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FIG. 2: (a) φ! as function of ∆21. φ! = π/2 when ∆21 ≈ 1.9.(b) φ! as function of L for various

choices of the solar parameters within the current allowed region. φ! ≈ π/2 at about 350 m
somewhat independent of the precise values for the solar parameters.

wave evolves, whereas for the inverted hierarchy there is a phase retardation2. It is easy to
show that

φ!(∆21 + π) = φ!(∆21) + 2π sin2 θ12, (8)

i.e. the phase advancement (normal) or retardation (inverted) is 2π sin2 θ12 for every π
increase of ∆21. Eqs. (5) and (6) are the foundations of our investigation.

Some important observations are worth emphasizing immediately:

• Only ∆ee varies at the atmospheric scale. Everything else, including phase φ!, varies
at the solar scale. This is a useful distinction because these two scales differ by a factor
of ∼ 30.

• The difference between probabilities corresponding to the two hierarchies (3) is given
by

∆P
√

P (θ13 = 0)
= sin2 2θ13 sin 2∆ee sin φ! , (9)

to leading order in θ13. ∆P becomes visible when the phase φ! develops to order unity.
From Fig. 2 this occurs at around the first solar oscillation maximum, (∆21 = π/2), in
agreement with the features exhibited in Fig. 1. From (9) we also see that the normal
and the inverted hierarchies are maximally out of phase when φ! = π/2. This occurs
when

cot∆21 cot(∆21 cos 2θ12) = − cos 2θ12 . (10)

2 Equivalently, one could interpret this phenomena as a change in the instantaneous effective ∆m2
atm. This

interpretation is explored in Appendix A.

6

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

!!

(a)

1.9

"/2

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700 800

(b)

!!

#m
21

2
= 8.0 x 10

-5
 eV

2
, sin

2
$

12
=0.31

#m
21

2
= 8.0 x 10

-5
 eV

2
, sin

2
$

12
=0.28

#m
21

2
= 8.0 x 10

-5
 eV

2
, sin

2
$

12
=0.34

#m
21

2
= 7.3 x 10

-5
 eV

2
, sin

2
$

12
=0.31

#m
21

2
= 9.0 x 10

-5
 eV

2
, sin

2
$

12
=0.31

FIG. 2: (a) φ! as function of ∆21. φ! = π/2 when ∆21 ≈ 1.9.(b) φ! as function of L for various

choices of the solar parameters within the current allowed region. φ! ≈ π/2 at about 350 m
somewhat independent of the precise values for the solar parameters.

wave evolves, whereas for the inverted hierarchy there is a phase retardation2. It is easy to
show that

φ!(∆21 + π) = φ!(∆21) + 2π sin2 θ12, (8)

i.e. the phase advancement (normal) or retardation (inverted) is 2π sin2 θ12 for every π
increase of ∆21. Eqs. (5) and (6) are the foundations of our investigation.

Some important observations are worth emphasizing immediately:

• Only ∆ee varies at the atmospheric scale. Everything else, including phase φ!, varies
at the solar scale. This is a useful distinction because these two scales differ by a factor
of ∼ 30.

• The difference between probabilities corresponding to the two hierarchies (3) is given
by

∆P
√

P (θ13 = 0)
= sin2 2θ13 sin 2∆ee sin φ! , (9)

to leading order in θ13. ∆P becomes visible when the phase φ! develops to order unity.
From Fig. 2 this occurs at around the first solar oscillation maximum, (∆21 = π/2), in
agreement with the features exhibited in Fig. 1. From (9) we also see that the normal
and the inverted hierarchies are maximally out of phase when φ! = π/2. This occurs
when

cot∆21 cot(∆21 cos 2θ12) = − cos 2θ12 . (10)

2 Equivalently, one could interpret this phenomena as a change in the instantaneous effective ∆m2
atm. This

interpretation is explored in Appendix A.

6

• 1
2 sin2 2�13(1⇥

�
1� sin2 2�13 sin2 �21) gives the amplitude modulation.

• ± Hierarchy: + Normal and - Inverted.

