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p-rich nucleosynthesis does not happen easily!

e Case in point — early universe (S ~ 10'0)

o Freeze-out from nuclear statistical equilibrium (NSE) at
T =~ 0.1 MeV leads to a-particle formation

o Coulomb barriers inhibit proton capture at T' < 0.1 MeV

e In our boring p-rich universe, only a-particles are made (and
traces of 2H, ®He, "Li)

e In a hypothetical early universe with more neutrons than
protons (e.g., if m,, were less than m,), BBN could probably
make heavier elements through neutron captures
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p-rich nucleosynthesis does not happen easily!

e Case in point — early universe (S ~ 10'0)

o Freeze-out from nuclear statistical equilibrium (NSE) at
T =~ 0.1 MeV leads to a-particle formation

o Coulomb barriers inhibit proton capture at T' < 0.1 MeV

e In our boring p-rich universe, only a-particles are made (and
traces of 2H, ®He, "Li)

e In a hypothetical early universe with more neutrons than
protons (e.g., if m,, were less than m,), BBN could probably
make heavier elements through neutron captures

e Q. What would happen if the early universe (or some
sub-regions of it) had a much lower entropy (S ~ 100)7?
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Nonetheless, p-rich heavy elements do exist in nature
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Figure: Abundances of various p-nuclides (T. Rauscher et al.,

Rep. Prog. Phys. 76 (2013) 066201). See also: Katharina Lodders,

Astrophys. J. 591 (2003) 1220-1247.
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Nonetheless, p-rich heavy elements do exist in nature
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Figure: The solar system abundances of r-nuclei, s-nuclei, and p-nuclei
(B. S. Meyer, Annu. Rev. Astron. Astrophys. 1994. 32: 153-190). Most
p-nuclides have abundances 1-2 orders of magnitude lower than nearby s- and

r-process (neutron-rich) nuclides. Except for *°*Mo and “®“*Ru.
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Nonetheless, p-rich heavy elements do exist in nature

m—Proto-NS winds: Pruet et al. (2006 - PF = 10) Hansen et al. (2014)

= ® ProtoSN winds: Pruet et al. (2006 - PF =30)  ® Spiteet al. (2018)
No proto-NS winds ®  Mishenina et al. (2019)
©  Peterson et al. (2013) Mishenina et al. (2020)

of T T T T 3

Figure: Observed abundances of [Mo/Fe] and [Ru/Fe] in metal poor stars,
and predicted abundances for a p-rich proto-NS wind model from Pruet et al.
(2006), as a function of metallicity [Fe/H] (F. Vincenzo et al., MNRAS 508,
3499-3507 (2021)). Note the scatter at low metallicities.
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p-process mechanisms [Rauscher et al. (2013)]

@ ~y-process (Woosley and Howard, 1978, ApJS 36, 285)

o Photodisintegration of neutron rich isotopes either via (v,n) or
via (7,p)/(v, @) + p-decays

e Occurs during explosive O/Ne shell burning in massive stars, or
in exploding white dwarfs (type-la supernovae)

o Can make some “2Mo but underproduces Mo and ?6:98Ru

e v-process (Woosley et al., ApJ, 356, 272 (1990); Fuller and
Meyer, ApJ 453, 792 (1995))

e Neutrino captures on stable nuclei

e May occur in core-collapse supernova environments where v
fluxes large enough to offset small cross-sections

e Outflowing material must remain in close proximity to NS for
significant length of time — difficult to implement
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p-process mechanisms

@ rp-process (Schatz et al., Phys. Rept. 294, 167-263 (1998);
L. Bildsten, astro-ph/9709094)

o Rapid proton capture followed by 31 decays

e Occurs on the surface of accreting neutron stars where
thermonuclear H/He burning drives up temperatures enough
for a short amount of time to overcome Coulomb repulsion

e Hindered by 31 decay “waiting points” along the
nucleosynthesis chain

@ a-process (Hoffman et al. ApJ, 460, 478 (1996))

e Proceeds via chain of «, n, and p captures following a-rich
freezeout in neutrino-driven outflows with Y, ~ 0.48-0.49

e Can make ?2Mo but not much ?*Mo or 96:98Ry
o Makes appreciable amounts of “2Nb (comparable to “2Mo)
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© vp-process nucleosynthesis
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What about 929*Mo and 96-98Ry?

