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Compressive (P) and  Shear (S) waves	


Sound 



Time signals 
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Frequency dependence 

Number of contacts in the whole system versus time	



- Compressive wave   

- Input frequency  

- Large amplitude  



Influence of “micro” properties 
Compressive (P)-wave	



Elastic	

 Visco-Elastic	



How relevant is the damping coefficient in our model ?	





Model system 



P-wave animation 



Modes 

•  P-waves 

•  S-waves 

•  R-waves 

•  … 

Structure 

•  Mono- poly-disperse 

•  (Dis-)ordered 

•  … 

Micro-Parameters 

•  Damping 

•  Friction (Rotations) 

•  Adhesion 

•  Contact law 

•  … 

Towards complexity 
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Velocities 

Friction	





Waves and stiffnesses 

-  Components of the stiffness tensor which 
corresponds to the direction of motion of the 
particles for both P- and S-wave. 
 
-  In this case :  C3333  for the P-wave and C1313  
for the S-wave.   

-  Vp and Vs denote the “Peak velocity“ . 
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Waves and stiffnesses 
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Weak polydispersity 

δ = a/1000	



Da = 0, δ/2, δ and 2δ	


a	



- The system is practically unchanged at the structure level	


	


- Wide distribution of weak and strong contacts 	


and most important opening of contacts	





P-wave animation 



Velocities 

Friction+rotation	

 Weak disorder	





Signal Analysis 

Stress-time signal Power-spectrum 

time-FFT 



Frequency-space  
Diagrams 

Da = 2δ	



Da = δ/2	



Da = δ	





Space-Time analysis 

amplitude	



space	



time	





Dispersion relations  

Da = 2d	



Da = d	



Da = d/2	



space-time-FFT 



Frequency analysis 



Larger system 



Shear wave 



P-wave with friction 



Hertz Contact Law 



Question 

How does sound propagation depend on  
 - structure? 
Lattice+tiny disorder => enormous effect 
 



Question 

How does sound propagation depend on  
 - structure? 
Lattice+tiny disorder => enormous effect 
3D effect? or 1D? 
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OVERVIEW 

Introduction: Frequency filtering and high-f bands 
 
One–dimensional chains 
• Model system and equations 
• Introduction of mass–disorder (most simple) 
• Model for frequency (low-pass) filtering 
 
Two- and three-dimensional regular packings with rotations 
• Dispersion relation 

•  Smooth (frictionless) 
•  With friction/rotations 
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•  Convenient model 
•  Analytically accessible 
•  Isolation of mass–disorder 

•  Significant attention in literature 
•  Nonlinear oscillators 
•  Soliton–like waves 

ONE DIMENSIONAL CHAINS 
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ONE DIMENSIONAL CHAINS 

•  Force Displacement Model 

•  Scaling 

•  Mass 
•  Length  
•  Time 
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ONE DIMENSIONAL CHAINS 

•  General equation of motion 
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ONE DIMENSIONAL CHAINS 

•  General (nonlinear) equation of motion: 

•  Linearized model: 
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ONE DIMENSIONAL CHAINS 

•  General (nonlinear) equation of motion: 

•  Linearized model: 

•  Analytical Solution: Sine-agitation 
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ONE DIMENSIONAL CHAINS 

•  Harmonically driven: 

 

•  Mass–disorder: Normal (Gaussian) distribution 
•  Mean mass → b = 1 
•  Standard deviation → σ = ξ 

•  Pre–stress → equilibrium overlap → NOT sonic vacuum 
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DISORDERED CHAINS AS A FREQUENCY 
FILTER? 

How do signals propagate in such systems? 
•  Disorder ξ 
•  Input frequency ω0 
•  Mass distribution 
•  Contact order/disorder 
•  Linear vs. nonlinear 
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BASE CASE – PERFECT CHAIN 

 
 
 

•  Linear 
•  Uniform stiffness κ(i,j) = kn 
•  ξ = 0.0 



SOUND PROPAGATION IN PARTICULATE SYSTEMS 
WITH DISORDER AND ROTATIONS 

L.de Mol, B.Lawney,  
V. Magnanimo, S. Luding 

 
 
 

•  Linear 
•  Uniform stiffness κ(i,j) = kn 
•  ωo = 3.0 
•  ξ = 0.5 
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DISORDERED CHAINS AS A FREQUENCY 
FILTER? 