• (2�ee ± ⇤�):

• 2�ee ⇤ �m2
eeL/2E linear term:

�m2
ee = c2

12|�m2
31| + s2

12|�m2
32|

= |m2
3 � (c2

12m
2
1 + s2

12m
2
2)|

⇥e weighted average of m2
1 and m2

2

• ±⇤� everything else:

• ⇤� = arctan(cos 2�12 tan�21)��21 cos 2�12

– Typeset by FoilTEX – 5

350 m

The Phase:

P (⇥̄e ⇤ ⇥̄e) = 1� cos4 �13 sin2 2�12 sin2 �21

�1
2

sin2 2�13

�
1�

⇤
(1� sin2 2�12 sin2 �21) cos(2�ee±⇤�)

⇥

NH (+) and IH (-):

identify linear term in L/E as 2�ee ⇥ �m2
eeL/2E

�m2
ee = c2

12|�m2
31| + s2

12|�m2
32| = |m2

3 � (c2
12m

2
1 + s2

12m
2
2)|

⇥e weighted average of m2
1 and m2

2

(What about MINOS?)

⇤� ⇥ arctan(cos 2�12 tan�21)��21 cos 2�12

everything else:

then d�
dL|L=0 = 0

– Typeset by FoilTEX – 3

P (⇥̄e ⇤ ⇥̄e) = 1� cos4 �13 sin2 2�12 sin2 �21

�1
2

sin2 2�13

�
1�

⇤
(1� sin2 2�12 sin2 �21) cos(2�ee±⇤�)

⇥

NH (+) and IH (-):

identify linear term in L/E as 2�ee ⇥ �m2
eeL/2E

�m2
ee = c2

12|�m2
31| + s2

12|�m2
32| = |m2

3 � (c2
12m

2
1 + s2

12m
2
2)|

⇥e weighted average of m2
1 and m2

2

(What about MINOS?)

⇤� ⇥ arctan(cos 2�12 tan�21)��21 cos 2�12

everything else:

then d�
dL|L=0 = 0

– Typeset by FoilTEX – 3

• ⇥� = arctan(cos 2�12 tan�21)��21 cos 2�12

P� = 0

d⇥�
d�21

|n� = 0 for n = 0, 1, 2, . . .

– Typeset by FoilTEX – 6

• ⇥� = arctan(cos 2�12 tan�21)��21 cos 2�12

P� = 0

d⇥�
d�21

|n� = 0 for n = 0, 1, 2, . . .

– Typeset by FoilTEX – 6

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

!!

(a)

1.9

"/2

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700 800

(b)

!!

#m
21

2
= 8.0 x 10

-5
 eV

2
, sin

2
$

12
=0.31

#m
21

2
= 8.0 x 10

-5
 eV

2
, sin

2
$

12
=0.28

#m
21

2
= 8.0 x 10

-5
 eV

2
, sin

2
$

12
=0.34

#m
21

2
= 7.3 x 10

-5
 eV

2
, sin

2
$

12
=0.31

#m
21

2
= 9.0 x 10

-5
 eV

2
, sin

2
$

12
=0.31

FIG. 2: (a) φ! as function of ∆21. φ! = π/2 when ∆21 ≈ 1.9.(b) φ! as function of L for various

choices of the solar parameters within the current allowed region. φ! ≈ π/2 at about 350 m
somewhat independent of the precise values for the solar parameters.

wave evolves, whereas for the inverted hierarchy there is a phase retardation2. It is easy to
show that

φ!(∆21 + π) = φ!(∆21) + 2π sin2 θ12, (8)

i.e. the phase advancement (normal) or retardation (inverted) is 2π sin2 θ12 for every π
increase of ∆21. Eqs. (5) and (6) are the foundations of our investigation.

Some important observations are worth emphasizing immediately:

• Only ∆ee varies at the atmospheric scale. Everything else, including phase φ!, varies
at the solar scale. This is a useful distinction because these two scales differ by a factor
of ∼ 30.

• The difference between probabilities corresponding to the two hierarchies (3) is given
by

∆P
√

P (θ13 = 0)
= sin2 2θ13 sin 2∆ee sin φ! , (9)

to leading order in θ13. ∆P becomes visible when the phase φ! develops to order unity.
From Fig. 2 this occurs at around the first solar oscillation maximum, (∆21 = π/2), in
agreement with the features exhibited in Fig. 1. From (9) we also see that the normal
and the inverted hierarchies are maximally out of phase when φ! = π/2. This occurs
when

cot∆21 cot(∆21 cos 2θ12) = − cos 2θ12 . (10)

2 Equivalently, one could interpret this phenomena as a change in the instantaneous effective ∆m2
atm. This

interpretation is explored in Appendix A.

6

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

!!

(a)

1.9

"/2

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700 800

(b)

!!

