Constraining Majorana CP phase in Precision Era of Cosmoloay and Double Beta Decay Experiment

Hiroshi Nunokawa

Department of Physics

Pontifícia Universidade Católica do Rio de Janeiro E-mail: nunokawa@puc-rio.br

Based on Collab. with Hisakazu Minakata and Alexander A. Quiroga, arXiv: 1402.6014 [hep-ph] and its revised version, to appear

KITP, UCSB, December 15, 2014

Outline

Introduction

Assumptions and Analysis Procedure
Results I: Allowed Regions
Results II: CP Exclusion Fraction
Conclusions

Last ~15 years of Neutrino Physics was really exciting!

Last ~15 years of Neutrino Physics was really exciting!

Discovery of Neutrino Oscillation!

Last ~15 years of Neutrino Physics was really exciting!

Discovery of Neutrino Oscillation!

$$
\downarrow
$$

neutrinos have masses!

Mixing between 3 flavor of neutrinos
flavor eigenstates

atmospheric voc.
reactor voc. $\begin{gathered}\text { solar v osc. } \\ \text { reactor vosc. }\end{gathered}$ θ_{ij} : mixing angle δ : CP phase for antineutrinos, $U_{v} \rightarrow U_{v}^{*}$

Discovery of Neutrino Oscillation

 Announced in "Neutrino '98" @Takayama, Japan

Super-Kamiokande Collaboration

neutrinos change falvors!

Solar neutrinos also oscillate!

Another type of oscillation observed by reactor experiments

Mixing in the Quark Sector

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
$$

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
0.97427 \pm 0.00015 & 0.22534 \pm 0.00065 & 0.00351_{-0.00014}^{+0.00015} \\
0.22520 \pm 0.00065 & 0.97344 \pm 0.00016 & 0.0412_{-0.0011}^{+0.0005} \\
0.00867_{-0.00031}^{+0.00029} & 0.0404_{-0.0005}^{+0.0011} & 0.999146_{-0.000046}^{+0.000021}
\end{array}\right)
$$

Mixing in the Neutrino Sector

$$
|U|=\left(\begin{array}{lll}
0.801 \rightarrow 0.845 & 0.514 \rightarrow 0.580 & 0.137 \rightarrow 0.158 \\
0.225 \rightarrow 0.517 & 0.441 \rightarrow 0.699 & 0.614 \rightarrow 0.793 \\
0.246 \rightarrow 0.529 & 0.464 \rightarrow 0.713 & 0.590 \rightarrow 0.776
\end{array}\right)
$$

M.C.Gonzalez-Garcia et al, JHEP1411(2014)052

Thanks to the enourmous progress in neutrino physics after the discovery of neutrino oscillation by Super-Kamiokande collaboration, all the mixing angles are now measured!

Unknowns of Oscillation paramters
mass ordering: $m_{1}<m_{3}$ or $m_{1}>m_{3}$?
Leptonic-Kobayashi-Maskawa CP phase Hopefully, future oscillation experiments will eventually determine these unknowns

Mass Spectrum: normal or inverted?

normal hierarchy inverted hierarchy

However, there are other open quetinos which can not be answered by oscillation experiments

Absolute Neutrino Mass Scale

Nature of Neutrinos, Dirac or Majorana?

However, there are other open quetinos which can not be answered by oscillation experiments

Absolute Neutrino Mass Scale
Cosmology, beta decay experiment
Nature of Neutrinos, Dirac or Majorana?
neutrinoless double beta decay experiment

Direct Measurement of Neutrino Mass

 requires precise measurement of the end of the beta spectrum$$
{ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\mathrm{e}^{-}+\overline{\mathrm{V}}_{\mathrm{e}}
$$

what can be actually measured is the effective mass,

$$
m_{\beta} \equiv\left[m_{1}^{2}\left|U_{e 1}\right|^{2}+m_{2}^{2}\left|U_{e 2}\right|^{2}+m_{3}^{2}\left|U_{e 3}\right|^{2}\right]^{\frac{1}{2}}
$$

Status of previous tritium experiments

Mainz \& Troitsk have reached their intrinsic limit of sensitivity

Troitsk
windowless gaseous T_{2} source analysis 1994 to 1999, 2001

$$
\begin{aligned}
& \mathrm{m}_{v}^{2}=-2.3 \pm 2.5 \pm 2.0 \mathrm{eV}^{2} \\
& \mathrm{~m}_{v} \leq 2.2 \mathrm{eV}(95 \% \mathrm{CL} .)
\end{aligned}
$$

Mainz

quench condensed solid T_{2} source analysis 1998/99, 2001/02

$$
\begin{aligned}
& \mathrm{m}_{v}^{2}=-1.2 \pm 2.2 \pm 2.1 \mathrm{eV}^{2} \\
& \mathrm{~m}_{v} \leq 2.2 \mathrm{eV}(95 \% \mathrm{CL} .)
\end{aligned}
$$

