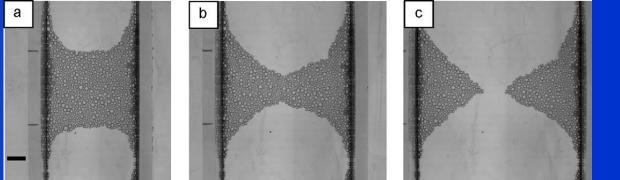
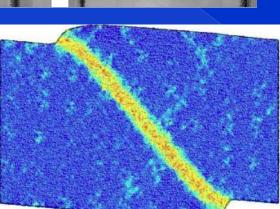
Continuum physics of deforming glasses: From oscillatory shear to fracture

Eran Bouchbinder Weizmann Institute of Science

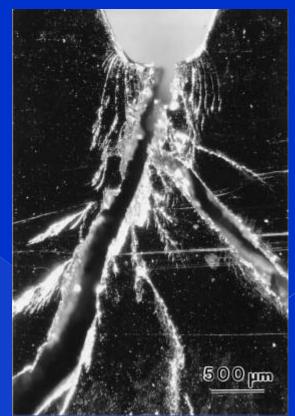


Arciniaga, Kuo and Dennin Colloids and Surfaces A (2011)



<u>Work with</u>: Jim Langer (UCSB) Chris Rycroft (Harvard) Nathan Perchikov (Weizmann)

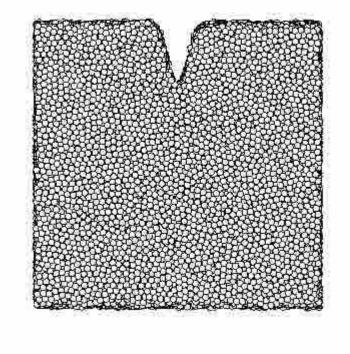
Cao, Cheng and Ma Acta Materialia (2009)



Lowhaphandu and Lewandowski Scripta Materialia (1998)

The challenge (as we see it)

To develop focus on no shear-bandi

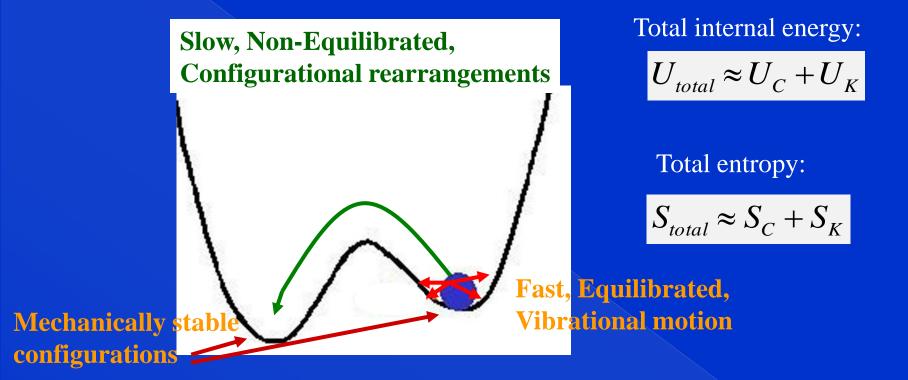


ing glasses, with a cking instabilities,

N. Bailey et al. PRB 69, 144205 (2004) Simulation of Cu-Mg Metallic Glass

Theoretical approach: Nonequilibrium thermodynamics

Basic idea 1: Separable Configurational + Kinetic/Vibrational Subsystems



Weak coupling between these two subsystems, Timescales separation, Quasi-ergodicity due to external driving forces

EB & JS Langer, Physical Review E 80, 031131 (2009) EB & JS Langer, Physical Review E 80, 031132 (2009) **Basic idea 2:** The degrees of freedom relevant to irreversible deformation can be described by non-equilibrium coarse-grained internal variables

$$U_{total} \approx U_C(S_C, E_{ij}) + U_K(S_K, E_{ij})$$

Define two different temperatures:

$$\chi = \left(\frac{\partial U_C}{\partial S_C}\right) \qquad \left(T = \left(\frac{\partial U_K}{\partial S_K}\right)\right)$$