@ None of the aforementioned processes can explain their
anomalously high abundances

@ New mechanism proposed in 2005: the vp-process

'k endin,
PRL 96, 142502 (2006) PHYSICAL REVIEW LETTERS 14 APRIL. 2006

Neutrino-Induced Nucleosynthesis of A > 64 Nuclei: The »p Process

C. Frohlich,! G. Martinez-Pinedo,> M. Liebendérfer,*' F-K. Thielemann,' E. Bravo,’
W.R. Hix,® K. Langanke,*” and N.T. Zinner®
'Departement fiir Physik und Astronomie, Universitit Bmel CH-4056 Basel, Switzerland
2ICREA and Institut d’Estudis Espacials de Catalunya, Uni itat A de B E-08193 Bell , Spain
3Gesellschaft fiir Schwerionenforschung, D-64291 Darmstads, Germany
“Canadian Institute for Theoretical Asnophmcs Toronto, Ontario M5S 3HS, Canada
*Dep de Fisica i Engi Nuclear, Uni Politécnica de Catalunya, E-08034 Barcelona, Spain
©Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
"Institut fiir Kernphysik, Technische Universitiit Darmstadt, D-64289 Darmstadt, Germany
SInstitute for Physics and Astronomy, University of Arhus, DK-8000 Arhus C, Denmark
(Received 10 November 2005; published 10 April 2006)

We present a new nucleosynthesis process that we denote as the »p process, which occurs in
supernovae (and possibly gamma-ray bursts) when strong neutrino fluxes create proton-rich ejecta. In
this process, antineutrino absorptions in the proton-rich environment produce neutrons that are immedi-
ately captured by neutron-deficient nuclei. This allows for the nucleosynthesis of nuclei with mass
numbers A > 64, making this process a possible candidate to explain the origin of the solar abundances of
9294Mo and **Ru. This process also offers a natural explanation for the large abundance of Sr seen in a
hyper-metal-poor star.
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The vp-process

@ See also: Pruet et al., ApJ 644, 1028 (2006);
S. Wanajo, ApJ 647, 1323 (2006)

@ Can occur in proton-rich neutrino driven outflows in a
core-collapse supernova environment

@ I/, capture on free protons creates a sub-dominant population
of neutrons, which can help bypass the 5T decay waiting
points on the rp-process chain through (n,p) reactions [or via
(n,v) + (p,7y)]- vp-process is therefore also called
“neutrino-induced rp-process” (Wanajo, 2006)
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Physics of the vp-process

Wanajo et al., ApJ 729 46 (2011)

@ Seed nuclei up to *°Ni are formed via freeze-out from nuclear
quasi-equilibrium as the outflow cools to 7' ~ 3 GK

@ U, capture on free protons (in a p-rich wind) creates a
subdominant neutron population (Y, ~ 10712-10~11),
triggering (n,p) and (n, <) reactions to bypass the 3 decay
waiting points. These, combined with (p,~), keep the flow
moving along the rp chain for 3GK > T > 1.5 GK

e At T < 1.5GK, Coulomb barriers inhibit further (p, )
reactions, and the vp-process ends

Amol V. Patwardhan vp-process in v-driven outflows in CCSN  12/33 Neutrinos-C22 (KITP)
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Favourable conditions for vp-process

Wanajo et al., ApJ 729 46 (2011)
1. Short time interval (71) for T'> 3 GK
2. High entropy-per-baryon (S = 70) in the outflow

3. Long time interval (72) in the 3GK > T > 1.5 GK band

(1) and (2) facilitate a high proton-to-seed ratio at the onset of
the vp-process, and (3) leads to a larger integrated v, fluence,
furnishing more neutrons to drive the reaction flow towards higher

mass numbers
Neutrinos-C22 (KITP)
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© The reported difficulties with the vp-process
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Reproducing solar abundances and observed ratios

@ .. .the relative production of “2Mo and %Mo is set by a
competition governed by the proton separation energy of “3Rh.
... It is found that for the conditions calculated in recent
two-dimensional supernova simulations, and also for a large range of
outflow characteristics around these conditions, the solar ratio of
92Mo to ?*Mo cannot be achieved”
— J. L. Fisker et al., 2009 ApJ 690 L135

@ “...we find that proton-rich winds can make dominant
contributions to the solar abundance of *®Ru, significant
contributions to those of “°Ru (< 40%) and %Mo (< 27%), and
relatively minor contributions to that of **Mo (< 14%) ...In
conclusion, our results strongly suggest that the solar abundances of
92:94Mo are dominantly produced by sources other than the
neutrino-driven wind”

