Acoustics in granular materials: from the particle scale to force networks

Karen Daniels

Department of Physics

North Carolina State University

Force Chains in Particulate Materials

Force Chains & History-Dependence

- above jamming: torque & force balance < # of d.o.f.</p>
- friction = tangential forces = history-dependence

Two Questions

 Do force chains affect sound propagation? ("Are force chains more than just a contact network?")

• Can we extract information about the force chain network (the state of the system) using acoustic techniques?

Apparatus

- two types of driving:
 - ng: -\\\\\\
 - voice coil driver sends 5 sine waves at 750 Hz (λ = 10 to 20 d)
 - white noise

- observations via
 - high-resolution camera (0 Hz)
 - high speed camera (4 kHz)
 - piezoelectric sensors (100 kHz)

Seeing and Hearing

- photoelastic particles: measure amplitude (hundreds)
- piezo particle: measure temporal dynamics for each (8-12)
- show same features, and are on average proportional

Blue: Original Force Chains Green: Changes in Force Chains

Blue: Original Force Chains

Green: Changes in Force Chains

Measuring amplitudes

- particles are dissipative, with exponential decay in amplitude
- ullet on average, photoelastic $A_{\Delta I}$ proportional to piezoelectric A_{V}

Local force (on average) sets amplitude

high speed movies

measure maximum sound amplitude correct for exponential decay

high resolution images locate all particles, calculate force

Our particles are soft

(modified) Hertzian contacts

(modified) Hertzian contacts

Transient force chains

 compressive wave can create transient contacts due to non-zero Poisson ratio

 <u>drastic</u> nonlinearity: connectivity of network changes during transmission (see also Schreck, Bertrand, O'Hern, Shattuck, *PRL* 2011)

Two Questions

✓ Force chains are (on average) conduits for sound propagation

- Can we extract information about the force chain network (the state of the system) using acoustic techniques?
 - how do we represent the "force chain network"?
 - how do acoustics change as a function of network properties?

The Network

describe granular packing as a mathematical object:

- particles = nodes (i, j)
- contact forces = weights

consider both weighted (W_{ij}) and binary (A_{ij}) networks

1	#I	#2		#57	#58	#59)
particle #1	0	0.17		0	0	0	
particle #2	0.17	0		0	0	0	
-			٠.				
particle #57	0	0		0	2.3	0.8	
particle #58	0	0		2.3	0	0	
particle #59	0	0		0.8	0	0	
	_					-	

Probing Multi-dimensional Structures

Bassett, Owens, Daniels, Porter. PRE (2012)

Communities = Stiff Regions

Evaluating Predictive Quality

log intra-community strength z-score, log(z)

Weighted vs. Binary Networks

weighted network models make better acoustic predictions

What's a "Force Chain Network"?

Problem: none of the methods looked like force chains:

- Can we do better?
- ullet Optimize Q by rearranging communities

$$Q = \sum_{ij} [W_{ij} - \gamma P_{ij}] \delta(g_i, g_j)$$

- ullet node i is assigned to community g_i
- resolution parameter: $\gamma = 0$ to 2
- ullet null model P_{ij}

Adaption of Community Detection

new null model $P_{ij} = \overline{f} B_{ij}$

Bassett, Owens, Porter, Manning, Daniels. arXiv/1408.3841

Two Questions

✓ Force chains are (on average) conduits for sound propagation

- Can we extract information about the force chain network (the state of the system) using acoustic techniques?
 - represent the force chains using network-science techniques
 - how do acoustics change as a function of network properties?

Change pressure, degree of order

amorphous

crystalline

 $_{24}$ Pressure = 2.7×10⁻⁴E

 6.9×10^{-4} E

 6.0×10^{-3} E

Borrowing from thermal/jamming

• thermal solid: calculate density of states $D(\omega)$ from the Fourier transform of the velocity autocorrelation function $C_v(t)$:

$$D(\omega) = \int C_{v}(t) e^{i\omega t} dt$$

- borrow this technique for athermal granular?
 - excite vibrations acoustically (flat velocity spectrum)

obtain "density of modes"

Are velocities temperature-like?

- Gaussian-like velocity distributions ...
- but each particles has its own "temperature"

Non-thermal ensemble of velocities

"Density of Modes" $D(\omega) = \int C_v(t)e^{i\omega t} dt$

$$D(\omega) = \int C_{\nu}(t) e^{i\omega t} dt$$

"Density of Modes" $D(\omega) = \int C_{\nu}(t)e^{i\omega t} dt$

Low-frequency modes under shear?

Daniels & Hayman *JGR* (2008) Hayman, Ducloué, Foco, Daniels *PAG* (2011)

Annular Stick-Slip Apparatus

- do low-frequency modes appear as a system is sheared towards failure?
- caveat: acoustic emissions instead of white-noise driving

What does D(f) tell us during shear?

all particles slip as a "solid" all particles participate

both particle-slip & force chain changes localized on one end of system

mostly particle-slip failure localized along "fault"

mostly force chain changes localized failure event causes global slip

Conclusions

- force chains are (on average)
 conduits for sound propagation
- network-science techniques
 provide a useful means to
 represent the force chain network
- acoustic transmission and vibrational modes are closely tied to system properties: observe hallmarks of order/disorder, compressive forces, (shear history, details of event?)

Experiments

Network Analysis

Danielle Bassett – *U Penn*Mason Porter – *Oxford*Lisa Manning – *Syracuse*

http://nile.physics.ncsu.edu