Sound waves in granular materials the role of disorder, friction, adhesion, ...

Stefan Luding et al. (see below) Multi Scale Mechanics, CTW, UTwente, POBox 217, 7500AE Enschede, NL --- s.luding@utwente.nl

Force-chains experiments - simulations

Force-chains experiments - simulations

Codalike Multiple Scattering of ElasticWaves in Dense Granular Media X. Jia, PRL, 2004

Self-demodulation acoustic signatures for nonlinear propagation in glass beads

V. Tournat et al, C.R.Mecanique, 2002

Discrete particle model

Equations of motion

Forces and torques:

 $\vec{f}_i = \sum_c \vec{f}_i^c + \sum_w \vec{f}_i^w + m_i g$

$$\vec{t_i} = \sum_c \vec{r_i^c} \times \vec{f_i^c}$$

 $\cdot \vec{n}$

Overlap

Normal

$$\delta = \frac{1}{2} \left(d_i + d_j \right) - \left(\vec{r}_i - \vec{r}_j \right)$$
$$\hat{n} = \vec{n}_{ij} = \frac{\left(\vec{r}_i - \vec{r}_j \right)}{\left| \vec{r}_i - \vec{r}_j \right|}$$

Sound

Compressive (P) and Shear (S) waves

Time signals

Frequency dependence

- Compressive wave
- Input frequency
- Large amplitude

Number of contacts in the whole system versus time

Compressive (P)-wave

Influence of "micro" properties

How relevant is the damping coefficient in our model?

Model system

P-wave animation

Towards complexity

Modes

- P-waves
- S-waves
- R-waves ullet
- . . .

Micro-Parameters

- Damping •
- Friction (Rotations)
 (Dis-)ordered
- Adhesion
- Contact law

. . .

Structure

. . .

- Mono- poly-disperse

Wave speed from the stiffness tensor

$$C_{\alpha\beta\gamma\phi} = \frac{1}{V} \sum_{p \in V} \frac{a^2}{2} \left(k \sum_{c=1}^C n_\alpha^c n_\beta^c n_\gamma^c n_\phi^c + k^t \sum_{c=1}^C n_\alpha^c t_\beta^c n_\gamma^c t_\phi^c \right)$$

$$V_{pz} = \sqrt{\frac{C_{zzzz}}{\rho}}$$

Velocities

Friction

Waves and stiffnesses

- Components of the stiffness tensor which corresponds to the direction of motion of the particles for both P- and S-wave.

- In this case : $C_{\rm 3333}$ for the P-wave and $C_{\rm 1313}$ for the S-wave.

- V_p and V_s denote the "Peak velocity".

Waves and stiffnesses

Ratios of C entries		Ratios of velocities	
1111/ 1313	2.5	11/13	2.475
3333/ 1313	2	33/13	2.005
1111/ 1212	5	11/12	4.95

Weak polydispersity

- The system is practically unchanged at the structure level

- Wide distribution of weak and strong contacts and <u>most important opening of contacts</u>

P-wave animation

Velocities

Friction+rotation

Weak disorder

Signal Analysis

Stress-time signal

Power-spectrum

Frequency-space Diagrams

Distance in layers

Frequency analysis

Larger system

Shear wave

P-wave with friction

Hertz Contact Law

How does sound propagation depend on

- structure?

Lattice+tiny disorder => enormous effect

Question

How does sound propagation depend on

- structure?

Lattice+tiny disorder => enormous effect 3D effect? or 1D?

UNIVERSITEIT TWENTE.

Sound Propagation in Particulate Systems with Disorder and Rotations ...

