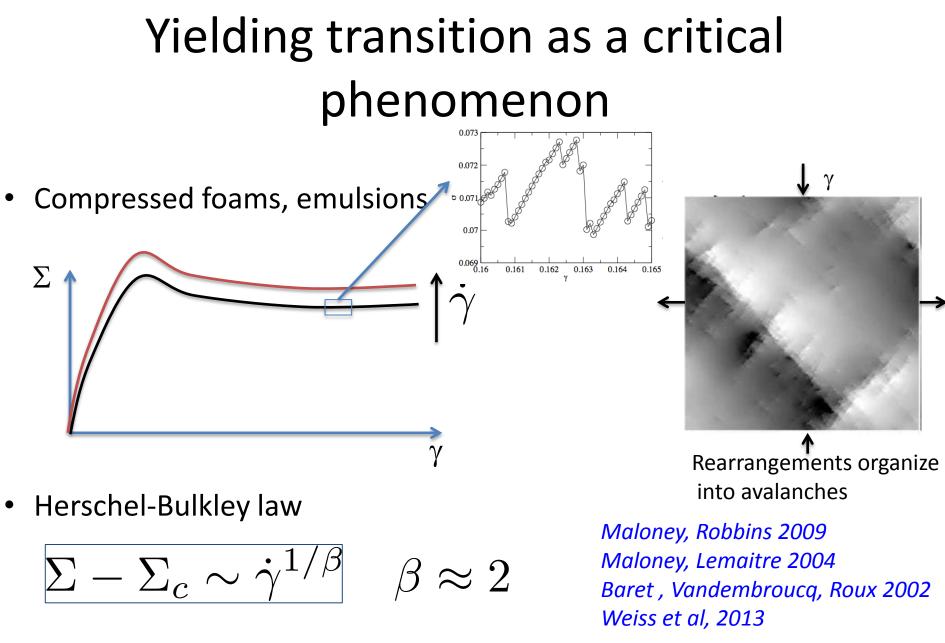
How soft amorphous solids yield? A scaling description

Matthieu Wyart Jie Lin, Alaa Saade, Edan Lerner Center for Soft Matter Research, NYU

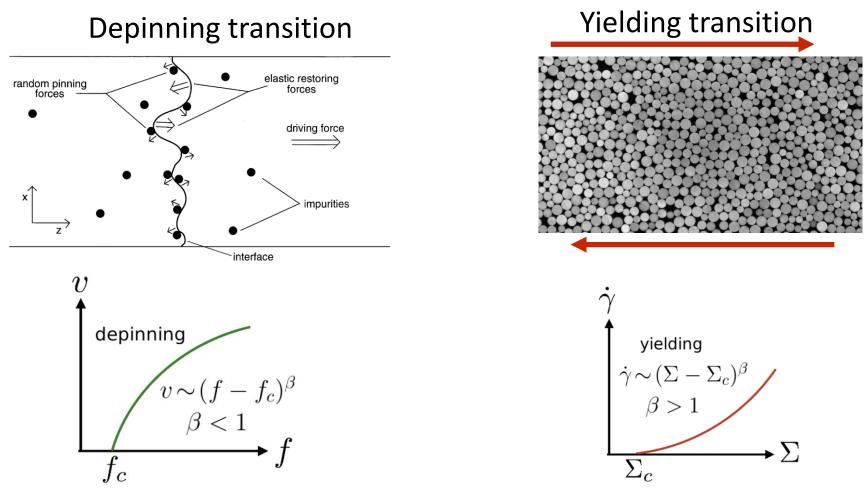
Alberto Rosso LPTMS, Orsay

EPL, 105, 26003 (2014) PNAS, 111, 14382 (2014)

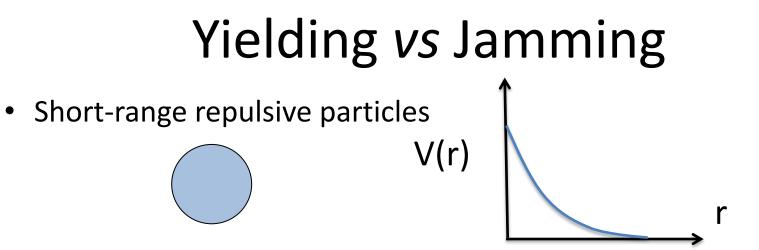


Connection between rheological properties and microscopic behavior?

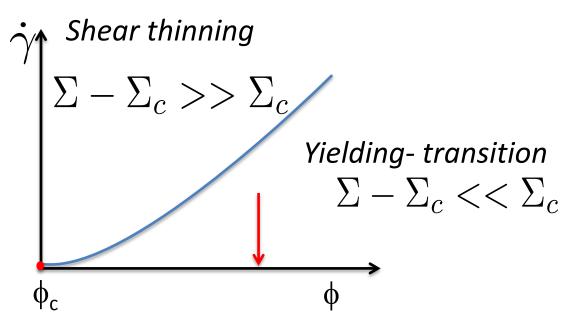
Yielding vs Depinning?



