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• Why new wave dynamics?

• Examples of Strongly Nonlinear Materials

• Hertzian chain, strongly and weakly compressed, relation to FPU problem

• From discrete  system to higher gradients continuum

• Concept of “sonic vacuum”

• Strongly nonlinear solitary wave, periodic waves, shock waves: discrete system versus 
continuum

• History lessons: Bernoulli, Einstein about nonlinearity and continuum approach

• Discrete versus continuum approaches, strongly nonlinear Hertizan chains

• Dissipative strongly nonlinear system

• General “normal” interaction law materials, power law materials, experimental realizations 

• Anomalous strongly nonlinear discrete systems, rarefaction solitons

• Reflection from interface of two “sonic vacuii”, continuum →discrete→continuum

• Diatomic chains, tunability of band gaps

• Tensegrity based  strongly nonlinear systems – unprecedented tunabilty, interfaces between 
elastically softening and elastically hardening systems

• Conclusions 

• Questions/suggestions for future

• Sources for detailed information
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Motivation
Develop barriers to mitigate shock wave generated by contact explosion in a then new 

type of devices – blast chambers. “Pure and dirty” engineering problem.

This technical problem outlined major parameters (scales) of future research:

1. Amplitude of pulse was high due to contact explosion;

2. Duration of incoming pulse was very short – 10-100 microseconds;

3. Barrier should have capability to mitigate multiple impacts.

Detonation 

Products

Steel Plate 

or item for 

explosive 

welding

Blast 

Chamber 

Granular bed (iron shots, strongly 

nonlinear media) was experimentally 

proven as very effective  shock 

mitigating media
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Why new wave dynamics?
Discrete strongly nonlinear systems (e.g., granular materials, 

systems with strongly nonlinear elements (O-rings, tensegrity

structures)) represent a new class of media being a natural 

extension from weakly to strongly nonlinear case: 

– Support new type of solitary wave, compact, space scale 

independent on amplitude, dictated by mesoscale and 

interaction law

– Highly tunable behavior, sensitive to low amplitude external 

mechanical field 

– The only known system that can be tuned from strongly 

nonlinear regime to weakly and linear regimes

– Multiscale systems based on tensegrity concept allows 

tuning from strongly nonlinear elastically stiffening 

behaviour to elastically softening regime  

– Absence of acoustic impedance in case of “sonic vacuum”, 

or its negligible influence at low precompression, new 

interfacial phenomena, e.g. continuum-discrete-continuum 

pulse transformation at interface, targeted energy transfer
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General statement 

• The area of strongly nonlinear dynamic behavior of discrete “soft”

condensed matter is an exciting new domain of research, still in

infant stage

• Research in this area is a logical step forward in general strongly

nonlinear wave dynamics with possible similar developments in

totally different areas than mechanical systems

• The main goal is a design of strongly nonlinear tunable

mesostructures with optimal performance in such applications as

mitigation of high amplitude pulses, acoustic lensse, delay lines,

scrambling devices

• Presentation will be mainly restricted to propagating waves and to

theoretical and numerical results connected with existing

experimental data or with future experiments

• This presentation is not a review of this now very broad and active

area of theoretical, numerical and experimental research
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Examples of Strongly Nonlinear Materials

– Low dimensional and three dimensional granular 

materials

– Polymer and metal foams

– Metamaterials, like laminates foam/steel plates or 

steel plates/polymer o-rings

– Tensegrity structures

– “Forest” of carbon nanotubes 

– Colloids, magnetorheological slurry
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Sources of strong nonlinearity

• Nonlinear interaction law: linear term is absent or small 
in compression combined with zero tensile strength; 
Hertzian interaction between beads, double power law 
for compression of o-rings between rigid plates

• “Configurational” nonlinearity: structural  
rearrangements under applied load, microscopic: 
change of coordination number with compression 
mesoscopic: rearrangements of force chains

• Elastic instability: (buckling) of walls of cells in foams or 
carbon nanotubes in “forest” of carbon nanotubes or in 
three-dimensional lattices  