SOUND PROPAGATION IN PARTICULATE SYSTEMS 
WITH DISORDER AND ROTATIONS 

L.de Mol, B.Lawney,  
V. Magnanimo, S. Luding 

•  Consider an ensemble of chains, fix ωo = 3.0, and vary ξ: 

46 

DISORDERED CHAINS AS A FREQUENCY 
FILTER? 
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DISORDERED CHAINS AS A FREQUENCY 
FILTER? 
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DISORDERED CHAINS AS A FREQUENCY 
FILTER? 
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DISORDERED CHAINS AS A FREQUENCY 
FILTER? 

•  Fix ξ, vary ωo: 



SOUND PROPAGATION IN PARTICULATE SYSTEMS 
WITH DISORDER AND ROTATIONS 

L.de Mol, B.Lawney,  
V. Magnanimo, S. Luding 

51 

CONCLUSIONS 1 

•  ↑ disorder ξ, ↓ transmission bandwidth. 
•  Threshold value of ξ 
 

•  Lower input ωo , improved transmission 
•  Low frequencies less sensitive to mass arrangements 

•  Mass–distribution: only moments matter … 

QUALITATIVELY THE SAME AS IN 3D 
                                    => PROCEED ANALYTICAL 1D 
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ONE DIMENSIONAL CHAINS 

•  Linearized model: 



SOUND PROPAGATION IN PARTICULATE SYSTEMS 
WITH DISORDER AND ROTATIONS 

L.de Mol, B.Lawney,  
V. Magnanimo, S. Luding 

53 

ONE DIMENSIONAL CHAINS 

•  Linearized model: 

•  Evolution (Master) Equation in k-space or w-space 

d
dt

! =Q! d
dx

! =Q!
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ONE DIMENSIONAL CHAINS 

•  Linearized model: 

•  Evolution (Master) Equations in f-space or k-space 

d
dt

! =Q!

  

d
dt q!( fi )= "bi q( fi )+ bi+ j

i q( fi+ j )
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ONE DIMENSIONAL CHAINS 

•  Linearized model: 

•  Evolution (Master) Equations in f-space or k-space 
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Figure 8: The linear fit coefficient bi as a function of ki for 0 ≤ ξ ≤ 0.5. Ensemble averages from 50 chains of
256 particles, and using 256 timesteps. The inset shows the standard deviation of the linear approximation with
respect to the actual peak values in the Fourier amplitude of the input wavemode.
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Figure 9: Second-order fits to the values in figure 8 in the range 0 ≤ ki ≤ π/2.
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THREE DIMENSIONAL CHAINS 

•  Linearized model: 

•  Evolution (Master) Equations in f-space or k-space 

!!

  

d
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ONE DIMENSIONAL CHAINS 

•  Linearized model: 

•  Evolution (Master) Equations in f-space or k-space 

 

d
dt

! =Q!

(a) ξ = 0.1 (b) ξ = 0.4

Figure 13: An example of the time-averaged transition matrix Q̄ (time window from t = 0 to t = 1/4), for a)

low and b) high disorder. The values for Q̄ were obtained by ensemble-averaging for 10 chains of 512 particles.

Only the first quadrant of Q̄ is shown.

however, for high disorder, the increase in values of the off-diagonal elements is apparent. This

indicates that the approximation (24) becomes increasingly unreliable for increasing disorder.

It must be noted here that, contrary to what might be expected, the values of Q̄ are not zero
for ξ = 0, i.e. the amplitude of the input wavemode still changes in time when all masses are

equal. In fact, the same was seen in section 4.1. Since Υ(t) contains no information on kinetic

energy, the amplitude of any input wavemode will indeed change in time at frequency ω(ki), as
explained in section 4.1. However, the peak values of this amplitude will not change for zero

mass disorder.