Karlsruhe Tritium Neutrino Experiment

Karlsruhe Tritium Neutrino Experiment
at Forschungszentrum Karlsruhe unique facility for closed T_{2} cycle: Tritium Laboratory Karlsruhe
gaseous tritium source port
$\sim 75 \mathrm{~m}$ linear setup with 40 s.c. solenoids

sensitivity: $\mathrm{m}_{\mathrm{V}} \sim 0.2 \mathrm{eV}$ @90\% CL

Cosmology may determine better neutrino masses

Neutrinos are the most abundant particles in the universe after photons
number density per falvor: $n_{\nu}=\frac{3}{11} n_{\gamma}=\frac{6 \zeta(3)}{11 \pi^{2}} T_{\gamma}^{3} \sim 110 / \mathrm{cm}^{3}$
for $\mathrm{m}_{\nu} \ll \mathrm{T}: \quad \rho_{\nu}=\frac{7 \pi^{2}}{120} T_{\nu}^{4}=\frac{7 \pi^{2}}{120}\left(\frac{4}{11}\right)^{4 / 3} T_{\gamma}^{4}$
for $m_{\nu} \gg \mathrm{T}: \rho_{\nu}=m_{\nu} n_{\nu} \longrightarrow \Omega_{\nu} h^{2} \simeq \frac{\sum m_{\nu_{i}}}{94 \mathrm{eV}}$

From atmospheric neutrino data, we know that at least one of them > 0.05 eV

Cosmological Bounds on Neutrino Masses

 Cosmology is sensitive to sum of the neutrino masses$$
\begin{gathered}
\Sigma \equiv \mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3} \\
\Sigma<\left\{\begin{array}{cc}
0.98 \mathrm{eV} & (\text { Planck }+ \text { WMAP }+ \text { CMB }) \\
0.32 \mathrm{eV} & (\text { Planck }+ \text { WMAP }+ \text { CMB }+ \text { BAO }),
\end{array}\right.
\end{gathered}
$$

at 95% CL (deviation from flatness was allowed) by Ade et al [Planck Collaborataion], arXiv:1303.5076 [astro-ph.CO]

Indication of sub-eV neutrino masses?

According to recent work by Battye and Moss in PRL 112, 051303 (2014) [arXiv:1308.5870]
$\Sigma=0.32 \pm 0.081 \mathrm{eV}$ is favored to decrease tension between CMB and lensing/cluster observations

However, see Leistedt et al, PRL113, 041301 (2014), arXiv:1404.5950 [astro-ph.CO]

Cosmology may determine better neutrino masses Expected sensitivity...
 ESA Euclid Misson

A 7-parameter forecast: Hamann, Hannestad \& Y³W 2012

Data	$10^{3} \times \sigma\left(\omega_{\mathrm{dm}}\right)$	$100 \times \sigma(h)$	$\sigma\left(\sum m_{\nu}\right) / \mathrm{eV}$
c	2.02	1.427	0.143
cs	0.423	0.295	0.025
$\mathrm{cg}^{\mathrm{cg}_{1}}$	0.583	0.317	0.016
cg_{b}	0.828	0.448	0.019
cg_{b}	0.723	0.488	0.039
csg	1.165	0.780	0.059
csgx	0.201	0.083	0.011
$\operatorname{csg}_{\mathrm{b}}$	0.181	0.071	0.011
$\operatorname{csg}_{\mathrm{b}}$	0.385	0.268	0.023

Most optimistic
Σm_{v} potentially detectable at $5 \sigma+$ with Planck+Euclid (assuming nonlinearities to be completely under control)
c = CMB (Planck); g = Euclid galaxy clustering
$s=$ Euclid cosmic shear; $x=$ Euclid shear-galaxy cross

Y. Y. Y. Wong @ NuFact2013, Beijing, August, 2013

Nature of Neutrinos: Dirac or Majorana?