— J. Bliss et al., 2018 ApJ 866 105

Amol V. Patwardhan vp-process in v-driven outflows in CCSN  15/33 Neutrinos-C22 (KITP)



The difficulties
0000

The Niobium puzzle

@ Another p-rich nucleus, 92Nb, is also known to occur in nature, but
cannot be made in the vp-process — shielded from p-rich nuclear
flows by the neighboring stable 2Mo

@ Can be made in the y-process — production ratio of 92Nb/%?Mo,
convolved with suitable models for galactic chemical evolution
(GCE) and ISM mixing, is roughly consistent with the inferred ratio
in the early solar system

@ This is used as an argument that any process that produces the bulk
of ?2Mo must also produce ?2Nb concurrently, thereby putting the
vp process in doubt [Rauscher et al. (2013)]

@ However: (i) considerable uncertainties in both the production and
the inferred early solar system ratios of 2Nb/92Mo, and (ii)
consistency between ratios doesn't preclude two separate processes
from being dominant sources of “2Nb and “2Mo respectively

Amol V. Patwardhan vp-process in v-driven outflows in CCSN  16/33 Neutrinos-C22 (KITP)
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The triple-alpha crisis

@ It was pointed out (S. Wanajo et al., 2011 ApJ 729 46) that
uncertainties in the triple-a reaction rate could have
implications for vp-process yields

e M. Beard et al. [PRL 119, 112701 (2017)] calculated the
in-medium triple-a enhancement, and subsequently Jin et al.
[Nature vol. 588, pg. 57-60 (2020)], incorporated these into
their calculations of the vp-process

@ “The resulting suppression of heavy-element nucleosynthesis
for realistic conditions casts doubt on the vp process being
the explanation for the anomalously high abundances of
92.9Mo and ?6?%Ru isotopes in the Solar System ..."

Amol V. Patwardhan vp-process in v-driven outflows in CCSN  17/33 Neutrinos-C22 (KITP)
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Supernova surprise

creates elemental
mystery

exploding stars known as supernovae.

Michigan State University researchers have discovered that one of the most
important reactions in the universe can get a huge and unexpected boost inside

This finding also challenges ideas behind how some of the Earth’s heavy elements

are made. In particular, it upends a theory explaining the planet’s unusually high

amounts of some forms, or isotopes, of the elements ruthenium and molybdenum.
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0 The resolution — hydrodynamics!
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Hydrodynamics of neutrino driven ouflows

Neutrino driven outflows can be supersonic or subsonic. In fact, in typical
core-collapse supernova environments, they are often near-critical and
therefore sensitive to the precise boundary conditions (A. Friedland and
P. Mukhopadhyay, arxiv:2009.10059).
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Semi-analytic outflow model

o Steady-state outflow equations (Qian and Woosley, ApJ 471
(1996) 331-351):

M = 4nripy, (1)
dv 1dP GM

°e -2 T 2

Yar p dr r2’ (2)
. de P dp

q = v (dr - p2dr> , (3)

plus corrections due to GR effects, changing g, etc.

@ For radiation-dominated ejecta, these can be converted into
coupled ODEs for T', S, and v

@ Integrate using boundary conditions of 7" and S at the PNS
surface, and far pressure at the outer boundary (large radii)

Amol V. Patwardhan vp-process in v-driven outflows in CCSN  21/33 Neutrinos-C22 (KITP)
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Subsonic outflows (and high entropy) to the rescue

Subsonic outflows are much more conducive to optimal
vp-process yields

Outflow spends more time in the 3GK > T > 1.5 GK band
where the vp-process operates optimally

Also, the material remains closer to NS compared to
supersonic outflows, allowing for greater exposure to v, fluxes
which make neutrons needed for (n,p) and (n,~) reactions

Triple-a enhancement still hurts the vp-process, but may not
kill it completely!