• Nonlinear dissipation, especially in rubber elements 
like O-rings
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1-D granular crystals/Hertzian chains
First attempt to understand performance of granular bed was based 

on assumption of strongly compressed, weakly nonlinear ( << o) 

discrete system with Hertzian interaction between spherical particles 



1.  << o

2. L >> 2R


Continuum description is based on corresponding two small parameters
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Equations of motion for discrete granular chain

  u i = A 0 – ui + u i – 1
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Anharmonic approximation for strongly compressed chain, this case 

is directly related to FPU problem 
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FPU problem, discrete chain equations: weakly 

nonlinear problem
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“..the purpose of our computations was to see how, due to nonlinear forces 

perturbing the periodic linear solution, the string would assume more and more 

complicated shapes, and, for t tending to infinity, would get into states where all the 

Fourier modes acquire increasing importance”.  Below is original part of the text:



Continuum approximation
Linear wave equation, dispersive and weakly nonlinear Boussinesque wave 

equations (approach is based on two small parameters) 
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Discrete strongly precompressed granular chain
(transformation to KdV equation, specifics of granular chain in this case is 

mainly related to tunability of coefficients in KdV equation by relatively small 

external forces)

Vitali F. Nesterenko 

Complexity in  Mechanics, Kavli Institute for Theoretical Physics

October 23, 2014



Properties of KdV soliton in Hertzian chain
Approaching a big problem - failure of KdV solitary wave in case of 

zero sound speed at zero precompression. 

Apparently new approach is required in this case.
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Non-compressed or weakly compressed,

strongly nonlinear ( >> o) discrete system

Breaking from KdV (based on two small parameters) and 

FPU paradigms (weakly nonlinear) 



1.  << o

2. L >> 2R

We still may try to use continuum description (not always applicable for 

granular matter!). No weakly nonlinear approximation possible, no more two 

small parameters, only one small parameter left.  This is very “simple”, but 

very instructive example of general strongly nonlinear behavior.
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Overcoming KdV equation paradigm
(Can we call any signal a sound wave?) 

For Hertzian chain sound speed (                              ) is zero at zero x0 -

“sonic vacuum”.  Naming is important to identify a new domain of research



c0  cn nx0

(n1)/2
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Strongly nonlinear wave equation

“higher gradients” continuum
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General equation for solitary wave

At small dynamic amplitude of xm - x0 = xd this equation gives sound speed 

and speed of KdV soliton in corresponding approximations

Dependence of solitary wave speed Vs in the 

initially compressed chain versus the 

relative amplitude xr= (x0 + xd)/x0.
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Dependence of solitary wave speed Vs in the 

initially compressed chain on wave amplitude 

and the theoretical prediction.  From: C. 

Coste, E. Falcon, S. Fauve, PRE, 56, 1997.



Strongly nonlinear soliton in “sonic vacuum”

1. Width does not depend on amplitude. A strong nonlinearity resulted in a solitary 

wave width equal only to 5 particle sizes with compact support raising question about 

possible failure of continuum approach. Number 5 comes from force exponent 3/2.

2. For very small initial compression Vs/c0 ∞. The amplitude of the soliton can be 

infinitely large in comparison with initial strain

3. Vs~U1/10, (qualitatively similar to suggested in Einstein’s letter to Born). 

4. Soliton can be considered as “quasiparticle” with effective mass ~1.4m
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Main  features of “sonic vacuum”, qualitative 

difference with FPU problem, connection with FPU 

problem in case of strong precompression

1. No phonons, which are direct consequence of linear elastic interaction 

between particles, exist in “sonic vacuum”, unlike in FPU system

2. Basic excitations are strongly nonlinear solitary waves and not 

phonons, they are of the same nature even at infinitesimal amplitude

3. No characteristic speed like sound speed independent of signal 

amplitude exist in “sonic vacuum”

4. Speed of solitary wave can be infinitely larger than sound speed and 

strongly depends on its energy

5. Unlike width of solitary wave in weakly nonlinear case soliton in “sonic 

vacuum” has width independent on amplitude 

6. “Sonic vacuum” has a zero tensile strength though this requirement 

main be relaxed at least for compression waves

7. Static precompression reduces “sonic vacuum” to FPU problem, if 

pulse amplitude is small in  comparison with initial strain
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Hierarchy of waves in continuum 