If neutrinos have masses, they can be either Dirac or Majorana Fermions

Dirac Fermion: particles and anti-particles are different, like electron

Majorana Fermion: particles and anti-particles are identical (such particles can not have electric charge)

Possible Implications: Seesaw Mechanism, Leptogenesis

If neutrinos are Majorana particles,

$$
\begin{aligned}
& \left(\begin{array}{l}
v_{\mathrm{e}} \\
\nu_{\mu} \\
v_{\tau}
\end{array}\right)=U_{v}\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \\
& U_{\nu}=\left[\begin{array}{ccc}
\tau & s_{12} c_{13} & s_{13} e^{-i \delta_{C P}} \\
c_{12} c_{13} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta_{C P}} & s_{23} c_{13} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{-i \delta_{C P}} & c_{12} s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta_{C P}} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta_{C P}}
\end{array} c_{23} c_{13}\right] \\
& c_{i j} \equiv \cos \theta_{i j}, s_{i j} \equiv \sin \theta_{i j} \\
& \mathrm{U}_{v} \rightarrow \mathrm{U}_{v} \times\left[\begin{array}{lcc}
1 & e^{i\left(\frac{\alpha_{21}}{2}\right)} & 0 \\
0 & 0 & e^{i\left(\frac{x_{31} 1}{2}\right)}
\end{array}\right] \\
& \text { Majorana CP phases }
\end{aligned}
$$

Schechter \& Vale, 1980, Bilenky, Hosek \& Petcov, 1980 \longrightarrow can not be measured by oscillation

How to test Majorana nature of neutrinos?

neutinoless double beta decay

violates lepton number by 2 units
decay rate \propto effective neutrino mass

$$
\left|m_{0 \nu \beta \beta} \equiv\right| m_{1}\left|U_{e 1}\right|^{2}+m_{2}\left|U_{e 2}\right|^{2} \mathrm{e}^{i \alpha_{21}}+m_{3}\left|U_{e 3}\right|^{2} \mathrm{e}^{i \alpha_{31}} \mid
$$

α_{21}, α_{31} : Majorana CP phases

Once the positive signal of neutinoless double beta decay will be observed, it is of great interest to measure also the Majorana CP phases
two main difficulties

1. uncertainty of nuclear matrix element
2. uncertainty of neutrino mass scale

What is actually measured is the decay rate or life time of the $O v \beta \beta$ decay
half life time
$\left.\left[T_{1 / 2}^{0 \nu}\right]^{-1}=\left.G_{0 \nu} \mathcal{M}^{(0 \nu)}\right|^{2} \frac{\downarrow}{m_{0 \nu \beta \beta}}\right)^{2}$
phase spcae factor Nuclear Matrix Element (NME)

Problem: NME has a large uncertainty, typically factor of ~ 2 or more

Nuclear Matrix Element (NME)

Very difficult to compute due to many body nature of nuclear physics results calculated by different models (methods) do not agree very well

Quasi-particle Rando Phase Approximation (QRPA)
Interacting Boson Model (IBM)
Nuclear Shell Model (NSM)
General Coordinate Method (GCM)
Other models (methods)...

NME values calculated by different models

Isotope	NSM[39]	GCM[42]	QRPA[56, 57, 58]	IBM[41]	PHFB[46]	
${ }^{48} \mathrm{Ca}$	0.85	2.37		2.00		
${ }^{76} \mathrm{Ge}$	2.81	4.60	$4.20-7.24$	$4.64-5.47$		
${ }^{82} \mathrm{Se}$	2.64	4.22	$2.94-6.46$	$3.81-4.41$		
${ }^{96} \mathrm{Zr}$		5.65	$1.56-3.12$	2.53	2.24	3.46
${ }^{100} \mathrm{Mo}$		5.08	$3.10-6.07$	$3.73-4.22$	4.71	7.77
${ }^{110} \mathrm{Pd}$				3.62	5.33	8.91
${ }^{116} \mathrm{Cd}$		4.72	$2.51-4.52$	2.78		
${ }^{124} \mathrm{Sn}$	2.62	4.81		3.53		
${ }^{128} \mathrm{Te}$		4.11	$3.50-6.16$	4.52		
${ }^{130} \mathrm{Te}$	2.65	5.13	$3.19-5.50$	$3.37-4.06$	2.99	5.12
${ }^{136} \mathrm{Xe}$	2.19	4.20	$1.71-3.53$	3.35		
${ }^{148} \mathrm{Nd}$				1.98		
${ }^{150} \mathrm{Nd}$		1.71	3.45	$2.32-2.89$	1.98	3.70
${ }^{154} \mathrm{Sm}$				2.51		
${ }^{160} \mathrm{Gd}$				3.63		
${ }^{198} \mathrm{Pt}$				1.88		

Cremonesi and Pavan, arXiv:1310.4692 [physics.ins-det]

NME values calculated by different models

Cremonesi and Pavan, arXiv:1310.4692 [physics.ins-det]

Current bound on the effective Majorana mass

KamLAND-Zen detector

Exo-200 detector

Exo-200: $\quad T_{1 / 2}^{0 \nu}\left({ }^{136} \mathrm{Xe}\right)>1.6 \times 10^{25} \mathrm{yr}(90 \% \mathrm{CL})$ KamLAND-Zen: $T_{1 / 2}^{0 \nu}\left({ }^{136} \mathrm{Xe}\right)>1.9 \times 10^{25} \mathrm{yr}(90 \% \mathrm{CL})$