Lisa de Mol,S. Emmerich, Brian Lawney, Vanessa Magnanimo, Stefan Luding Multi-Scale Mechanics, UTwente, Netherlands

OVERVIEW

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

Introduction: Frequency filtering and high-f bands

One-dimensional chains

Model system and equations
Introduction of mass–disorder (most simple)
Model for frequency (low-pass) filtering

Two- and three-dimensional regular packings with rotations

•Dispersion relation

- Smooth (frictionless)
- With friction/rotations

ONE DIMENSIONAL CHAINS

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

- Convenient model
 - Analytically accessible
 - Isolation of mass-disorder
- Significant attention in literature
 - Nonlinear oscillators
 - Soliton–like waves

L.de Mol, B.Lawney,

ONE DIMENSIONAL CHAINS

Force Displacement Model

$$\tilde{F}_{(i,j)} = \tilde{\kappa}_{(i,j)} \tilde{\delta}^{1+\beta}$$

$$\tilde{m}^{(i)} \frac{d^2 \tilde{x}^{(i)}}{d\tilde{t}^2} = \tilde{F}_{(i,i-1)} + \tilde{F}_{(i,i+1)}$$

Scaling

• Mass
$$\tilde{m}_o$$

• Length $\tilde{\ell}$
• Time $\tilde{t}_c = \frac{1}{\tilde{\ell}^{\beta/2}} \sqrt{\frac{\tilde{m}_o}{\tilde{\kappa}_o}}$

UNIVERSITEIT TWENTE.

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

General equation of motion

$$b^{(i)} \frac{d^2 u^{(i)}}{d\tau^2} = \kappa_{(i-1,i)} \left[\Delta_{(i-1,i)} - u^{(i)} + u^{(i-1)} \right]^{1+\beta} -\kappa_{(i+1,i)} \left[\Delta_{(i+1,i)} + u^{(i)} - u^{(i+1)} \right]^{1+\beta}$$

$$b \equiv \tilde{m}^{(i)} / \tilde{m}_o$$
$$\tau \equiv \tilde{t} / \tilde{t}_c$$
$$\kappa_{(i,j)} \equiv \tilde{\kappa}_{(i,j)} / \tilde{\kappa}_o$$

UNIVERSITEIT TWENTE.

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

• General (nonlinear) equation of motion:

$$b^{(i)} \frac{d^2 u^{(i)}}{d\tau^2} = \kappa_{(i-1,i)} \left[\Delta_{(i-1,i)} - u^{(i)} + u^{(i-1)} \right]^{1+\beta} -\kappa_{(i+1,i)} \left[\Delta_{(i+1,i)} + u^{(i)} - u^{(i+1)} \right]^{1+\beta}$$

• Linearized model:

$$\mathbf{M} rac{\mathrm{d}^2 \mathbf{u}}{\mathrm{d}\tau^2} = \mathbf{K} \mathbf{u}$$

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

• General (nonlinear) equation of motion:

$$b^{(i)} \frac{d^2 u^{(i)}}{d\tau^2} = \kappa_{(i-1,i)} \left[\Delta_{(i-1,i)} - u^{(i)} + u^{(i-1)} \right]^{1+\beta} -\kappa_{(i+1,i)} \left[\Delta_{(i+1,i)} + u^{(i)} - u^{(i+1)} \right]^{1+\beta}$$

• Linearized model:

$$\mathbf{M}\frac{\mathrm{d}^{2}\mathbf{u}}{\mathrm{d}\tau^{2}} = \mathbf{K}\mathbf{u}$$

Analytical Solution: Sine-agitation

$$u^{(p)}(\tau) = \sum_{j=1}^{N} \frac{S_{pj} S_{1j}}{\left(\omega_j^2 - \omega_o^2\right)} \left(\sin \omega_o \tau - \frac{\omega_o}{\omega_j} \sin \omega_j \tau\right)$$

UNIVERSITEIT TWENTE.

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

• Harmonically driven:

- Mass-disorder: Normal (Gaussian) distribution
 - Mean mass \rightarrow b = 1
 - Standard deviation $\rightarrow \sigma = \xi$
- Pre-stress \rightarrow equilibrium overlap \rightarrow NOT sonic vacuum

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

How do signals propagate in such systems?

- Disorder ξ
- Input frequency ω_0
- Mass distribution
- Contact order/disorder
- Linear vs. nonlinear

BASE CASE – PERFECT CHAIN

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

• Uniform stiffness κ(i,j) = kn

UNIVERSITEIT TWENTE.