#m
21

2
= 8.0 x 10

-5
 eV

2
, sin

2
$

12
=0.31

#m
21

2
= 8.0 x 10

-5
 eV

2
, sin

2
$

12
=0.28

#m
21

2
= 8.0 x 10

-5
 eV

2
, sin

2
$

12
=0.34

#m
21

2
= 7.3 x 10

-5
 eV

2
, sin

2
$

12
=0.31

#m
21

2
= 9.0 x 10

-5
 eV

2
, sin

2
$

12
=0.31

FIG. 2: (a) φ! as function of ∆21. φ! = π/2 when ∆21 ≈ 1.9.(b) φ! as function of L for various

choices of the solar parameters within the current allowed region. φ! ≈ π/2 at about 350 m
somewhat independent of the precise values for the solar parameters.

wave evolves, whereas for the inverted hierarchy there is a phase retardation2. It is easy to
show that

φ!(∆21 + π) = φ!(∆21) + 2π sin2 θ12, (8)

i.e. the phase advancement (normal) or retardation (inverted) is 2π sin2 θ12 for every π
increase of ∆21. Eqs. (5) and (6) are the foundations of our investigation.

Some important observations are worth emphasizing immediately:

• Only ∆ee varies at the atmospheric scale. Everything else, including phase φ!, varies
at the solar scale. This is a useful distinction because these two scales differ by a factor
of ∼ 30.

• The difference between probabilities corresponding to the two hierarchies (3) is given
by

∆P
√

P (θ13 = 0)
= sin2 2θ13 sin 2∆ee sin φ! , (9)

to leading order in θ13. ∆P becomes visible when the phase φ! develops to order unity.
From Fig. 2 this occurs at around the first solar oscillation maximum, (∆21 = π/2), in
agreement with the features exhibited in Fig. 1. From (9) we also see that the normal
and the inverted hierarchies are maximally out of phase when φ! = π/2. This occurs
when

cot∆21 cot(∆21 cos 2θ12) = − cos 2θ12 . (10)

2 Equivalently, one could interpret this phenomena as a change in the instantaneous effective ∆m2
atm. This

interpretation is explored in Appendix A.

6

• 1
2 sin2 2�13(1⇥

�
1� sin2 2�13 sin2 �21) gives the amplitude modulation.

• ± Hierarchy: + Normal and - Inverted.

• (2�ee ± ⇤�):

• 2�ee ⇤ �m2
eeL/2E linear term:

�m2
ee = c2

12|�m2
31| + s2

12|�m2
32|

= |m2
3 � (c2

12m
2
1 + s2

12m
2
2)|

⇥e weighted average of m2
1 and m2

2

• ±⇤� everything else:

• ⇤� = arctan(cos 2�12 tan�21)��21 cos 2�12

– Typeset by FoilTEX – 5

350 m

The Phase:

P (⇥̄e ⇤ ⇥̄e) = 1� cos4 �13 sin2 2�12 sin2 �21

�1
2

sin2 2�13

�
1�

⇤
(1� sin2 2�12 sin2 �21) cos(2�ee±⇤�)

⇥

NH (+) and IH (-):

identify linear term in L/E as 2�ee ⇥ �m2
eeL/2E

�m2
ee = c2

12|�m2
31| + s2

12|�m2
32| = |m2

3 � (c2
12m

2
1 + s2

12m
2
2)|

⇥e weighted average of m2
1 and m2

2

(What about MINOS?)

⇤� ⇥ arctan(cos 2�12 tan�21)��21 cos 2�12

everything else:

then d�
dL|L=0 = 0

– Typeset by FoilTEX – 3

P (⇥̄e ⇤ ⇥̄e) = 1� cos4 �13 sin2 2�12 sin2 �21

�1
2

sin2 2�13

�
1�

⇤
(1� sin2 2�12 sin2 �21) cos(2�ee±⇤�)

⇥

NH (+) and IH (-):

identify linear term in L/E as 2�ee ⇥ �m2
eeL/2E

�m2
ee = c2

12|�m2
31| + s2

12|�m2
32| = |m2

3 � (c2
12m

2
1 + s2

12m
2
2)|

⇥e weighted average of m2
1 and m2

2

(What about MINOS?)