Combined: $m_{0 \nu \beta \beta}<(0.12-0.25) \mathrm{eV}(90 \% \mathrm{CL})$

Effective Majorana Mass as a function of the lightest neutrino mass

$m_{0} \equiv m_{1}$ for normal hierarchy
$m_{0} \equiv m_{3}$ for inverted hierarchy

Expected Sensitivities of some of the advanced $0 v \beta \beta$ decay experiments

	Isotope	$\mathrm{B}_{\text {iso }}$	FWHM (keV)	Perf.	Sc.	Status	$F_{68 \% C . L .}^{0 \nu}(5 \mathrm{yr})$	$\left\|\left\langle m_{\nu}\right\rangle\right\|$	
CUORE0[121]	${ }^{130} \mathrm{Te}$	213	5.6	0.2	66	R	1.5	224	
CUORE[119, 155, 156]	${ }^{130} \mathrm{Te}$	29	5	27	1390	C	21	60	
GERDA I[141]	${ }^{76} \mathrm{Ge}$	21	4.8	9.2	119	R	9.4	165	
GERDA II[136, 157, 158]	${ }^{76} \mathrm{Ge}$	$20 / 1.1$	3.2	$5.7 / 0.3$	328	C	$22 / 60^{*}$	$107 / 65^{*}$	
LUCIFER[133]	${ }^{82} \mathrm{Se}$	1	20	4	125	D	17	74	
MJD[142, 143, 144, 159]	${ }^{76} \mathrm{Ge}$	0.9	4	0.4	238	C	4.4^{*}	77^{*}	
SNO+[151]	${ }^{130} \mathrm{Te}$	0.9	240	27	1253	D	2	62	
EXO[99]	${ }^{136} \mathrm{Xe}$	1.9	96	30	482	R	1.2	97	
SND[110, 111, 112]	${ }^{82} \mathrm{Se}$	0.6	120	18	23	D	3.3	166	
SuperNEMO[110, 111, 112]	${ }^{82} \mathrm{Se}$	0.6	130	20	366	D	13	85	
KamLAND-Zen[147,148]	${ }^{136} \mathrm{Xe}$	7.4	243	243	1320	R	6.9	127	
NEXT[109, 160]	${ }^{136} \mathrm{Xe}$	0.8	13	5.4	165	D	1.6	82	
								in	

Cremonesi and Pavan, arXiv: 1310.4692 [physics.ins-det]

Assumptions and Analysis Procedure

Observables we will consider

We will consider 3 observables which depends on the absolute neutrino mass scale
(1) $\left.m_{0 \nu \beta \beta} \equiv\left|m_{1}\right| U_{e 1}\right|^{2}+m_{2}\left|U_{e 2}\right|^{2} \mathrm{e}^{i \alpha_{21}}+m_{3}\left|U_{e 3}\right|^{2} \mathrm{e}^{i \alpha_{31}}$
to be measured by $0 \nu \beta \beta$ decay experiment
(2) $\Sigma \equiv m_{1}+m_{2}+m_{3}$
to be measured by cosmological observations
(3) $m_{\beta} \equiv\left[m_{1}^{2}\left|U_{e 1}\right|^{2}+m_{2}^{2}\left|U_{e 2}\right|^{2}+m_{3}^{2}\left|U_{e 3}\right|^{2}\right]^{\frac{1}{2}}$
to be measured by β decay expriment

In practice we can consider the lightest neutrino mass (m_{0}) as a relevant paramter determined by cosmology provided that we know the mass hiearchy,

For normal mass hierarchy
$m_{1} \equiv m_{0}, \quad m_{2}=\sqrt{m_{0}^{2}+\Delta m_{21}^{2}}, \quad m_{3}=\sqrt{m_{0}^{2}+\Delta m_{21}^{2}+\Delta m_{32}^{2}}$
For inverted mass hierarchy
$m_{1}=\sqrt{m_{0}^{2}-\Delta m_{21}^{2}-\Delta m_{32}^{2}}, m_{2}=\sqrt{m_{0}^{2}-\Delta m_{32}^{2}}, \quad m_{3} \equiv m_{0}$
From most updated global analysis

$$
\begin{aligned}
& \Delta m_{21}^{2}=7.54 \times 10^{-5} \mathrm{eV}^{2}, \sin ^{2} \theta_{12}=0.308 \\
& \Delta m_{32}^{2}=2.40(-2.44) \times 10^{-3} \mathrm{eV}^{2}, \sin ^{2} \theta_{13}=0.0234(0.0239)
\end{aligned}
$$

for normal (inverted) mass hierarchy
Capozzi et al, arXiv:1312.2878 [hep-ph]