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

UNIVERSITEIT TWENTE.

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

CONCLUSIONS 1

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

- \uparrow disorder ξ , \downarrow transmission bandwidth.
 - Threshold value of ξ
- Lower input ω_o , improved transmission
 - Low frequencies less sensitive to mass arrangements
- Mass-distribution: only moments matter ...

QUALITATIVELY THE SAME AS IN 3D => PROCEED ANALYTICAL 1D

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

• Linearized model:

$$\mathbf{M}\frac{\mathrm{d}^2\mathbf{u}}{\mathrm{d}\tau^2} = \mathbf{K}\mathbf{u}$$

$$u^{(p)}(\tau) = \sum_{j=1}^{N} \frac{S_{pj} S_{1j}}{\left(\omega_j^2 - \omega_o^2\right)} \left(\sin \omega_o \tau - \frac{\omega_o}{\omega_j} \sin \omega_j \tau\right)$$

UNIVERSITEIT TWENTE.

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

• Linearized model:

$$\mathbf{M}\frac{\mathrm{d}^2\mathbf{u}}{\mathrm{d}\tau^2} = \mathbf{K}\mathbf{u}$$

$$u^{(p)}(\tau) = \sum_{j=1}^{N} \frac{S_{pj} S_{1j}}{\left(\omega_j^2 - \omega_o^2\right)} \left(\sin \omega_o \tau - \frac{\omega_o}{\omega_j} \sin \omega_j \tau\right)$$

• Evolution (Master) Equation in k-space or w-space

$$\frac{d}{dt}\Psi = \mathbf{Q}\Psi \qquad \qquad \frac{d}{dx}$$

$$\frac{d}{dx}\Psi = \mathbf{Q}\Psi$$

UNIVERSITEIT TWENTE.

L.de Mol, B.Lawney,

V. Magnanimo, S. Luding

ONE DIMENSIONAL CHAINS

• Linearized model:

$$\mathbf{M}\frac{\mathrm{d}^2\mathbf{u}}{\mathrm{d}\tau^2} = \mathbf{K}\mathbf{u}$$

• Evolution (Master) Equations in f-space or k-space

$$\frac{d}{dt}\Psi = \mathbf{Q}\Psi$$

$$\frac{\mathrm{d}}{\mathrm{d}t}q^{\downarrow}(f_i) = -b_i q(f_i) + \sum_{1 \le j < N-i} b_{i+j}^i q(f_{i+j})$$
$$b_i = \sum_{j \ge 1} b_{i+j}^i$$

UNIVERSITEIT TWENTE.

L.de Mol, B.Lawney,

V. Magnanimo, S. Luding

ONE DIMENSIONAL CHAINS

• Linearized model:

$$\mathbf{M}\frac{\mathrm{d}^{2}\mathbf{u}}{\mathrm{d}\tau^{2}} = \mathbf{K}\mathbf{u}$$

• Evolution (Master) Equations in f-space or k-space

© Sebastian Sterl

UNIVERSITEIT TWENTE.

THREE DIMENSIONAL CHAINS

• Linearized model: $\mathbf{M} \frac{\mathrm{d}^2 \mathbf{u}}{\mathrm{d}\tau^2} = \mathbf{K} \mathbf{u}$

• Evolution (Master) Equations in f-space or k-space

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

L.de Mol, B.Lawney,

V. Magnanimo, S. Luding

© Sebastian Sterl

ONE DIMENSIONAL CHAINS

• Linearized model:

• Evolution (Master) Equations in f-space or k-space

 $\mathbf{M}\frac{\mathrm{d}^2\mathbf{u}}{\mathrm{d}\tau^2} = \mathbf{K}\mathbf{u}$

 $\frac{d}{dt}\Psi = \mathbf{Q}\Psi$

L.de Mol, B.Lawney,

V. Magnanimo, S. Luding

ONE DIMENSIONAL CHAINS

• Linearized model:

$$\mathbf{M}\frac{\mathrm{d}^2\mathbf{u}}{\mathrm{d}\tau^2} = \mathbf{K}\mathbf{u}$$