I
Co

Linear

(Structure independent, 

discrete system with 

linear interaction law)

II Co(l) Linear dispersive

(Structure sensitive, 

discrete system with 

linear interaction law)

III Vs=c0+u Weakly nonlinear 

dispersive (KdV solitons, 

weakly nonlinear FPU 

problem in discrete case)

IV Vs=yu) “Sonic vacuum”(c0=0), 

strongly nonlinear 

solitary, shock and 

periodic  waves (V>>c0); 

strongly nonlinear 

discrete systems, 

nonanalytical interaction 

law. Limit of continuum 

approach, active area of 

research
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What else is unique for strongly nonlinear materials:
Fast processing of initial pulses: generation of train of solitary waves from 

initial impact (was very important for their experimental observation because  

dissipation could be ignored in a first approximation). 

Modification of initial pulses on short distances from entrance
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“Solitary” waves in random chain 

•

Decay of the quasisolitary impulse in the random 

chain: particle velocity for the 61th particle and first 

oscillation (broken line) for the 96th particle. Random 

chain was impacted by two particles with a velocity of 

5 m/s. 

Vitali F. Nesterenko 

Complexity in  Mechanics, Kavli Institute for Theoretical Physics

October 23, 2014



Solitary wave in on site disturbed chain, 

comparison to Hertizan chain
(Figure from paper by Y. Starosvetsky, PRE, 85, 

051306, 2012)
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Other solitary waves similar to observed in 1-D 

chain 

Is 1-D solitary wave in granular chain 

related to 2-D or 3-D packings?

From: A. Leonard · F. Fraternali · C. 

Daraio, Experimental Mechanics, 

2011:

“….deviations from the granular 

crystal’s ideal contact lattice were not 

significant enough to prevent the 

formation and propagation of solitary 

waves, with no or minor energy lost in 

the excitation of adjacent chains of 

particles. The observed solitary waves 

appeared to have comparable 

properties to the extensively studied 

solitary waves traveling in an 

uncompressed, one-dimensional 

chain of spheres. 



•

History lessons: Change of paradigm of 
nonlinearity

D. Bernoulli, 1741

(30 years before Boussinesq’s papers 1871,1872)
“For the elongation will not be proportional to the extending 

force…and everything must be irregular”. 

In other words, Bernoulli accepted/introduced paradigm that 

nonlinearity results in irregular behavior.  It survived for very long time 

and it was one of motivation for FPU problem – expected 

thermalization due to weak nonlinearity.
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Einstein’s interest in strongly nonlinear 

systems (original letter)
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Waves in 3-dimensional space whose velocity is regulated by potential 

energy (for example, rubber bands)… 

Comment: In linear case velocity of sound c0 (or similar pulse in another 

media) is not regulated by potential energy, it is simply constant. 

Rubber bands are mentioned probably as example of strongly nonlinear 

system experiencing large strains.  Einstein did not mention metals or 

ceramics which represent a linear system at small amplitudes of wave. 

We saw that in strongly nonlinear case solitary wave velocity Vs is 

strongly regulated by potential energy U. For example, it is equal zero 

when potential energy is equal zero and for specific case of strongly 

nonlinear Hertzian chain Vs~U1/10.

Albert Einstein to Max Born (4 December 1926):
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• “I consider it quite possible that physics cannot be based on the 

field concept, i. e., on continuous structures. In that case *nothing* 

remains of my entire castle in the air, gravitation theory included, 

[and of] the rest of modern physics”. 

-- Einstein in a 1954 letter to Besso, quoted from: "Subtle is the 

Lord", Abraham Pais.  

Einstein’ pessimism about continuum approximation 

and discrete versus continuum approach in strongly 

nonlinear granular chains 

• Interesting that Einstein did not connect requirement of strong 

nonlinearity (which in “sonic vacuum” resulted in a solitary wave 

width equal 5 particle sizes) with possible failure of continuum 

approach (or I failed to find it).
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Strongly nonlinear solitary wave in  discrete system 

and in continuum approximation
Comparison of strains (left) and particle velocities (right) profiles for a solitary 

wave (width about 5 particles) in discrete system (1) and continuum (2), 

generally satisfactory relations between discrete and continuum approaches.  