Assumptions

Let us assume that neutrnio all the observables are measured with some uncetainties
$m_{0 \nu \beta \beta}^{\mathrm{obs}}=m_{0 \nu \beta \beta}^{(0)} \pm \sigma_{0 \nu \beta \beta} \longleftarrow$ neutrinoless double beta decay
$\Sigma^{\text {obs }}=\Sigma^{(0)} \pm \sigma_{\Sigma} \longleftarrow$ cosmology
$m_{\beta}^{\text {obs }}=m_{\beta}^{(0)} \pm \sigma_{\beta} \longleftarrow$ tritium beta decay

$$
\sigma_{\Sigma}=0.05 \mathrm{eV}, \quad \sigma_{\beta}=0.06 \mathrm{eV}, \quad \sigma_{0 \nu \beta \beta}=0.01 \mathrm{eV}
$$

Assumptions

Let us assume that neutrnio all the observables are measured with some uncetainties
$m_{0 \nu \beta \beta}^{\text {obs }}=m_{0 \nu \beta \beta}^{(0)} \pm \sigma_{0 \nu \beta \beta} \longleftarrow$ neutrinoless double beta decay
$\Sigma^{\mathrm{obs}}=\Sigma^{(0)} \pm \sigma_{\Sigma} \longleftarrow$ cosmology
$m_{\beta}^{\text {obs }}=m_{\beta}^{(0)} \pm \sigma_{\beta} \longleftarrow$ tritium beta decay
to fully cover inverted hierarchy regime

Estimation of sensitivity for $m_{0 \nu \beta \beta}$

$$
\begin{gathered}
m_{0 \nu \beta \beta}=\frac{m_{e}}{\sqrt{T_{1 / 2}^{0 \nu} G_{0 \nu}\left|\mathcal{M}^{(0 \nu)}\right|^{2}}} \\
N_{0 \nu \beta \beta}=\varepsilon_{\operatorname{det}} \frac{m_{X} N_{A}}{W_{X}}\left[1-\exp \left(-\frac{t_{\exp } \ln 2}{T_{1 / 2}^{0 \nu}}\right)\right] \simeq \frac{\varepsilon_{\operatorname{det}} N_{A} m_{X} t_{\exp } \ln 2}{W_{X} T_{1 / 2}^{00}}
\end{gathered}
$$

m_{X} : mass of isotope X W_{X} : molecular weight of X N_{A} : Avogadro's number
$N_{\mathrm{BG}}=b \Delta E m_{X} t_{\text {exp }}$: background b : background count rate, usually measured in $\mathrm{keV}^{-1} \mathrm{~kg}^{-1} \mathrm{yr}^{-1}$
ΔE : energy window (energy resolution)

Energy spectra for $2 \nu \beta \beta$ and $0 \nu \beta \beta$ decays

Estimation of sensitivity for $m_{0 \nu \beta \beta}$

(1) Background dominated case

$$
N_{0 \nu \beta \beta} \sim \sqrt{N_{\mathrm{BG}}}
$$

$$
\begin{aligned}
& \longrightarrow T_{1 / 2}^{0 \nu} \sim \frac{\varepsilon_{\operatorname{det}} N_{A} m_{X} t_{\exp } \ln 2}{W_{X} \sqrt{b \Delta E m_{X} t_{\exp }}}=\frac{\varepsilon_{\operatorname{det}} N_{A} \ln 2}{W_{X}} \sqrt{\frac{m_{X} t_{\exp }}{b \Delta E}} \\
& m_{0 \nu \beta \beta}^{\min } \sim \frac{m_{e}}{\sqrt{G_{0 \nu}\left|\mathcal{M}^{(0 \nu)}\right|^{2} \ln 2}}\left[\frac{W_{X}}{\varepsilon_{\operatorname{det}} N_{A}}\right]^{\frac{1}{2}}\left[\frac{b \Delta E}{m_{X} t_{\exp }}\right]^{\frac{1}{4}}
\end{aligned}
$$

For ${ }^{76} \mathrm{Ge}$

$$
m_{0 \nu \beta \beta}^{\min } \sim 0.12\left[\frac{5.0}{\mathcal{M}^{(0 \nu)}}\right]\left[\frac{b}{0.01 \mathrm{keV} \cdot \mathrm{~kg} \cdot \mathrm{yr}}\right]^{\frac{1}{4}}\left[\frac{\Delta E}{3.5 \mathrm{keV}}\right]^{\frac{1}{4}}\left[\frac{100 \mathrm{~kg} \cdot \mathrm{yr}}{\varepsilon_{\mathrm{det}}^{2} \cdot m_{\mathrm{Ge}} \cdot t_{\exp }}\right]^{\frac{1}{4}} \mathrm{eV},
$$