To show the influence of the disorder parameter ξ on Q̄ii, we take the difference between

the diagonal of Q̄|ξ>0 and the diagonal of Q̄|ξ=0 (and keeping the same time window, t = 0 to

t = 1/4). The result is given in figure 14.

The values in this graph are qualitatively similar to the values of bi as displayed in figure 8.

However, caution is required here for the following reasons. Firstly, the (seemingly) quantitative

agreement is only due to a conveniently chosen time window. Changing this window changes

the numerical values of Q̄ii. Secondly, for higher disorder values (i.e. ξ = 0.5), the agreement

becomes drastically worse. More analysis is required before a clear link between the theoretical

results in this section and the numerical results in section 4.1 can be made.

5 Conclusions

In this study, we examined the frequency propagation and wavenumber evolution properties

of driven and undriven mass-disordered, one–dimensional systems. Beginning from a linear

(elastic) force–displacement relation, we investigated the behavior of pre–compressed chains,

where particles interact through linear contacts which do not open or close (i.e. the displacement

amplitudes remain small with respect to the compression distance). Interestingly, the mass

disorder by itself is enough to make the chains behave like a low–pass frequency filter, permitting

the propagation of low frequency signals, while the higher frequency components decay with

distance from the source. The signal transmission is studied for some different values of the

input frequency and the disorder magnitude. As more disorder is imposed on the system, we

observe that the higher relative frequencies are filtered closer to the source.
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ONE DIMENSIONAL CHAINS 

•  Linearized model: 

•  Evolution (Master) Equations in f-space or k-space 

•  Nonlinear … 

d
dt

! =Q!

  

d
dt q!( fi )= "bi q( fi )+ bi+ j

i q( fi+ j )
1# j<N"i
$
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j!1
" bi+ j

i

  

d
dt q!( fi )= " ai , j q( fi )q( f j )

j
# + ai" j , j q( fi" j )q( f j )

j<i
#



Self-demodulation ? higher f/k-generation 
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OVERVIEW 

Introduction: Frequency filtering and high-f bands 
 
One–dimensional chains 
• Model system and equations 
• Introduction of mass–disorder (most simple) 
• Model for frequency (low-pass) filtering 
 
Two- and three-dimensional regular packings with rotations 
• Dispersion relation 

•  Smooth (frictionless) 
•  With friction/rotations 
 

Experiments (in water) ... 



§  Solid sample and porous sample 
(PCL) with                   

§  Discrete particle radii of 0.01 mm  
§  Stratified model used to build the 

porous sample 
§  Wave velocity needs to be 

calculated: 
 
 
 
                                 
                             
                   
                                  

Fig.	
  13:	
  Modeling	
  differences	
  	
  between	
  solid	
  and	
  porous	
  samples	
  

HOMOGENEOUS & STRUCTURED SAMPLES 
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7.2. Results of the regular Scaffold model 111

and for a finer structured sample (NI = 14) with the original porosity. The wave velocities

for the solid sample are for both calculation ways the smallest. This is consistent, because

the sample particles let the wave propagate with a smaller velocity as the water particles.

The wave velocity obtained for the solid sample, 1033.9 m/s matches with an error of

0.0773% the input wave velocity of 1034.7 m/s. The velocities for both porous sample

are located in a similar range. The deviation for the sample velocity of the solid to the

structured samples is too small to identify a significant deviation. The deviation could

be just a consequence of the calculation method. Comparing with the results shown in

subsection 7.2.1, the absolute deviation is about 2 m/s and smaller than 1%.

