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Force Chains in Particulate Materials

Mueth, Jaeger, 
Nagel PRE (1998)

Zhou, Long,  Wang, Dinsmore. Science.  (2006)

Majmudar & Behringer
Nature (2005)
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Force Chains & History-Dependence

 above jamming: torque & force balance < # of d.o.f.
 friction = tangential forces = history-dependence

force network ensemble
Tighe, Snoeijer, Vlugt, van Hecke. 

Soft Matter (2010)
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 Do force chains affect sound 
propagation? (“Are force chains more than 
just a contact network?”)

 Can we extract information about 
the force chain network (the state of 

the system) using acoustic techniques?

Two Questions
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1 cm

g

Apparatus

 two types of driving:
 voice coil driver sends 5 sine 

waves at 750 Hz (λ = 10 to 20 d)
 white noise

 observations via
 high-resolution camera (0 Hz)
 high speed camera (4 kHz)
 piezoelectric sensors (100 kHz) 
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Seeing and Hearing

 photoelastic particles: measure amplitude (hundreds)
 piezo particle: measure temporal dynamics for each (8-12)
 show same features, and are on average proportional

driver

photoelastic

piezo
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Blue: Original Force Chains
Green: Changes in Force Chains

file:///home/kdaniel/Dropbox/Work/Videos/work/gransound/GSNP10/GSNP10-main.mpg
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Blue: Original Force Chains
Green: Changes in Force Chains
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Measuring amplitudes

driver

AΔI

AV

 particles are dissipative, with exponential decay in amplitude

 on average, photoelastic A IΔ  proportional to piezoelectric AV

Owens & Daniels, EPL (2011)
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Local force (on average) sets amplitude

high speed 
movies 

measure maximum 
sound amplitude

correct for 
exponential decay

high resolution images 
locate all particles, calculate force

Owens & Daniels, EPL (2011)
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medium
force

high
force

low
force

Our particles are soft

large
contact
area
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(modified) Hertzian contacts

f ∝ 5/4

area∝ f 2 /5

Owens & Daniels, EPL (2011)
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(modified) Hertzian contacts

f ∝ 5/4

area∝ f 2 /5

Owens & Daniels, EPL (2011)
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Transient force chains

 compressive wave can create 
transient contacts due to non-zero 
Poisson ratio

 drastic nonlinearity: connectivity of 
network changes during transmission 
(see also Schreck, Bertrand, O’Hern, Shattuck, PRL 2011)
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✔ Force chains are (on average) 
conduits for sound propagation

 Can we extract information about 
the force chain network (the state of 

the system) using acoustic techniques?
 how do we represent the “force 

chain network”?
 how do acoustics change as a function 

of network properties?

Two Questions
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The Network

describe granular packing as a 
mathematical object:
 particles = nodes (i, j)
 contact forces = weights

consider both weighted (Wij) 
and binary (Aij) networks

[
0 0.17 0 0 0
0.17 0 0 0 0

⋱
0 0 0 2.3 0.8
0 0 2.3 0 0
0 0 0.8 0 0

]
particle #1
particle #2

particle #57
particle #58
particle #59

#1 #2 #57 #58 #59
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System 2D Domain 1D Curves

 Efficiency of global 
signal transmission

 Local geographic 
domains

 Bottlenecks or 
centrality

Global Efficiency Modularity
Geodesic Node 

Betweenness

0D Particles

 Local loop structures

Clustering Coefficient

Probing Multi-dimensional Structures

Bassett, Owens, Daniels, Porter. PRE (2012)



18

Communities = Stiff Regions
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Evaluating Predictive Quality
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Weighted vs. Binary Networks

Bassett, Owens, Daniels, Porter. PRE (2012)weighted network models make 
better acoustic predictions

System 2D Domain 1D Curves 0D Particles
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What's a “Force Chain Network”?
 Problem: none of the methods looked like force chains:

 Can we do better? 
 Optimize Q by rearranging communities

 node i is assigned to community gi

 resolution parameter:  = 0 to 2
 null model Pij
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Adaption of Community Detection

Bassett, Owens, Porter, 
Manning, Daniels. 
arXiv/1408.3841

P ij= f̄ Bij

new  null 
model
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✔ Force chains are (on average) 
conduits for sound propagation

 Can we extract information about 
the force chain network (the state of 

the system) using acoustic techniques?

✔ represent the force chains using 
network-science techniques

 how do acoustics change as a function 
of network properties?

Two Questions
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Change pressure, degree of order

Pressure = 2.7x10-4E                  6.9x10-4E                           6.0x10-3E

amorphous

crystalline
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Borrowing from thermal/jamming

D(ω)=∫C v (t)e iω t dt

 thermal solid: 
calculate density of states 
D(ω) from the Fourier 
transform of the velocity 
autocorrelation function 
Cv(t):

Rahman, Mandell, McTague, J. Chem. Phys. (1976)

 borrow this technique for athermal granular? 
 excite vibrations acoustically (flat velocity spectrum)
 measure stress change ∆σ at each particle, integrate to obtain v(t)
 obtain “density of modes”
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Are velocities temperature-like?

 Gaussian-like velocity distributions … 
 but each particles has its own “temperature”
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Non-thermal ensemble of velocities

Owens & Daniels. Soft Matter. (2013)
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“Density of Modes”

amorphouscrystalline

extra modes 
at low pressure

Owens & Daniels. Soft Matter (2013)

Debye scaling

D(ω)=∫C v (t)e iω t dt
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“Density of Modes”

amorphouscrystalline

extra modes 
at low pressure

Owens & Daniels. Soft Matter (2013)

Debye scaling

D =∫C v t e
i t dt

does density of modes 
reveal that a system is 

closer to failure?
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Low-frequency modes under shear?

Daniels & Hayman JGR (2008)
Hayman, Ducloué, Foco, Daniels PAG (2011)
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Annular Stick-Slip Apparatus

 do low-frequency modes appear as a system is sheared 
towards failure?

 caveat: acoustic emissions instead of white-noise driving

&
12 piezos around boundary

torque event

time  →

Leiden geometry
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What does D(f) tell us during shear?
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Event Variability

all particles slip as a “solid”
all particles participate

both particle-slip & force chain changes
localized on one end of system

mostly particle-slip
failure localized along “fault”

mostly force chain changes
localized failure event causes global slip

Daniels & Hayman JGR (2008)
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 force chains are (on average) 
conduits for sound propagation

 network-science techniques 
provide a useful means to 
represent the force chain network

 acoustic transmission and 
vibrational modes are closely tied 
to system properties: observe 
hallmarks of order/disorder, 
compressive forces, (shear history, 
details of event?)

Conclusions
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Thanks!

Eli Owens

Network Analysis
Danielle Bassett – U Penn
Mason Porter – Oxford
Lisa Manning – Syracuse

http://nile.physics.ncsu.edu

DMR-0644743
DMR-1206808

Experiments

Ted Brzinski
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