For ${ }^{136} \mathrm{Xe}$

$$
m_{0 \nu \beta \beta}^{\min } \sim 0.24\left[\frac{3.0}{\mathcal{M}^{(0 \nu)}}\right]\left[\frac{b}{0.01 \mathrm{keV} \cdot \mathrm{~kg} \cdot \mathrm{yr}}\right]^{\frac{1}{4}}\left[\frac{\Delta E}{100 \mathrm{keV}}\right]^{\frac{1}{4}}\left[\frac{100 \mathrm{~kg} \cdot \mathrm{yr}}{\varepsilon_{\mathrm{det}}^{2} \cdot m_{\mathrm{Xe}} \cdot t_{\exp }}\right]^{\frac{1}{4}} \mathrm{eV}
$$

Estimation of sensitivity for $m_{0 \nu \beta \beta}$

(2) Signal dominated case

$$
T_{1 / 2}^{0 \nu}=\frac{\varepsilon_{\operatorname{det}} n_{X} t_{\exp } \ln 2}{N_{0 \nu \beta \beta}}
$$

$$
\longrightarrow \quad \delta\left(T_{1 / 2}^{0 \nu}\right) \sim T_{1 / 2}^{0 \nu} \frac{\delta\left(N_{0 \nu \beta \beta}\right)}{N_{0 \nu \beta \beta}} \sim T_{1 / 2}^{0 \nu} \frac{1}{\sqrt{N_{0 \nu \beta \beta}}}
$$

$$
\delta\left(m_{0 \nu \beta \beta}\right) \sim \frac{1}{2} m_{0 \nu \beta \beta}^{(0)} \frac{\delta\left(T_{1 / 2}^{0 \nu}\right)}{T_{1 / 2}^{0 \nu}} \sim \frac{1}{2} m_{0 \nu \beta \beta}^{(0)} \frac{1}{\sqrt{N_{0 \nu \beta \beta}}} \sim \frac{m_{e}}{2 \sqrt{G_{0 \nu}\left|\mathcal{M}^{(0 \nu)}\right|^{2} \varepsilon_{\operatorname{det}}\left(m_{X} N_{A} / W_{X}\right) t_{\exp } \ln 2}}
$$

For ${ }^{76} \mathrm{Ge}$

$$
\delta\left(m_{0 \nu \beta \beta}\right) \sim 0.06\left[\frac{100 \mathrm{~kg} \cdot \mathrm{yr}}{\varepsilon_{\mathrm{det}} \cdot m_{\mathrm{Ge}} \cdot t_{\mathrm{exp}}}\right]^{\frac{1}{2}}\left[\frac{5.0}{\mathcal{M}^{(0 \nu)}}\right] \mathrm{eV},
$$

For ${ }^{136} \mathrm{Xe}$

$$
\delta\left(m_{0 \nu \beta \beta}\right) \sim 0.04\left[\frac{100 \mathrm{~kg} \cdot \mathrm{yr}}{\varepsilon_{\mathrm{det}} \cdot m_{\mathrm{Xe}} \cdot t_{\mathrm{exp}}}\right]^{\frac{1}{2}}\left[\frac{3.0}{\mathcal{M}^{(0 \nu)}}\right] \mathrm{eV}
$$

Case of KamLAND-Zen

Result of $2 v \beta \beta$ decay halflife

Energy spectrum after event selection

Event selection

$>$ Fiducial cut : R<1.2m
$>2 \mathrm{~ms}$ veto after muon
$>$ remove consecutive events within 3 ms for Bi-Po
rejection(99.97\% rejection
for 214 Bi)
$>$ Anti-nu CC reaction cut
$>$ vertex-time-charge test to cut noise events

$2 v \beta \beta$ life			
	exposure	$2 \mathrm{v} \beta \beta$ life	
$1^{\text {st }}$ result hys.Rev.C85,045504(2 012)	77.6days 129 kg of ${ }^{136} \mathrm{Xe}$	$\begin{aligned} & 2.380 .02(\text { stat. }) \\ & 10^{21} \text { yrs. } \end{aligned}$	0.14(sys.)
Updated Result arxiv: 1205.6372	112.3days 125 kg of ${ }^{136} \mathrm{Xe}$	$\begin{aligned} & 2.300 .02 \text { (stat.) } \\ & 10^{21} \text { yrs. } \end{aligned}$	0.12(sys.)

Consistent with the EXO-200 results arxiv:1205.5608 ($T_{1 / 2}=2.23 \quad 0.017$ (stat) 0.22 (syst) 10^{21} years)

Case of KamLAND-Zen

Limit on $0 v \beta \beta$ decay

112.3days measurement

$\mathrm{E}=2.2-3.0 \mathrm{MeV}$

110 m Ag is favored to explain the 2.6 MeV peak.