In addition, a high entropy S = 80 is required to obtain good
yields — corresponds to Mpns ~ 1.8 Mg for Rpns = 19 km

Amol V. Patwardhan vp-process in v-driven outflows in CCSN  22/33 Neutrinos-C22 (KITP)
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A comparison: subsonic vs supersonic outflows
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Figure: Left: Nucleosynthesis yields in our simulation for the base vp-process
(magenta curve) and including the nominal triple-a. enhancement rates (green
dashed curve). p-nuclides of interest in this work are shown in solid dots.
Right: Yields obtained for parametrized outflow profile with entropy (S = 80)
that has been used in Jin et al., representing a supersonic outflow.
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Nucleosynthesis calculations and inputs

@ Nucleosynthesis calculations performed using open source
SkyNet libraries [Lippuner and Roberts, ApJS 233, 18 (2017)]

@ Triple-a enhancement was implemented using a code made
available publicly by the authors of Jin et al. (2020)

@ Neutrino luminosity taken to vary with time (exponential
decay with 7 = 3s) and nucleosynthesis trajectories
represented by a sequence of steady-state outflow snapshots
for different post-bounce times. Initial Y. taken to be 0.6

@ Self-consistent modelling of outflows using the semi-analytic
framework. Post-shock densities for the far boundary
condition adopted from simulations described in Sukhbold et
al., ApJ 821 38 (2016)

Amol V. Patwardhan vp-process in v-driven outflows in CCSN  24/33 Neutrinos-C22 (KITP)
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Figure: A sequence of nucleosynthesis yields computed using second-by-second
outflow profile snapshots. Left: 13 My progenitor outflow profiles. Right:
18 M progenitor outflow profiles. In each of these cases, a PNS mass of

1.8 M with a radius of 19 km was used in the semi-analytic outflow model.

Optimal yields reached at different times for different progenitor

masses, but generally within 1-2s when the mass outflows are still
appreciable. No progenitor fine-tuning needed!
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Getting the integrated vyields

@ For a nuclide (A, Z), we define the time-averaged abundance:

_ J Yaz(ten) M(tob) dtpn
<YA72> B f M(tpb) dtpb

) (4)

@ The isotopic “production factor” is defined as
faz=Yaz)/YS, where Y{, is the observed mass
fraction of that iso7tope in the solar system (normalized so
that 35 AY, = 1 over all the nuclides)

@ The “overproduction factor” is then given by
OA,Z = fA,Z X (Mout/Mejec): where Mout/Mejec ~107% To
explain the solar system abundance of a nuclide, one must
have O4 7 2 10, and therefore f4 7 > 10°
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Integrated yields for the 13 M, progenitor calculation
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Figure: Integrated yields for the 13 Mg progenitor calculation. The colored
band represents a range of fmax to fmax/10, where fmax is the highest
production factor among the p-nuclides. Red dashed line represents the
minimum production factor needed to account for observed solar abundances.
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The a-process (Y, = 0.48) — the Niobium solution
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PNS mass dependence — variability
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Figure: A comparison of nucleosynthesis yields for self-consistently modeled
outflow profiles with different protoneutron star masses, each with radius
Rpns = 19km. Heavier PNS = deeper gravitational potential = higher
entropy, which is more favourable for the vp process.
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PNS radius dependence = EoS dependence
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Figure: A comparison of nucleosynthesis yields for self-consistently modeled
outflow profiles with different protoneutron star radii, each with mass

Mpns = 1.8 M. More compact = deeper gravitational potential —
higher entropy, which is more favourable for the vp process.
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Conclusions

@ vp-process appears to be alive and well! (for now at least)

@ The hydrodynamics of the outflow are extremely crucial in
determining vp-process outcomes

@ Subsonic profiles with self-consistently modeled outflow
physics can give robust vp-process yields, despite the
enhanced triple-a reaction rate.

@ Heavier and/or more compact protoneutron stars improve the
yields considerably
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Future work

@ The variability of yields observed for simulations with different
PNS masses offers a bridge to Galactic chemical evolution

@ Dependence on PNS radius suggests possible means to get
another handle on the nuclear EoS

@ Dependence on Y, motivates incorporating the effect of
neutrino oscillations (see also Z. Xiong et al., ApJ 900 144
(2020))

o Ultimately, all of this must be tested using nucleosyntheis

calculations with 3D simulations. This framework provides
guidance for such simulations.
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Bonus slides
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9.5 M, progenitor calculation
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Figure: Nucleosyntheic yields for a 9.5 M, progenitor calculation with
Mpns = 1.4 M and Rpns = 19km (low entropy) and a self-consistently
modelled supersonic outflow profile. Left: Yields across steady-state outflow

snapshots. Right: Integrated yields.
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Outflow profiles for T" vs t
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Figure: A comparison of Temperature vs time profiles for self-consistently
modeled 13 M (supersonic) and 9.5 M (subsonic) progenitor outflows.
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Variability of yields with initial Y,
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Figure: A comparison of nucleosynthesis yields for self-consistently modeled
outflow profiles with different initial Y. values.
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