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Earthquake-earthquake triggering (Kilb ’00)
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Example of induced seismicity: hydraulic fracturing

Fact
In order to enhance
permeability, high
pressure fluids are
injected to activate (or
create) fractures
Proppant (e.g. sand) is
typically mixed into the
injected slurry, to hold
fractures open
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Induced microseismicity (Dusseault & McLennan ’11)
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Triggering slip on existing faults (Warpinski ’09)

Definitions
Induced: Seismic
event directly
caused by human
activities
Triggered: Failure
of a pre-existing
zone of weakness
due to a
perturbation in
state (may be
natural or artificial)

Jörn Davidsen (Complexity Science Group) Earthquake triggering October 24, 2014 6 / 61



Earthquake-earthquake triggering (Kilb ’00)
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Spatiotemporal clustering & triggering

?

1

3

2?

?

Underlying microscopic dynamics is typically not observable
Challenge: Infer triggering cascade and define “aftershocks”
Need to identify suitable null model of uncorrelated events
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Gutenberg-Richter law: scale-free & universal

log10 N(m′ > m) = a(∆t , area)− b m =⇒ N(M ′ > M) ∝ M−b/c

Jörn Davidsen (Complexity Science Group) Earthquake triggering October 24, 2014 9 / 61



JAGUARS: “Aftershock” sequence of MW = 1.9 event
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JAGUARS: Gutenberg-Richter law (Kwiatek ’10)

log10 N(m′ > m) = a(∆t , area)− b m =⇒ N(M ′ > M) ∝ M−b/c
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CRESST: Fracture of sapphire crystal (Åström ’06)

Assuming E ∝ M: b = c (β − 1) ∈ [1.0; 1.4]
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BUT: Hydraulic fracturing (Eaton et al. ’14)
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Horn River: Observed data
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Central Alberta: Observed data
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Cotton Valley: Observed data
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Spatiotemporal clustering & triggering

?

1

3
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?

Underlying microscopic dynamics is typically not observable
Challenge: Infer triggering cascade and define “aftershocks”
Need to identify suitable null model of uncorrelated events
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Null model: Poisson process with GR rate

log10 N(m′ > m) = a(∆t , area)− b m =⇒ N(M ′ > M) ∝ M−b/c
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Identifying aftershocks (Baiesi’04, Zaliapin’08, Gu’13)

nij = c · (rij)
Df tij10−b mi n∗j ≡ mini<j{nij}
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JAGUARS: “Aftershock” sequence of MW = 1.9 event

Jörn Davidsen (Complexity Science Group) Earthquake triggering October 24, 2014 17 / 61



Secondary aftershocks in the MW = 1.9 sequence

nij = c · (rij)
Df tij10−b mi n∗j ≡ mini<j{nij}
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JAGUARS project: (Induced) Micro, nano- and
picoseismicty (Davidsen et al. ’13)
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JAGUARS project: Seismic activity
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Identifying aftershocks in the complete June catalog

nij = c · (rij)
Df tij10−b mi n∗j ≡ mini<j{nij}
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Secondary aftershocks in a blasting catalog

nij = c · (rij)
Df tij10−b mi n∗j ≡ mini<j{nij}
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Omori-Utsu law: Hector Mine (Gu’13)

λ(t ,m > mc |M) = χ(mc ,M)
(t+c(mc ,M))p with p ≈ 1
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Interevent times & temporal clustering
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Interevent time distribution depends on m and L, e.g.: 〈T 〉 = ∆t
N−1
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Rate of earthquake occurrence: California (Corral ’03)
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“Stationary” interevent time distributions (Corral ’04)
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Rescaled interevent time distributions (Corral ’04)

Dxy (τ) = Rxy f (Rxyτ) f (x) = 0.50
x0.33 exp(−x0.98/1.58)
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JAGUARS project: (Induced) Micro, nano- and
picoseismicty (Davidsen et al. ’13)
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JAGUARS project: Seismic activity
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JAGUARS project: Interevent time distributions

PC(T ) = P(T/〈T 〉C)/〈T 〉C P(θ) ∝ θ−0.32 exp(−θ/1.47)
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Rock fracture and acoustic emissions
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Example: AFC loading curve
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Compaction bands in sandstone
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Rescaled interevent time distributions (Davidsen ’07)

PE (T ) = P(T/〈T 〉E )/〈T 〉E P(θ) ∝ θ−0.2 exp(−θ/1.4)

Jörn Davidsen (Complexity Science Group) Earthquake triggering October 24, 2014 35 / 61



Induced seismicty: 2004/05 KTB project (Shaprio ’06)
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KTB: Interevent time distribution (Davidsen et al. ’13)

PC(T ) = P(T/〈T 〉C)/〈T 〉C P(θ) ∝ θ−0.45 exp(−θ/2.2)
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KTB project: Conditional interevent time distribution
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JAGUARS: Conditional interevent time distributions

PC(T ) = P(T/〈T 〉C)/〈T 〉C P(θ) ∝ θ−0.32 exp(−θ/1.47)
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California: Conditional interevent time distributions
(Livina ’05)
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Relocated catalog for S. California (Hauksson ’12)
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Aftershock density in space (Gu’13, Moradpour’14)
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Self-consistency & importance of rupture length (3D)
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Self-consistency & importance of rupture length (2D)
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Importance for identification of triggering mechanism
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Static vs. dynamic stress triggering in nature (Kilb ’00)
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Modeling static stress triggering in Southern California
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Summary & Discussion

Statistical properties of aftershocks can be related to physical
triggering mechanisms for tectonic earthquakes, e.g. aftershock
density with distance

Evidence that static stress triggering dominates aftershock
triggering
Aftershock triggering seems to play a less significant role in
induced seismicity, nano- and picoseismicity and rock fracture
compared to tectonic seismicity
Underlying physics related to aftershocks (or their absence) in the
case of induced seismicity, nano- and picoseismicity and rock
fracture? Self-similarity of triggering?
Interevent time distribution is form-invariant with respect to the
energy scale and underlying cause
Role of aftershocks for interevent time distribution?
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Thanks!
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Map of probabilistic magnitude of completeness

The completeness of SCSN is MP ≥ 3.4 for the authoritative region
ignoring offshore areas. (BSSA 98, 2103)
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Short-term aftershock incompleteness
(Helmstetter’06)
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Case study of fracking: 3 microseismic catalogs
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Frequency-magnitude distributions (Eaton et al. ’14)
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Horn River: Observed data
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Central Alberta: Observed data
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Cotton Valley: Observed data
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Central Alberta: Natural fractures
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Mechanical bed thickness from borehole γ-ray logs
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Stratabound model vs. power-law model
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Estimated stress drop for stratabound model
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Implications for hazard assessment
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Conclusions: Fracking-induced seismicity

Mechanical bed thickness in laminated rocks may strongly
influence the magnitude distribution of induced microseismicity

A lognormal bed thickness distribution was found for 3 reservoirs
investigated here. Combining the stratabound hypothesis with the
Brune source model, this fracture height predicts a Gaussian
decay in the magnitude distribution
This model suggests that the b value derived from induced
microseismic catalogs significantly underestimates the hazard for
triggering of larger seismic events by hydraulic fracturing
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