Lower limit for ${ }^{136} \mathrm{Xe} 0 v \beta \beta$ decay half life

	exposure	$0 v \beta \beta$ limit
Updated	$\mathbf{1 1 2 . 3 d a y s}$	$>6.2 \quad 10^{24}$ yrs.
Result arxiv: 1205.6372	$\mathbf{1 2 5 k g}$ of 136Xe	$(90 \%$ C.L.)

Definition of χ^{2} function

$$
\chi^{2} \equiv \min \left\{\left[\frac{\Sigma^{(0)}-\Sigma^{\mathrm{fit}}}{\sigma_{\Sigma}}\right]^{2}+\left[\frac{m_{\beta}^{(0)}-m_{\beta}^{\mathrm{fit}}}{\sigma_{\beta}}\right]^{2}+\left[\frac{\xi m_{0 \nu \beta \beta}^{(0)}-m_{0 \nu \beta \beta}^{\mathrm{fit}}}{\sigma_{0 \nu \beta \beta}}\right]^{2}\right\}
$$

To take into account the uncertainty of the nuclear matrix element, we vary ξ

$$
\begin{gathered}
\xi \equiv \frac{\mathcal{M}_{0}^{(0 \nu)}}{\mathcal{M}^{(0 \nu)}} \text { reference NME value (known) } \\
\frac{1}{\sqrt{r_{\mathrm{NME}}}} \leq \xi \leq \sqrt{r_{\mathrm{NME}}} \quad r_{\mathrm{NME}} \equiv \mathcal{M}_{\max }^{(0 \nu)} / \mathcal{M}_{\min }^{(0 \nu)} \\
\mathcal{M}_{\min }^{(0 \nu)} \leq \mathcal{M}^{(0 \nu)} \leq \mathcal{M}_{\max }^{(0 \nu)} \quad \mathcal{M}_{0}^{(0 \nu)} \equiv\left(\mathcal{M}_{\max }^{(0 \nu)} \mathcal{M}_{\min }^{(0 \nu \nu)}\right)^{1 / 2} \\
\text { we will consider } r_{\mathrm{NME}}=2,1.5,1.3 \text { and } 1.1
\end{gathered}
$$

NME values calculated by different models

Cremonesi and Pavan, arXiv:1310.4692 [physics.ins-det]

How can we measure Majorana CP phase? in the degenerate regime,

$$
m_{0 \nu \beta \beta} \simeq c_{13}^{2} m_{0} \times\left[1-\sin ^{2} 2 \theta_{12} \sin ^{2}\left(\frac{\alpha_{21}}{2}\right)\right]^{\frac{1}{2}}
$$

if m_{0} is unknown, no matter how accurately $m_{0 \nu \beta \beta}$ is measured (which is not possible due to NME uncertainty), it is impossible to determine (constrain) α_{21} !
independent information on m_{0} is needed,
from cosmology and beta decay experiment
$\Delta \chi^{2} \equiv \chi^{2}-\chi_{\min }^{2}$ as a function of α_{21}

strong synergy of $0 \nu \beta \beta$ with cosmology!
$\Delta \chi^{2} \equiv \chi^{2}-\chi_{\min }^{2}$ as a function of α_{21}

Allowed Regions (I)

symmetric behaviours due to $m_{0 \nu \beta \beta}\left(m_{0}, \alpha_{21}, \alpha_{32}\right)=m_{0 \nu \beta \beta}\left(m_{0}, 2 \pi-\alpha_{21}, 2 \pi-\alpha_{32}\right)$

Allowed Regions (II)

symmetric behaviours due to $m_{0 \nu \beta \beta}\left(m_{0}, \alpha_{21}, \alpha_{32}\right)=m_{0 \nu \beta \beta}\left(m_{0}, 2 \pi-\alpha_{21}, 2 \pi-\alpha_{32}\right)$

Allowed Regions (III) $\quad \alpha_{31}($ true $)=0$

symmetric behaviours due to $m_{0 \nu \beta \beta}\left(m_{0}, \alpha_{21}, \alpha_{32}\right)=m_{0 \nu \beta \beta}\left(m_{0}, 2 \pi-\alpha_{21}, 2 \pi-\alpha_{32}\right)$

CP exclusion fraction, $f_{c p x}$

Machado et al, JHEP 1405, 109 (2014)
Winter, PRD70,033006(2004)
What is $f_{c p x}$?
Huber et al, JHEP05,020 (2005)
For a given set of input (true) parameters, $f_{c p x} \equiv$ fraction of CP phase which is exluded at certain confidence level
For example, if $0.2 \pi \leq \alpha_{21} \leq 1.4 \pi$

$$
\left.f_{c p x}=1-(1.4 \pi-0.2 \pi) / 2 \pi=0.4 \text { (or } 40 \%\right)
$$

$f_{c p x} \equiv 1$-(allowed fraction)
larger $\mathrm{f}_{\mathrm{cpx}} \rightarrow$ better sensitivity