Compact support in continuum approach and double exponential decay in 

tails in numerical calculations (Chatterjee, A. Phys. Rev. E, 59,5912, 1999)
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Periodic waves, discrete versus continuum

   

Vp = c 2

5 xmax – xmin

2 xmax

5
2

5
2 – xmin

5
2

5
2 – 5x 2

3
2

3
2 xmax – xmin

xmax + xmin – 2x2

1
2

1
2

,

From Nesterenko, Herbold, Physics Procedia, 2010

Comparison of the numerical data for discrte chain with a stationary solution 

of strongly nonlinear continuum wave equation.  
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The critical viscosity for transition from oscillatory to monotonous shock for 

power law materials and for Hertzian interaction

3/)1(/,  nnaVp shsvc
aVp shsvc 2/, 

From: E. B. Herbold and V. F. Nesterenko, PRE,2007

   V sh = c
4

5
4

5 c

1
5

1
5.

Continuum versus discrete system, satisfactory relations between discrete and 

continuum, minimal shock front width is about 7 particles for Hertzian chain
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Continuum versus discrete system
(From Ahnert and Pikovsky, PRE, 026209, 2009)

•Markers show the wave on the 

lattice

•dashed lines show the 

corresponding solutions of the 

continuum approximation 

based on expansion of 

displacements (Nesterenko, 

1983, 2001)

• dotted lines show the 

corresponding solutions of the 

continuum approximation 

based on expansion of 

differences (Rosenau, Hyman 

1993)

• n=3/2: (a, normal scale) and 

(b, logarithmic scale);

•n=3 (c, normal scale) and (d, 

logarithmic scale);

•n=11 (e, normal scale) and (f, 

logarithmic scale);
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Probably Einstein was too pessimistic about 

continuum approximation? 

• Question about limits of continuum approach is still an 

open question.  How many grains are enough to 

consider them in continuum limit?

• Frieske and Watt’s theorem for discrete lattice 

(Friesecke, Wattis, Comm. Math. Phys, 161, 391, 1994)

and proof of existence of compressive strongly solitary 

wave in continuum approximation for general 

interaction law (Nesterenko, 2001) require the same 

property of interaction law – “normal” elastic stiffening 

under compression 
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Two wave structure in dissipative strongly nonlinear 

system excited by δ-function pulse

(A. Rosas, A.H. Romero, V.F. Nesterenko and K. Lindenberg, PRL, 2007)

Leading solitary wave 

and shock-like wave 

travel with different 

speeds and different 

rates of attenuation
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General “normal” interaction law
Solitary wave speed with strain in maximum xm is equal to square root of 

tang, angle g is determined by position of minimum of effective potential 

energy W, tan is related to speed of shock wave with final strain xm
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Power law materials, compression solitary wave

1. Width of strongly nonlinear compression solitary 

wave is scaled with diameter of particle, but also 

strongly depends on force exponent (for hertzian

interaction n=3/2 and Ln ͌ 5a.  

2. When n is approaching 1, the width Ln is approaching 

infinity, at large n, Ln is close to a. 

3. The width does not depend on the amplitude
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Another examples of strongly nonlinear discrete systems
(double power law materials if O-rings are used as strongly nonlinear elements. 

This approach allows design of strongly nonlinear metamaterials with practically 

any interaction forces between elements)

From: E.B. Herbold, V.F. Nesterenko, Applied Physics Letters, 2007
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Short stress pulses in a chain of nitrile O-rings and stainless steel cylinders 

generated by a steel striker (0.455 g) with an initial velocity of 2.62 m/s

(From: Yi. Xu and Vitali F. Nesterenko, Phil. Trans. R. Soc. A, vol. 372, 20130186, 2014)

Experimental (left) and numerical results (right) at static 

precompression force (a) 10N and (b) 193 N.  
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Experimental and numerical of 

pulse speed dependence on 

initial strain. Green curve 

represents the long-wave sound 

speed at E0 =105 MPa. Dashed 

red curve represents sound 

speeds corresponding to the 

Hertzian part of the interaction.