• Evolution (Master) Equations in f-space or k-space

$$\frac{d}{dt}\Psi = \mathbf{Q}\Psi$$

$$\frac{\mathrm{d}}{\mathrm{d}t}q^{\downarrow}(f_i) = -b_i q(f_i) + \sum_{1 \le j < N-i} b_{i+j}^i q(f_{i+j})$$

$$b_i = \sum_{j \ge 1} b_{i+j}^i$$
onlinear

Nonlinear ...

$$\frac{d}{dt}q^{\uparrow}(f_{i}) = -\sum_{j} a_{i,j} q(f_{i})q(f_{j}) + \sum_{j < i} a_{i-j,j} q(f_{i-j})q(f_{j})$$

UNIVERSITEIT TWENTE.

Self-demodulation ? higher f/k-generation

OVERVIEW

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

Introduction: Frequency filtering and high-f bands

One-dimensional chains

Model system and equations
Introduction of mass–disorder (most simple)
Model for frequency (low-pass) filtering

Two- and three-dimensional regular packings with rotations

•Dispersion relation

- Smooth (frictionless)
- With friction/rotations

Experiments (in water) ...

HOMOGENEOUS & STRUCTURED SAMPLES MSc thesis S. Emmerich

- Solid sample and porous sample (PCL) with $\Phi = 0.7$
- Discrete particle radii of 0.01 mm
- Stratified model used to build the porous sample
- Wave velocity needs to be calculated:

Fig. 13: Modeling differences between solid and porous samples

UNIVERSITEIT TWENTE.

DISORDERED SAMPLES MSc thesis S. Emmerich

UNIVERSITEIT TWENTE.

DISORDERED SAMPLES MSc thesis S. Emmerich

UNIVERSITEIT TWENTE.

REGULAR SYSTEMS

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

Cubic lattice

Hexagonal lattice

L.de Mol, B.Lawney,

V. Magnanimo, S. Luding

MD APPROACH

• Equations of motion

$$\mathbf{M}^{p} \cdot \ddot{\mathbf{U}}^{p} = \sum_{q} \mathbf{F}^{pq}$$

 $\mathbf{M}^{p} \cdot \ddot{\mathbf{U}}^{p} = \sum_{c} \mathbf{S}^{c} \Delta^{c}$

where

- U^p is the generalized coordinate vector (including rotations)
- \mathbf{S}^{c} is the contact stiffness matrix
- Δ^c contact overlap (linear spring model)

L.de Mol, B.Lawney,

V. Magnanimo, S. Luding

EIGENVALUE PROBLEM

• Harmonic wave solution

 $\mathbf{U} = \hat{\mathbf{U}} e^{i(\omega t - \mathbf{k}\mathbf{x})}$

• Inserted into the equation of motion

$$\left(\bar{\mathbf{K}} - \omega^2 \mathbf{M}\right) \hat{\mathbf{U}} = 0$$

• Solve Eigenvalue problem for a wave excitation in vertical direction

UNIVERSITEIT TWENTE.

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

UNIVERSITEIT TWENTE.

DISPERSION

SOUND PROPAGATION IN PARTICULATE SYSTEMS WITH DISORDER AND ROTATIONS

68

DISPERSION

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

UNIVERSITEIT TWENTE.

DISPERSION

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

UNIVERSITEIT TWENTE.

SOUND PROPAGATION IN PARTICULATE SYSTEMS WITH DISORDER AND ROTATIONS

70

Dispersion relations with tangential elasticity

Eigenmodes

Eigenmodes

SUMMARY AND OUTLOOK

L.de Mol, B.Lawney, V. Magnanimo, S. Luding

- 2D+3D dispersion relations
 - Frictionless lattices
 - Lattices with rotation (tang. elasticity)

WORK IN PROGRESS

- Fully random Systems and
- Comparison with Experiments