Iso-contours of CP exclusion fraction, $f_{c p x}$

Iso-contours of CP exclusion fraction, $f_{c p x}$

$2 \sigma \mathrm{CL} \quad r_{\text {NME }}=2, \alpha_{31}=\pi$
more than 60% of param space can be excluded

inverted 10\%(H)
- 20\%(1H)
30\%(H)
- 40\%(1H)
50\%(H)
-60\%(1H)
70\%(H)
normal
- $10 \%(\mathrm{NH})$
- 20\%(NH)
-30\%(NH)
- 40% (NH)
- $50 \%(\mathrm{NH})$
- 60\%(NH)
70\%(NH)

Iso-contours of CP exclusion fraction, $f_{c p x}$ (I) $\sigma_{\Sigma}=0.05 \mathrm{eV}, \quad \sigma_{\beta}=0.06 \mathrm{eV}, \quad \sigma_{0 \nu \beta \beta}=0.01 \mathrm{eV} \quad 2 \sigma \mathrm{CL}$

for $r_{\text {NME }}=1.5$, at $m_{0}=0.1 \mathrm{eV}, f_{\text {cpx }}=10-50 \%$

CP exclusion fraction, $f_{c p x}$, as a function of α_{21}

$$
\sigma_{\Sigma}=0.05 \mathrm{eV}, \quad \sigma_{\beta}=0.06 \mathrm{eV}, \quad \sigma_{0 \nu \beta \beta}=0.01 \mathrm{eV} \quad 2 \sigma \mathrm{CL}
$$

$m_{0}($ true $)=0.1 \mathrm{eV}$
- Inverted Ordering
-.-. Normal Ordering m_{0} (true) $=0.3 \mathrm{eV}$
Inverted Ordering
--.- Normal Ordering

$C P$ exclusion fraction, $f_{c p x}$, as a function of m_{0}

$$
\sigma_{\Sigma}=0.05 \mathrm{eV}, \quad \sigma_{\beta}=0.06 \mathrm{eV}, \quad \sigma_{0 \nu \beta \beta}=0.01 \mathrm{eV} \quad 2 \sigma \mathrm{CL}
$$

- Inverted Ordering
--.. Normal Ordering
m_{0} (true) $=0.3 \mathrm{eV}$
Inverted Ordering
-..- Normal Ordering

$a_{31}($ true $)=0$

$$
\alpha_{21} \text { (true) }=0
$$

neared Ordering
.. .. Normal Ordering
$\alpha_{21}($ true $)=\pi / 2$
-mem Inverted Ordering
---- Normal Ordering

$$
\alpha_{21}(\text { true })=\pi
$$

- Inverted Ordering
---- Normal Ordering

Conclusions

We confirm very strong snergy of $0 \nu \beta \beta$ and cosmological determination of neutrino masses
We identify the regions of sensitivity by using
the $C P$ exclusion fraction, $f_{c p x}$
assuming $\sigma_{\Sigma}=0.05 \mathrm{eV}, \quad \sigma_{\beta}=0.06 \mathrm{eV}, \quad \sigma_{0 \nu \beta \beta}=0.01 \mathrm{eV}$

$$
\begin{gathered}
\text { For } \mathrm{m}_{0}=0.1 \mathrm{eV}, r_{\mathrm{NME}}=1.5, \\
f_{\mathrm{cpx}}<50 \% \text { at } 2 \sigma
\end{gathered}
$$

assuming $\sigma_{\Sigma}=0.02 \mathrm{eV}, \sigma_{\beta}=0.06 \mathrm{eV}, \sigma_{0 \nu \beta \beta}=0.01 \mathrm{eV}$

$$
\begin{gathered}
\text { For } m_{0}=0.1 \mathrm{eV}, r_{\mathrm{NME}}=1.1, \\
f_{\mathrm{cpx}}<60 \% \text { at } 2 \sigma
\end{gathered}
$$

Thank you very much for your attention!

backup slides

Similar Work done by Dodelson and Lykken

Dodelson \& Lykken, arXiv:1403.5173 [astro-ph.CO]

Projected 1 sigma error on $\cos \left(\alpha_{21}\right)$

Dodelson \& Lykken, arXiv:1403.5173 [astro-ph.CO]
$\Delta \chi^{2} \equiv \chi^{2}-\chi_{\min }^{2}$ as a function of m_{0}

$\Delta \chi^{2} \equiv \chi^{2}-\chi_{\min }^{2}$ as a function of m_{0}