Experiments with O-ring and in the model 

(viscoelastic, strongly nonlinear)

From: C-W Lee and V. F. Nesterenko, Journal of Applied Physics, vol. 116, 083512 (2014) 

The pre-compression strains are indicated by corresponding vertical lines: 4%, 40%, and 

50%, which also correspond to the beginning of curves for dynamic forces in experiments (at 

corresponding points on the static curve) and in the model (at points elevated vertically from 

the static curve). A static equation is shown by a dotted line.
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Other strongly nonlinear discrete systems with 

behavior similar to Hertzian chain
(experimental setup composed of a one-dimensional

chain of alternating cylindrical particles or rods)

E. Kim and J. Yang, arXiv:1404.6972From: F. Li, D. Ngo, J. Yang, and Chiara Daraio, 

Applied Physics Letters 101, 171903 (2012)
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Anomalous, strongly nonlinear 

discrete systems
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“Abnormal” Materials
Graphical illustration of the relative speeds of sound,  

rarefaction solitary wave, and rarefaction shock for 

abnormal materials 
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Linear elastic response followed by a nonlinear 

response due to coordinated buckling
(Figures from: K. C. Cheung and N. Gershenfeld, Science 341, 1219 (2013))

Elastic response of composite materials (left) made by reversibly assembling 

a three-dimensional lattice (right) of mass-produced carbon fiber–reinforced 

polymer composite parts with integrated mechanical interlocking connections.
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Solitary waves in discrete chain versus continuum for three 

different values of power exponent n

Strain from discrete simulations 

for n = 1/5 (blue), 1/2 (green), 

and 4/5 (red) is compared to 

equation above which slightly 

overestimates the width 

(FWHM) of the solitary 

rarefaction wave

(From; E.B. Herbold and V.F. 

Nesterenko, Phys. Rev. Lett., 

110, 144101, 2013 )
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Width of strongly nonlinear rarefaction solitary wave is scaled with diameter of 

particle and weakly depends on force exponent (unlike the case with compression 

wave). 

The width does not depend on the amplitude 



Pulse processing by anomalous material (n=1/2), static force 1 N
(a) initial velocity of first particle −1.373 m/s results in rarefaction wave with a  tail; 

(b) impact with velocity 5 m/s initially generates nonsteady compression wave which

disintegrates into leading rarefaction wave and oscillatory tail with decaying amplitude.

Ultimate protection shield without dissipation! 
(From; E.B. Herbold and V.F. Nesterenko, “Propagation of Rarefaction Pulses in Discrete Materials 

with Strain-Softening Behavior”, Phys. Rev. Lett., vol. 110, 144101, 2013 )

Vitali F. Nesterenko 

Complexity in  Mechanics, Kavli Institute for Theoretical Physics

October 23, 2014



Interaction of pulse with 

interfaces between strongly 

nonlinear discrete materials
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Generation of a solitary

wave train by incident solitary wave

Time sequence leading to the generation 

of a solitary wave train in simulations. The 

(red) beads on the left of the interface 

constitute the heavier medium with mass 

m1 and the (yellow) beads on the right of 

the interface constitute the lighter medium 

with mass m2. The mass ratio A ≡ m2/m1= 

0.125. Practically the whole pulse was 

transmitted into the system with small 

particle masses.

Completely different behavior was 

observed when incident solitary wave 

approached interface from the other side. 

From:  A. M. Tichler, L. R. Gomez, N. Upadhyaya, X. Campman, V. F. Nesterenko, and V. Vitelli, 

Physical Review Letters, vol. 111, 048001 (2013)
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Model for the formation of a solitary-wave train

Momentum ratios P2,n/P2,1 between the n-th solitary wave and the leading 

one in the train for A = m2/m1= 0.125. Red circles are the theoretical

predictions while the black squares are the numerical values

from the simulations.