"Effective" temperature, non-equilibrium degrees of freedom

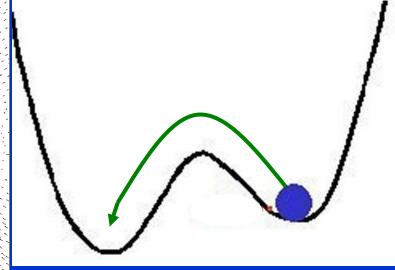
Ordinary, equilibrium temperature

Early ideas in the glass/granular materials community: Edwards, Cugliandolo, Kurchan, Coniglio, Barrat, Berthier and more

is a thermodynamic temperature, e.g. it appears in equations of state, it controls the probability of configurational fluctuations etc.

> EB & JS Langer, Physical Review E 80, 031131 (2009) EB & JS Langer, Physical Review E 80, 031132 (2009)

Theoretical approach: Constitutive law



Potential Energy Landscape

Shear-Transformation-Zones (STZ)

Probability to observe an STZ (average normalized density)

Normalized orientational bias of STZ

ML Falk & JS Langer, Physical Review E 57, 7192 (1998) EB, JS Langer & I Procaccia, Physical Review E 75, 036107 (2007) EB & JS Langer, Physical Review E 80, 031133 (2009) ML Falk & JS Langer, Annu. Rev. Condens. Matter Phys. 2, 353 (2011) K Kamrin & EB, J. Mech. Phys. Solids , In press (2014)

The Equations (dimensionless, simple shear, low T)

$$\dot{\gamma}^{pl}(s,T,\Lambda,m) = \Lambda e^{-1/T} \, \cosh\left(\frac{\Omega s}{T}\right) \left[\tanh\left(\frac{\Omega s}{T}\right) - m \right]$$

Stressleisited thermal active and the stress of the stress

$$\Lambda = e^{-1/\chi}$$
 change for v

$$\dot{m} = \frac{2\dot{\gamma}^{pl}}{\Lambda} \left(1 - m\,s\right)$$

Generalized Boltzmann factor controls STZ density

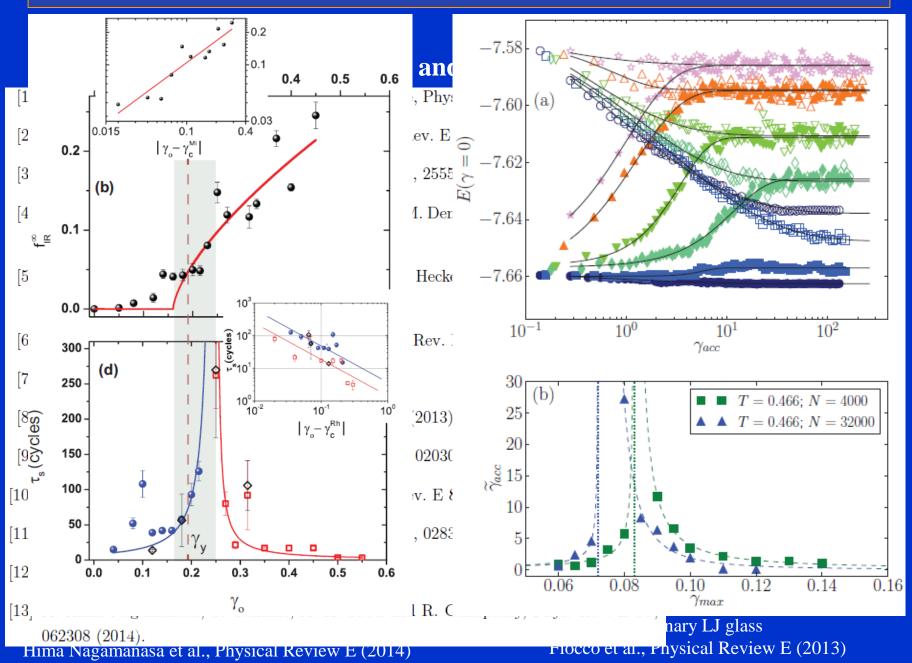
Orientational order dynamics

$$c_0 \dot{\chi} = 2 s \, \dot{\gamma}^{pl} \left(\chi_\infty - \chi \right) + \kappa_c \nabla^2 \chi$$