7.2.2.2 Frequency spectra

The dependency of the frequency spectrum on different porosity and structures of the reg-

ular scaffold are investigated. The time signal of the last particle is cut using the Hanning

window, as described in chapter 5. Here, the wave is excited by a sine displacement. In

figure 7.10 the frequency spectra are plotted for sine excited wave models. The frequency
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Figure 7.10: Frequency spectra for two different frequency scales, solid sample and samples
of different structure

spectra are shown for the solid, the original sample (Φ = 0.7 and NI = 10) and the finer

structured sample (Φ = 0.7 and NI = 15). In the left a wider frequency spectrum is shown

as in the right. The frequencies of the solid are earlier cut off by the cut off frequency,

112
Chapter 7. Porous scaffolds:

samples and structure

because in the solid sample the most possible number of solid particles exist. The smaller

amplitudes in general for the solid can be also explained by the existence of the most

possible number of PCL particles. The peaks of 5 MHz are created by the sine excitation

with this excitation frequency. Comparing the two porous samples, the frequency shape

is nearly the same. The difference can be better seen, when the frequency spectrum is

scaled to the window of interest (right figure). Small deviations at frequencies at about

3 MHz, 7 MHz and 12 MHz are found. The structured sample transmits these frequencies

worse.

7.2.2.3 Attenuation

In this subsection, dependency of the attenuation on the porosity and the structure is

investigated. In figure 7.9 the attenuation values are plotted over the frequency. The
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Figure 7.11: Attenuation dependent on the frequency for two different frequency scales,
solid sample and samples of different structure

attenuation curves are calculated as the ratio between the Fourier spectra of the solid,

of the original, of the finer structured samples and the Fourier spectra of the pure water

sample. In the left, a wider frequency range of attenuation values is shown as in the

right. The attenuation shape in the left follows the same rules as described for the pulse

excitation in subsection 7.2.1. Looking at the scale of interest in the right, for all samples

a peak around 5 MHz is visible. The highest peak is found for the solid sample. The peaks
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Chapter 7. Porous scaffolds:

samples and structure

The frequency spectrum on the left is shown for a wider range of frequencies than on
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Figure 7.14: Frequency spectra for scaffold chains comparing a non random model with
two disordered models with disorder parameters 0.2 and 0.1

the right. Recalling, the place of decay for a frequency spectrum of a regular chain is

only determined by the cut off frequencies of the different layers. On the left, it can

be seen that the spectra of the disordered chains are cut off earlier. The cut off is as

earlier as higher the disorder parameter. Following, the amplitudes are smaller as higher

the disorder parameter. The effect of frequency filtering of high frequencies for a one

dimensional chain was investigated in [21] before. In the right, the frequency range of

interest is shown. There, at the end the spectra of the regular and the disordered chain

with the smaller disorder parameter come to a monotonic curve, while the spectrum of

the highest disorder parameter is falling off. With the randomization of the particles the

filtering of the high frequencies can be controlled independent of the cut off frequency of

the particle size. Of course, the maximum possible frequency is still limited only by the

cut off frequency. By defining a Fourier-amplitude threshold, maybe a relation between

the decay of the spectra and the disorder parameter could be found. However, the filtering

of high frequencies was found depending on the disorder.
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REGULAR SYSTEMS 

•  Cubic lattice •  Hexagonal lattice 
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MD APPROACH 

•  Equations of motion 

where 
 

•  Up is the generalized coordinate vector (including rotations) 
 
•     is the contact stiffness matrix 

•     contact overlap (linear spring model) 
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•  Harmonic wave solution 

•  Inserted into the equation of motion 

•  Solve Eigenvalue problem for a wave excitation in vertical direction 

67 

EIGENVALUE PROBLEM 
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DISPERSION 

•  Frictionless 
Cubic lattice     Hexagonal lattice 
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DISPERSION 

•  Friction: 
•  Cubic lattice     Hexagonal lattice 
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DISPERSION 

•  Friction: 
•  Cubic lattice     Hexagonal lattice 



Dispersion relations  

Da = d/2	


space-time-FFT 

from eigenvalue calc. 



Dispersion relations with tangential elasticity  



Density of states  
 
 
 

ordered 
 
 
 
 
 
 

disordered 



Eigenmodes 



Eigenmodes 
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SUMMARY AND OUTLOOK 

•  2D+3D dispersion relations 
•  Frictionless lattices 
•  Lattices with rotation (tang. elasticity) 
 

WORK IN PROGRESS 
•  Fully random Systems and 
•  Comparison with Experiments 