Continuum →discrete→continuum
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Angle of refraction θrefr vs angle of incidence θi for the 

hexagonal lattice when A<1 (a) and A>1 (b)

Numerical data (symbols) and 

the analytical estimate (solid 

curves) for the angle of 

refraction ( black data ) and 

angle of reflection (blue data) 

vs the angle of incidence for 

the hexagonal lattice. The 

interface is shown as the 

dashed (red) line and arrows 

represent the direction of 

propagation of the solitary 

wave front (thick dark region). 
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Completely different behavior in cases when A<1 (a) and A>1 (b).



Anomalous reflection of strongly nonlinear pulse from magnetically preloaded 

interface of two sonic vacua, 

acoustic “diode”-transmission through interface is regulated by static force
(From:  V.F. Nesterenko, C. Daraio, E. Herbold, S. Jin, PRL, 95, 158702 (2005))
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Solitary pulse reflection from interface of two sonic vacua

(stainless steel beads(high acoustic impedance)/PTFE beads (low 

acoustic impedance) beads)
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Energy Trapping and Pulse Mitigation by a 

Composite Discrete Medium

(C. Dario, V.F. Nesterenko, E.B. Herbold, S. Jin, Phys. PRL, vol. 96, 058002, 2006)

The introduction of the preload significantly reduced the force impulse acting 

on the wall, facilitating the splitting of the signal into a train of low-amplitude 

waves.
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Strongly nonlinear two mass 

chains, tunable band gaps
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New family of solitary waves in strongly nonlinear  granular dimer chains
(From K. R. Jayaprakash, Y. Starosvetsky, and A. F. Vakakis, PRE, E 83, 036606, 2011)

Solitary waves in the dimer pairs for mass ratio  

m/M=0.3428, no oscillatory tails appear in the trail of the 

propagating pulse

Phase plot of relative velocity versus relative dispalcemnt 

between successive heavy and light beads compared to 

the solitary wave of the homogeneous chain of heavy 

beads (m/M=1)

Velocity profiles of dimer pairs for the arbitrary  mass ratio  

m/M=0.37, oscillatory tails appear in the trail of the 

propagating pulse causing their weak decay
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The system can be optimized to provide fastest 

pulse attenuation at the same density



Two mass chains, band gap effects for nonlinear signals, 

frequency outside of band gap
(From: E. B. Herbold, J. Kim, V. F. Nesterenko, S. Wang, and C. Daraio, Acta Mechanica, 2009)

(a), (c) Numerical calculations:  (b), (d) Experimental results:.
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Two mass chains, band gap effects for strongly nonlinear signals, 

frequency inside band gap
(From: E. B. Herbold, J. Kim, V. F. Nesterenko, S. Wang, and C. Daraio, Acta Mechanica, 2009)

The lower range of the forbidden frequency is 7.7 kHz being lower than the frequency of the major 

harmonic in the input signal. 

(a), (c) Numerical calculations;     (b), (d) Experimental results.
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Strongly nonlinear discrete systems with unprecedented tenability: 

chain of tensegrity prisms and lumped masses
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F. Fraternali, G. Carpentieri, A. Amendola, R. E. Skelton, and V. F. Nesterenko, Multiscale tunability 

of solitary wave dynamics in tensegrity metamaterials, arXiv 1409.7097



Multiscale tunability of the tensegrity unit

Curves correspond to the quasi-static force response of the tensegrity unit to 

global strain ε at different values of the local prestrain p0.

From: F. Fraternali, G. Carpentieri, A. Amendola, R. E. Skelton, and V. F. Nesterenko,, Multiscale 

tunability of solitary wave dynamics in tensegrity metamaterials, arXiv 1409.7097 



Impact on elastically-softening chain

Evolution of initial compression 

pulse into rarefaction wave and 

periodic trail at different impact 

velocities (global and local 

prestrain are correspondingly 

equal to ε0=0.20, p0=0.04).
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From: F. Fraternali, G. Carpentieri, A. Amendola, R. E. Skelton, and V. F. Nesterenko, Multiscale 

tunability of solitary wave dynamics in tensegrity metamaterials, arXiv 1409.7097 