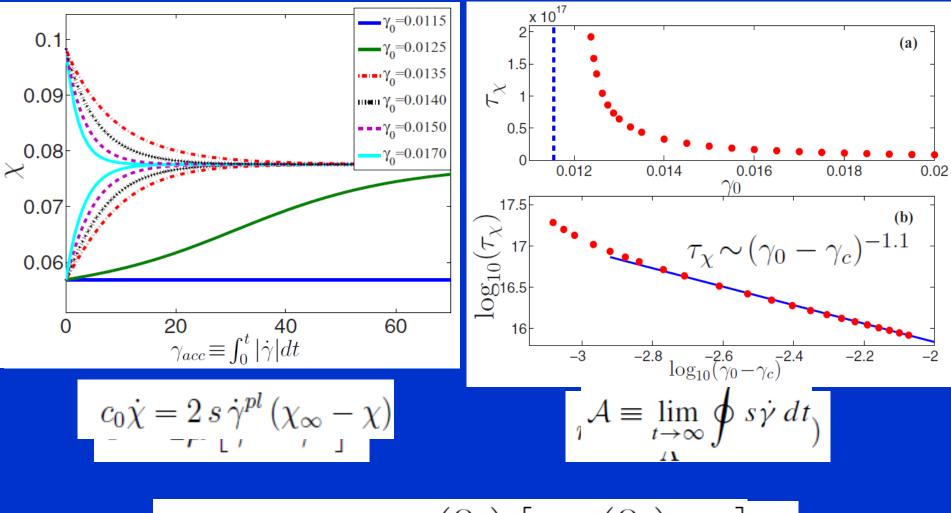
EISanfigusational haatsanbatianh

$$\dot{\gamma} = \dot{\gamma}^{el} + \dot{\gamma}^{pl} \implies \dot{s} = 2\mu \left[\dot{\gamma} - \dot{\gamma}^{pl} \right]$$

Application I: Variable-amplitude oscillatory shear



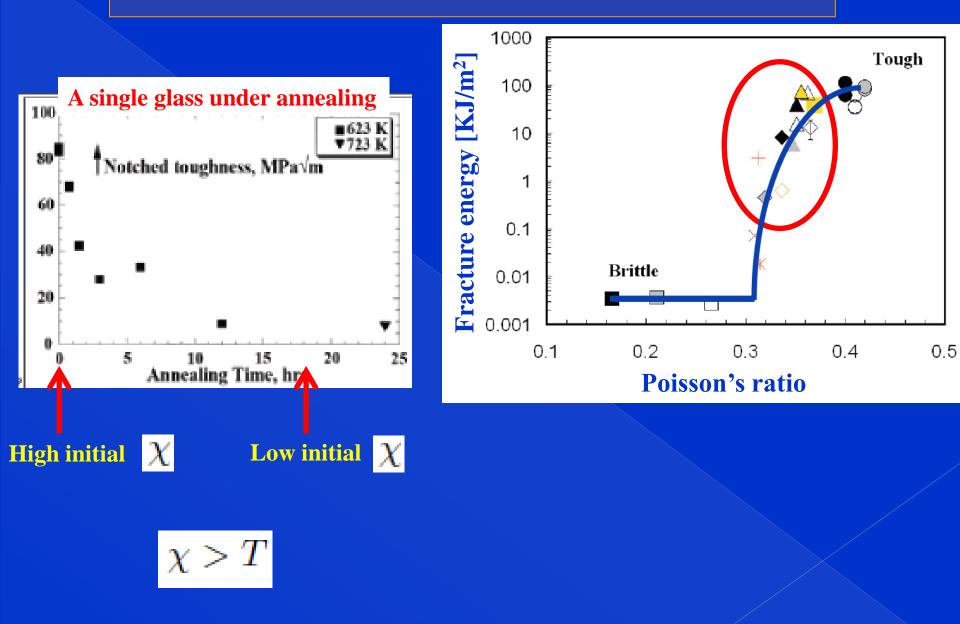
Variable-amplitude oscillatory shear: Results



$$c_0 \dot{\chi} \simeq 2 \dot{\gamma}^{pl} = e^{-1/\chi} e^{-1/T} \cosh\left(\frac{\Omega s}{T}\right) \left[\tanh\left(\frac{\Omega s}{T}\right) - m \right]_c)^{-1}$$

