inorganic LS

LNe (CLEAN):

50-T scale Background-free fiducial volume

High stats Low t/h Low bkg

%-level (ES) pp measurement

LBNF

- 40kT LAr
- + 50kTWCD? p5
- CC on 40 Ar, $E_{th} = 5$ MeV

$$\nu_e + {}^{40}Ar \to {}^{40}K^* + e^{-1}$$

Transition	Rate (evts/day)
Fermi	31
Gamow-Teller	88

Liquid xenon (XMASS, LZ):

T-scale experiments Requires *100 depletion of ¹³⁶Xe

CC Detection: LENS

$$\nu_e + {}^{115}In \longrightarrow {}^{115}Sn^* + \beta^-$$

$$\tau = 4.76\mu s \longrightarrow \gamma(115 \text{keV}) + \gamma(497 \text{keV}) + {}^{115}Sn$$

- Delayed triple coincidence helps reject ¹¹⁵In bkg (need 10¹¹ rejection)
- Q = 115keV : 95% of pp spectrum
- Segmentation helps reject ext bkgs

CC Detection: LENS

$$\nu_e + {}^{115}In \longrightarrow {}^{115}Sn^* + \beta^-$$

$$\tau = 4.76\mu s \longrightarrow \gamma(115 \text{keV}) + \gamma(497 \text{keV}) + {}^{115}Sn$$

- Delayed triple coincidence helps reject ¹¹⁵In bkg (need 10¹¹ rejection)
- Q = 115keV : 95% of pp spectrum
- Segmentation helps reject ext bkgs

	G270	AG3309			
Source	рр	7Be	CNO*	CNO[†]	
Flux (/cm2/s)	6.00E+10	4.70E+09	4.97E+08	3.74E+08	
Flux (SNU) [Bah88]	468	116	15	11	
Cross section[Rap85]	1.00E-44	2.50E-44	2.50E-44	2.50E-44	
Survival probability	56	54	54	54	
Rate (per ton year)	26	6.2	1.2	0.9	
Rate (10 tons · 5 yr)	1296	310	58	43	J

- ASDC: Advanced Scintillation Detector Concept (see ASDC talk, Monday, J. R. Klein)
- Water Cherenkov \Rightarrow water-based LS

Nucl. Inst. & Meth. A660 51 (2011) http://underground.physics.berkeley.edu/WbLSWorkshop.html

- ASDC: Advanced Scintillation Detector Concept (see ASDC talk, Monday, J. R. Klein)
- Water Cherenkov \Rightarrow water-based LS

Nucl. Inst. & Meth. A660 51 (2011) http://underground.physics.berkeley.edu/WbLSWorkshop.html

- ASDC: Advanced Scintillation Detector Concept (see ASDC talk, Monday, J. R. Klein)
- Water Cherenkov \Rightarrow water-based LS

Nucl. Inst. & Meth. A660 51 (2011) http://underground.physics.berkeley.edu/WbLSWorkshop.html

- ASDC: Advanced Scintillation Detector Concept (see ASDC talk, Monday, J. R. Klein)
- Water Cherenkov \Rightarrow water-based LS

Nucl. Inst. & Meth. A660 51 (2011) http://underground.physics.berkeley.edu/WbLSWorkshop.html

Is ultra-clean segmentation possible? NuLat

LENS detector design. Applied to reactor neutrinos Potential for other applications?