⇤� ⇥ arctan(cos 2�12 tan�21)��21 cos 2�12

everything else:

then d�
dL|L=0 = 0

– Typeset by FoilTEX – 3

• ⇥� = arctan(cos 2�12 tan�21)��21 cos 2�12

P� = 0

d⇥�
d�21

|n� = 0 for n = 0, 1, 2, . . .

– Typeset by FoilTEX – 6

• ⇥� = arctan(cos 2�12 tan�21)��21 cos 2�12

P� = 0

d⇥�
d�21

|n� = 0 for n = 0, 1, 2, . . .

– Typeset by FoilTEX – 6

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

!!

(a)

1.9

"/2

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700 800

(b)

!!

#m
21

2
= 8.0 x 10

-5
 eV

2
, sin

2
$

12
=0.31

#m
21

2
= 8.0 x 10

-5
 eV

2
, sin

2
$

12
=0.28

#m
21

2
= 8.0 x 10

-5
 eV

2
, sin

2
$

12
=0.34

#m
21

2
= 7.3 x 10

-5
 eV

2
, sin

2
$

12
=0.31

#m
21

2
= 9.0 x 10

-5
 eV

2
, sin

2
$

12
=0.31

FIG. 2: (a) φ! as function of ∆21. φ! = π/2 when ∆21 ≈ 1.9.(b) φ! as function of L for various

choices of the solar parameters within the current allowed region. φ! ≈ π/2 at about 350 m
somewhat independent of the precise values for the solar parameters.

wave evolves, whereas for the inverted hierarchy there is a phase retardation2. It is easy to
show that

φ!(∆21 + π) = φ!(∆21) + 2π sin2 θ12, (8)

i.e. the phase advancement (normal) or retardation (inverted) is 2π sin2 θ12 for every π
increase of ∆21. Eqs. (5) and (6) are the foundations of our investigation.

Some important observations are worth emphasizing immediately:

• Only ∆ee varies at the atmospheric scale. Everything else, including phase φ!, varies
at the solar scale. This is a useful distinction because these two scales differ by a factor
of ∼ 30.

• The difference between probabilities corresponding to the two hierarchies (3) is given
by

∆P
√

P (θ13 = 0)
= sin2 2θ13 sin 2∆ee sin φ! , (9)

to leading order in θ13. ∆P becomes visible when the phase φ! develops to order unity.
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REACTOR NEUTRINOS:
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Mass Hierarchy Resolution in Reactor Anti-neutrino Experiments:
Parameter Degeneracies and Detector Energy Response
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1Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA
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Determination of the neutrino mass hierarchy using a reactor neutrino experiment at ∼60 km
is analyzed. Such a measurement is challenging due to the finite detector resolution, the absolute
energy scale calibration, as well as the degeneracies caused by current experimental uncertainty of
|∆m2

32|. The standard χ2 method is compared with a proposed Fourier transformation method. In
addition, we show that for such a measurement to succeed, one must understand the non-linearity
of the detector energy scale at the level of a few tenths of percent.

PACS numbers:

INTRODUCTION AND DEGENERACY CAUSED

BY THE UNCERTAINTY IN ∆m2
atm

Reactor neutrino experiments play an extremely im-
portant role in understanding the phenomenon of neu-
trino oscillation and the measurements of neutrino mix-
ing parameters [1]. The KamLAND experiment [2] was
the first to observe the disappearance of reactor anti-
neutrinos. That measurement mostly constrains solar
neutrino mixing ∆m2

21 and θ12. Recently, the Daya
Bay experiment [3] established a non-zero value of θ13.
sin2 2θ13 is determined to be 0.092 ± 0.016 (stat) ± 0.005
(sys). The large value of sin2 2θ13 is now important in-
put to the design of next-generation neutrino oscillation
experiments [4, 5] aimed toward determining the mass
hierarchy (MH) and CP phase.

It has been proposed [6] that an intermediate L∼20-
30 km baseline experiment at reactor facilities has the
potential to determine the MH. Authors of Ref. [7] and
Ref. [8, 9] studied a Fourier transformation (FT) tech-
nique to determine the MH with a reactor experiment
with a baseline of 50-60 km. Experimental considerations
were discussed in detail in Ref. [9]. On the other hand,
it has also been pointed out that current experimental
uncertainties in |∆m2

32| may lead to a reduction of sensi-
tivity in determining the MH [10, 11]. Encouraged by the
recent discovery of large non-zero θ13, we revisit the fea-
sibility of intermediate baseline reactor experiment, and
identify some additional challenges.