Interaction of solitary waves with interfaces LIEH and HIES

Interaction of a rarefaction solitary 

wave with a HIES-LIEH interface: 

instead of reflected compression wave 

we observe reflected rarefaction wave 

and  transmitted compression wave

Interaction of a compression solitary wave 

with a LIEH-HIES interface: instead 

expected single reflected solitary wave we 

have two and transmitted wave is a 

rarefaction wave with periodic tail  

From: F. Fraternali, G. Carpentieri, A. Amendola, R. E. Skelton, and V. F. Nesterenko,, Multiscale 

tunability of solitary wave dynamics in tensegrity metamaterials, arXiv 1409.7097 



Conclusions
• Strongly nonlinear, discrete “soft” condensed materials (e.g., granular 

materials) represent a new class of medium where new wave dynamics 
should be developed. 

• Strongly nonlinear systems are highly tunable, including tunabilty of band 
gaps by small external force. Metal plates separated by polymer o-rings 
are more tunable than Herzian systems

• A strongly nonlinear wave equation is based on only one small 
parameter—ratio of the particle size to the wave length. It is more general 
than weakly nonlinear Korteweg–de Vries equation, the latter being a 
partial case of the former for small amplitude waves

• Strongly nonlinear periodic waves, compression solitary, and shock 
waves are qualitatively different from the weakly nonlinear KdV case.

• The spatial width of compression strongly nonlinear solitary waves in 
“sonic vacuum” and their shape do not depend on amplitude, initial sound 
speed does not determine the soliton parameters, speed has strong 
dependence on amplitude. 

• Long wave approximation, considering discrete chain as a continuum, 
satisfactory predicts spatial scale of solitary waves, being comparable to 

particle size a (for n=3/2 it is 5a, for larger n it is approaching a), type of 
shock wave (oscillatory versus monotonous depending on viscosity) and 
parameters of periodic waves



Conclusions 

• In “sonic vacuum” initial impulse is split into a soliton train quickly on 
very short distances from the entrance

• Strongly nonlinear solitary waves demonstrate new behavior and 
anomalous reflection from interfaces, pulse trapping inside protecting 
layer is possible

• The solitary waves are observed in experiments including metal, 
polymers and polymer coated metal beads by different group of 
researchers

• Quantum effects in classical systems: the steady solitary waves 
propagate only at specific discrete values of mass ratio (0.3428, 
0.1548, 0.0901, 0.0615, 0.04537…) in “diatomic” particulate chains 

• Viscous dissipation may qualitatively change shock wave structure or 
result in two wave structure under -force excitation

• In the case of strongly  nonlinear  materials  with abnormal behavior 
(e.g., tensegrity based), there are periodic waves, rarefaction shock 
waves, and rarefaction solitons. They are supersonic, relative to the 
initial state. No stationary compression waves are allowed in such 
materials and initial compression pulse quickly desintegrates into 
rarefaction wave and oscillatory tail.  Strongly  nonlinear  materials  with 
abnormal behavior might provide ultimate impact protection systems
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Questions/suggestions for future
Wave dynamics in discrete, strongly nonlinear mechanical systems (first 
example was granular chain) is in the very early stage of development with 
many open questions: 

• Continuum versus discrete description. Limits of strongly nonlinear 
continuum approach.

• Nonstationary analysis of transients, dependence of number of solitary 
waves on parameters of initial disturbance

• Optimization of properties of dissipative strongly nonlinear systems, 
specifically, periodic systems of toroidal rubber elements (highly 
nonlinear) and metal plates

• Assembling and testing of a new strongly nonlinear metamaterials, 
particularly for high energy absorption, e.g., tensegrity based

• Experiments with strongly nonlinear systems on smaller scales, from 
mesoscale to atomic scale

• Anomalous strongly nonlinear systems, experimental realization, additive 
manufacturing is a possible approach for their manufacturing

• Optimized strongly nonlinear systems for targeted energy transfer

• Electromagnetic and molecular analogs of strongly nonlinear systems

• Chaos and thermalization in a system without phonons

• Nanoscale systems without phonons. How heat propagates in a systems 
without phonons?

• Anderson localization in disordered strongly nonlinear systems

• Optimization of “soft” condensed materials for impact/blast mitigation, 
development of lenses for focusing/defocusing, delay lines
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Thank you for your attention!