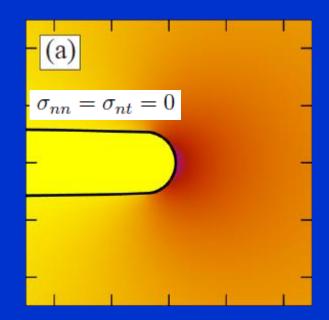
N. Perchikov & EB, Physical Review E 89, 062307 (2014)

Application II: Ductile-to-brittle transition



CH Rycroft & EB, Phys. Rev. Lett. 109, 194301 (2012)

Notch Fracture Toughness

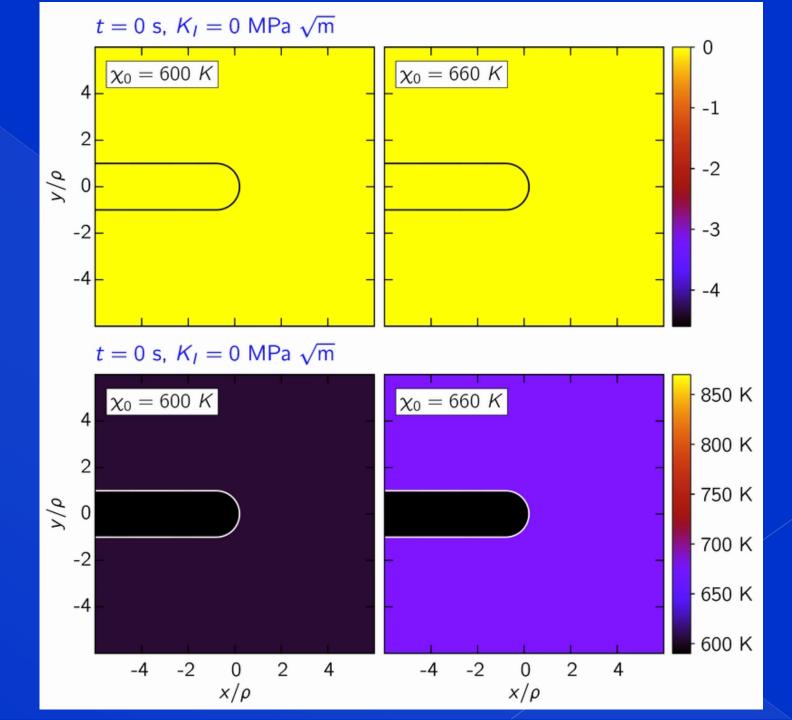


Serious computational challenges were involved, especially in achieving realistic loading rates

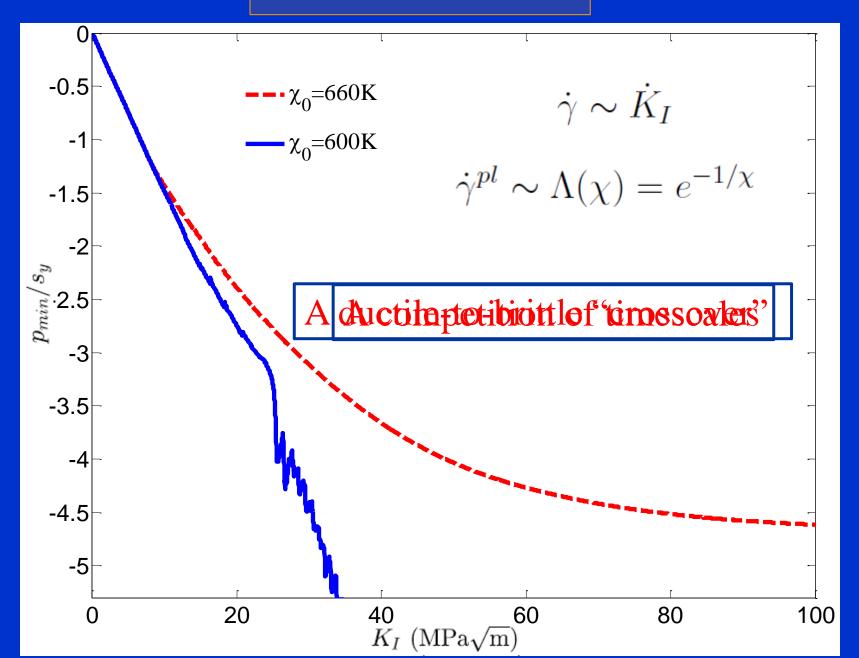
An Eulerian projection method for quasi-static elastoplasticity CH Rycroft, Y. Sui & EB, arxiv 1409.2173 (2014)