The disappearance probability of electron anti-
neutrino in a three-flavor model is:

P (ν̄e → ν̄e) = 1− sin2 2θ13(cos
2 θ12 sin

2 ∆31 + sin2 θ12 sin
2 ∆32)− cos4 θ13 sin

2 2θ12 sin
2 ∆21

= 1− 2s213c
2
13 − 4c213s

2
12c

2
12 sin

2 ∆21 + 2s213c
2
13

√

1− 4s212c
2
12 sin

2 ∆21 cos(2∆32 ± φ) (1)

where ∆ij ≡ |∆ij | = 1.27|∆m2
ij|

L(m)
E(MeV ) , and

sinφ =
c212 sin 2∆21

√

1− 4s212c
2
12 sin

2 ∆21

cosφ =
c212 cos 2∆21 + s212

√

1− 4s212c
2
12 sin

2 ∆21

. (2)

In the second line of Eq. (1), we rewrite the formula us-
ing the following notations: sij = sin θij , cij = cos θij ,
and using ∆31 = ∆32 + ∆21 for normal mass hierar-
chy (NH), ∆31 = ∆32 − ∆21 for inverted mass hierar-
chy (IH), respectively. Therefore, the effect of MH van-

ishes at the maximum of the solar oscillation (∆21 =
π/2), and will be large at about ∆21 = π/4. Further-
more, we can define ∆m2

φ(L,E) = φ
1.27 · E

L
as the ef-

fective mass-squared difference, whose value depends on
the choice of neutrino energy E and baseline L. Since
|∆m2

32| is only known with some uncertainties (|∆m2
32| =

(2.43 ± 0.13) × 10−3eV 2 [12] or more recently |∆m2| =
2.32+0.12

−0.08 × 10−3eV 2 [13]), there exists a degeneracy be-
tween the phase 2∆32+φ in Eq. (1) corresponding to the
NH and the phase 2∆′

32−φ corresponding to the IH when
a different |∆m2

32| (but within the experimental uncer-

1
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addition, we show that for such a measurement to succeed, one must understand the non-linearity
of the detector energy scale at the level of a few tenths of percent.
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were discussed in detail in Ref. [9]. On the other hand,
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identify some additional challenges.
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In the second line of Eq. (1), we rewrite the formula us-
ing the following notations: sij = sin θij , cij = cos θij ,
and using ∆31 = ∆32 + ∆21 for normal mass hierar-
chy (NH), ∆31 = ∆32 − ∆21 for inverted mass hierar-
chy (IH), respectively. Therefore, the effect of MH van-

ishes at the maximum of the solar oscillation (∆21 =
π/2), and will be large at about ∆21 = π/4. Further-
more, we can define ∆m2

φ(L,E) = φ
1.27 · E

L
as the ef-

fective mass-squared difference, whose value depends on
the choice of neutrino energy E and baseline L. Since
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32| is only known with some uncertainties (|∆m2
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(2.43 ± 0.13) × 10−3eV 2 [12] or more recently |∆m2| =
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Determination of the neutrino mass hierarchy using a reactor neutrino experiment at ∼60 km

is analyzed. Such a measurement is challenging due to the finite detector resolution, the absolute

energy scale calibration, as well as the degeneracies caused by current experimental uncertainty of

|∆m2
32|. The standard χ2 method is compared with a proposed Fourier transformation method. In

addition, we show that for such a measurement to succeed, one must understand the non-linearity

of the detector energy scale at the level of a few tenths of percent.
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the first to observe the disappearance of reactor anti-

neutrinos. That measurement mostly constrains solar

neutrino mixing ∆m2
21 and θ12. Recently, the Daya

Bay experiment [3] established a non-zero value of θ13.

sin2 2θ13 is determined to be 0.092 ± 0.016 (stat) ± 0.005

(sys). The large value of sin2 2θ13 is now important in-

put to the design of next-generation neutrino oscillation

experiments [4, 5] aimed toward determining the mass

hierarchy (MH) and CP phase.

It has been proposed [6] that an intermediate L∼20-

30 km baseline experiment at reactor facilities has the

potential to determine the MH. Authors of Ref. [7] and

Ref. [8, 9] studied a Fourier transformation (FT) tech-

nique to determine the MH with a reactor experiment

with a baseline of 50-60 km. Experimental considerations

were discussed in detail in Ref. [9]. On the other hand,

it has also been pointed out that current experimental

uncertainties in |∆m2
32| may lead to a reduction of sensi-

tivity in determining the MH [10, 11]. Encouraged by the

recent discovery of large non-zero θ13, we revisit the fea-

sibility of intermediate baseline reactor experiment, and

identify some additional challenges.