Zr _{41.2} Ti _{13.8} Cu _{12.5} Ni ₁₀ Be _{22.5} bulk metallic glass (Vitreloy 1)	
Parameters determined from independent sources	
$\tau_0 \sim 10^{-13} \mathrm{sec}$	Molecular vibration timescale
$s_y \sim 1 \text{ GPa}$	Shear yield stress
$K, \ \mu \sim 100 \ \text{GPa}$	Elastic moduli
$e_z \sim 1 \text{ eV}$	STZ formation energy
$\chi_{\infty} \sim 1.4 T_g$	Steady state of χ
$T \sim 0.5 T_g$	Test temperature

Results

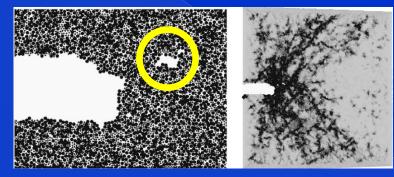


Results (cont'd)



Initiation criterion: A cavitation instability

MD simulation

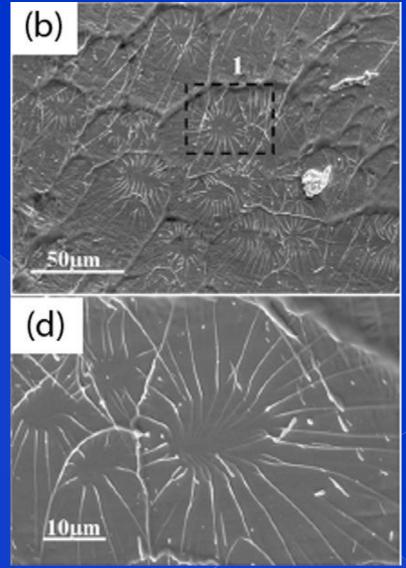


M. L. Falk, PRB 60, 7062 (1999)

$$\sigma_c = \frac{2}{\sqrt{3}} \left[1 + \log \left(\frac{2E}{3\sqrt{3}s_y} \right) \right] s_y$$

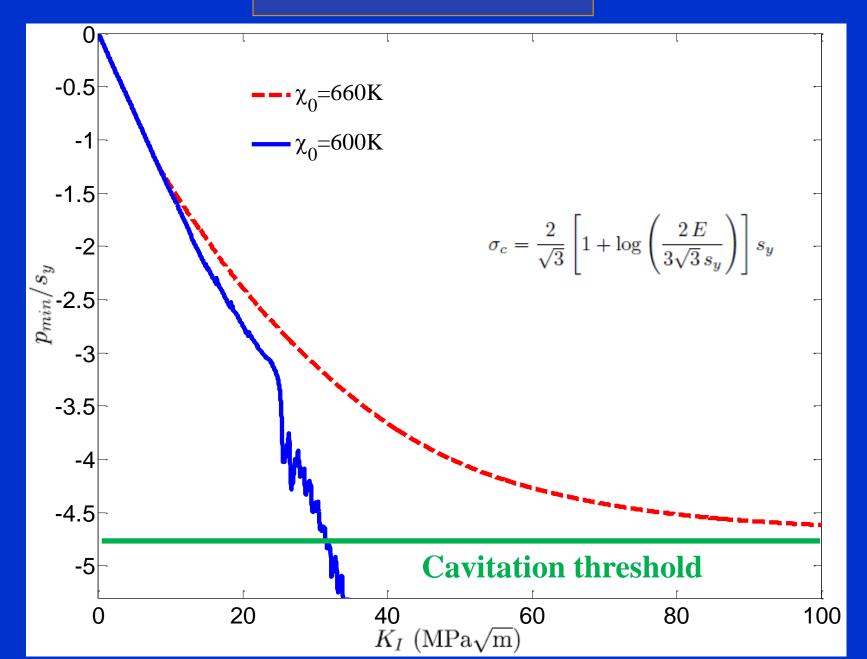
Huang et al., JMPS 39, 223 (1991)

Experiment

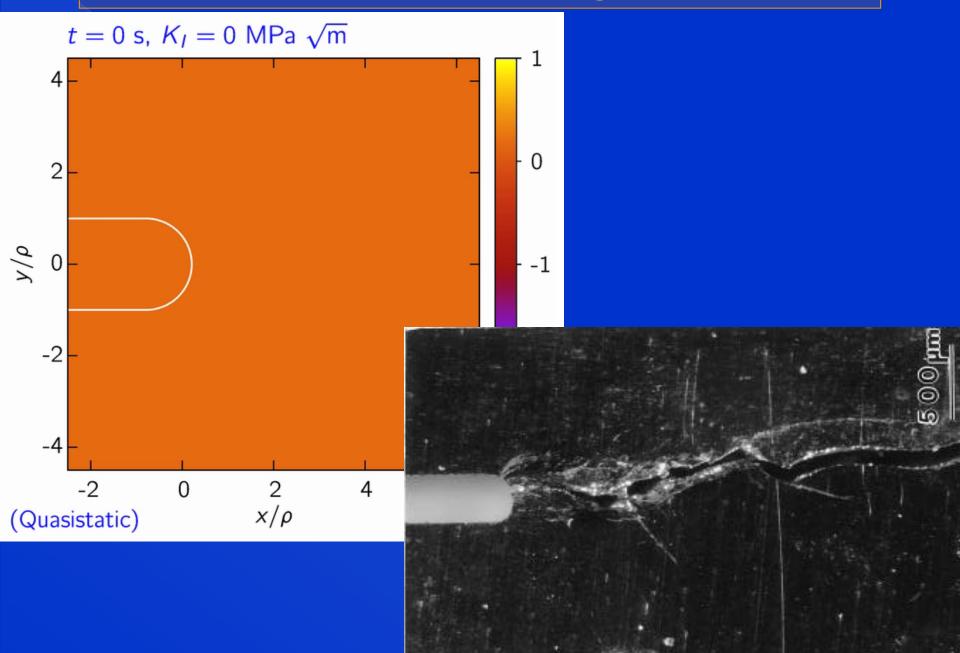


Jiang et al., Philosophical Magazine 2008, 88 407

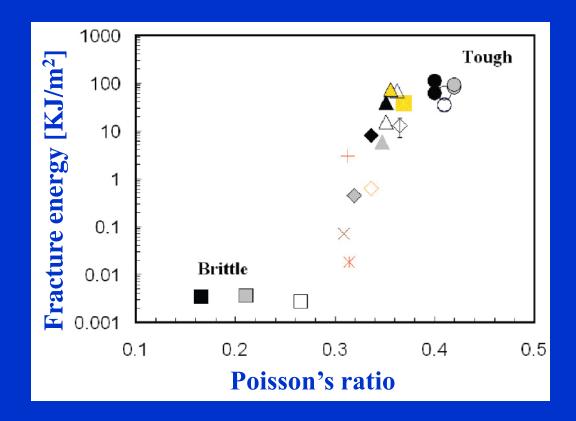
Results (cont'd)

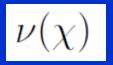


Does local cavitation lead to global failure?



Final comment





$$\dot{\gamma}^{pl} \sim \Lambda(\chi) = e^{-1/\chi}$$

Summary

The macroscopic theory of glassy deformation based on Shear-Transformation-Zones (STZ) has been discussed.

The theory incorporates coarse-grained internal state variables and characterizes the structural state of the deforming glass by a temperature that may differ from the bath temperature.

We discussed two recent applications of the theory:

• The theory predicts salient features of the variable-amplitude oscillatory shear response of amorphous materials, as observed in recent experiments and computer simulations.

• The theory offers an explanation for an observed annealinginduced ductile-to-brittle transition and may open the way for a better understanding of the toughness of metallic glasses.