The disappearance probability of electron anti-

neutrino in a three-flavor model is:

P (ν̄e → ν̄e) = 1− sin2 2θ13(cos
2 θ12 sin

2 ∆31 + sin2 θ12 sin
2 ∆32)− cos4 θ13 sin

2 2θ12 sin
2 ∆21

= 1− 2s213c
2
13 − 4c213s

2
12c

2
12 sin

2 ∆21 + 2s213c
2
13

√

1− 4s212c
2
12 sin

2 ∆21 cos(2∆32 ± φ) (1)

where ∆ij ≡ |∆ij | = 1.27|∆m2
ij|

L(m)
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sinφ =
c212 sin 2∆21

√

1− 4s212c
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12 sin

2 ∆21

cosφ =
c212 cos 2∆21 + s212

√

1− 4s212c
2
12 sin

2 ∆21

. (2)

In the second line of Eq. (1), we rewrite the formula us-

ing the following notations: sij = sin θij , cij = cos θij ,

and using ∆31 = ∆32 + ∆21 for normal mass hierar-

chy (NH), ∆31 = ∆32 − ∆21 for inverted mass hierar-

chy (IH), respectively. Therefore, the effect of MH van-

ishes at the maximum of the solar oscillation (∆21 =

π/2), and will be large at about ∆21 = π/4. Further-

more, we can define ∆m2
φ(L,E) = φ

1.27 · E
L

as the ef-

fective mass-squared difference, whose value depends on

the choice of neutrino energy E and baseline L. Since

|∆m2
32| is only known with some uncertainties (|∆m2

32| =

(2.43 ± 0.13) × 10−3eV 2 [12] or more recently |∆m2| =

2.32+0.12
−0.08 × 10−3eV 2 [13]), there exists a degeneracy be-

tween the phase 2∆32+φ in Eq. (1) corresponding to the

NH and the phase 2∆′

32−φ corresponding to the IH when

a different |∆m2
32| (but within the experimental uncer-
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$

Standalone$measurements$
•  Scin)llator+quenching+measurements+using+neutron+beams+and+Compton+eC+
•  +Calibra)on+of+readout+electronics+with+flash+ADC+

39
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Final Positron Energy Non-
Linearity response

Nominal Model + 68% CL
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Positron Energy Response Model

True Positron Energy [MeV]
0 1 2 3 4 5 6 7 8 109

Final Positron Energy Non-Linearity Response

Several validated models

⌅ Constructed based on di↵erent parameterizations/weighting of data constraints
⌅ All models in good agreement with detector calibration data
⌅ Resulting positron non-linearity curves consistent within ⇠ 1.5% uncertainty

Combination of 5 models to conservatively estimate uncertainty

⌅ Models selected so that
1 Correlations are minimized
2 Remaining validated curves+uncertainties are contained in 68% C.L.

⌅ Choice of nominal model has negligible impact on oscillation result

14 / 22

Used combination of 5 models to conservatively estimate uncertainty

40
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Other Constraints:

15
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-/+ 1 %

16
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R&D needed

17

•Energy Resolution  to 3% or lower at 1 MeV

•Linearity to sub 1% precision for the 
reconstructed neutrino energy

Challenge:(high7precision,(giant(LS(detector�

20#kt#LS#

Acrylic(tank:(Φ∼34.5m(
Stainless(Steel(tank:(Φ∼39.0m(

~1500(20”(
VETO(PMTs(

coverage:#~77%#
~18000#�20”#PMTs#

Muon(detector((

Steel(
Tank(

5m(

~6kt(MO(

~20kt(
water(

JUNO#
RENOB50#

KamLAND# JUNO# RENOB50#

LS##mass# ~1#kt## 20#kt## 18#kt##

Energy#ResoluPon# 6%/# ~3%/# ~3%/#

Light#yield# 250#p.e./MeV# 1200#p.e./MeV# >1000#p.e./MeV#

@Neutrino*2014*

44(

 20 x

 4 x

     Linearity                     1.9%                    < 0.5%                   < 0.5%                > 4 x
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Resolution/Linearity Seesaw:

18
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Resolution/Linearity Seesaw:

18

3% 0.3%

RESOLUTION LINEARITY