- difference: finite size effect in first plastic event Maloney, Lemaitre 2004 Karmakar, Lerner, Procaccia 2010, Salerno and Robbins 2012
- Contention: once difference understood, analogy useful

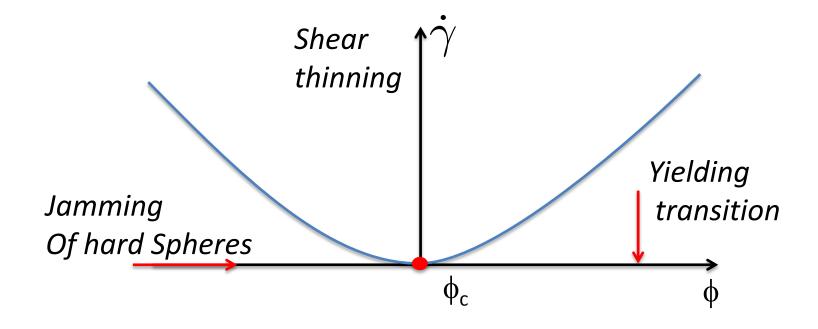


• Phase diagram under shear Masson and Weitz, Olsson and Teitel



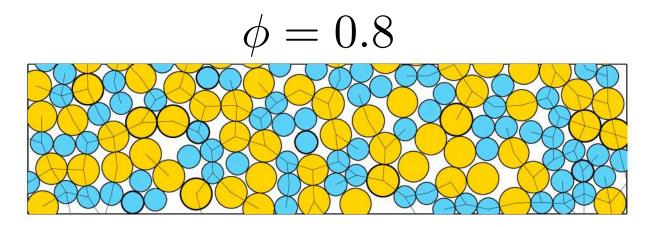
• Line of critical points ending with the jamming transition

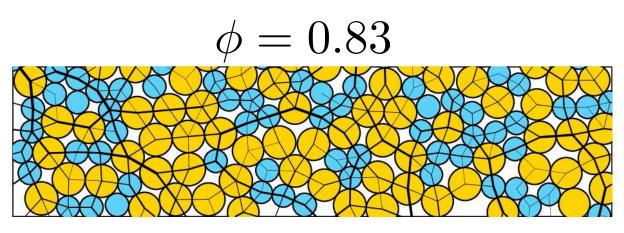
Yielding vs Jamming of Hard Spheres



• Newtonian fluid, diverging viscosity and length scale at ϕ_c Olsson and Teitel, Heussinger et. al, Boyer et al., Clement

Jamming of suspended Hard spheres





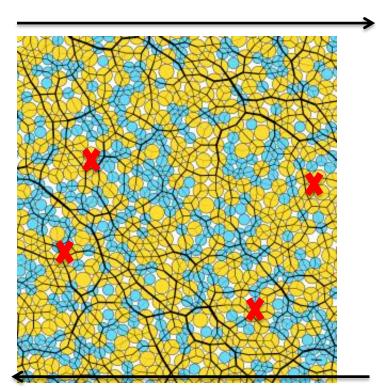
- Growing length scale visible
- Purely geometrical problem, no loading

of elastic energy

Lerner, During, MW, PNAS 2012

Density of weak spots controls critical properties

Lerner, During, MW, PNAS 2012, De Giuli, Lerner, During, MW arxiv 14



Anisotropic Shear-jammed states:

- Perturbation around the solid
- opens weak contact $\,P(f)\sim f^{ heta'}$

• Predictions

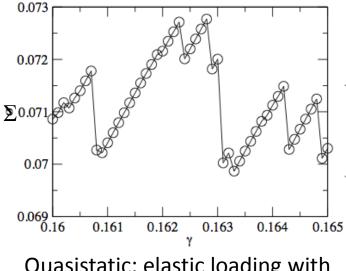
$$l_c \sim 1/\sqrt{z_c - z}$$
$$\eta \sim (z_c - z)^{-\frac{4+2\theta'}{1+\theta'}}$$

- density of weak spots is singular, exponent enters in scaling relations
- singularity governed by requirement of stability
 Contention: same holds true near the yielding transition

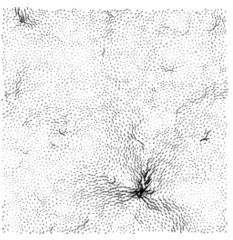
Shear transformation in soft amorphous solids

Deformable particles:

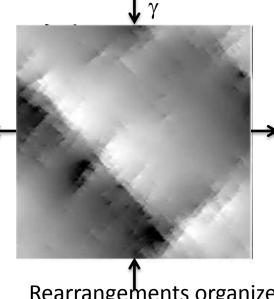
(e.g. compressed emulsions, Metallic glass).



Quasistatic: elastic loading with Sudden energy release



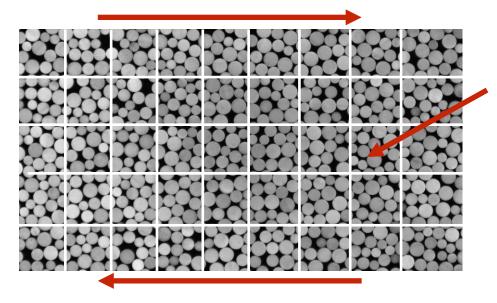
Local rearrangement: Shear transformation *Maloney, Lemaitre Argon Falk, Langer*



Rearrangements organize into avalanches *Maloney, Robbins*

Density of Shear transformation??

Density of shear transformation



X_i: distance to local elastic instability

Depinning transition: P(x=0)>0

Yielding transition:

$$P(x) \sim x^{\theta}$$

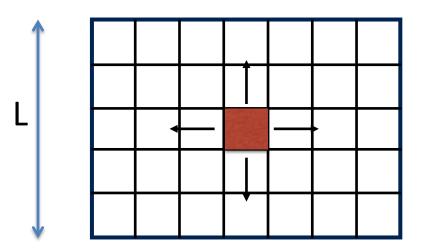
Karmakar, Lerner, Procaccia 2010 Lemaitre, Caroli 2007 $\theta > 0$

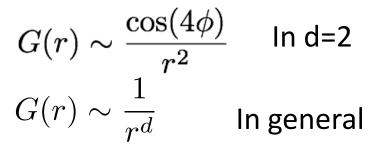
Implied by stability

Lin, Saade, Lerner, Rosso, Wyart EPL 2014

Stability argument

Lin, Saade, Rosso, Wyart EPL 2014





Picard, Ajdari, Lequeux, Bocquet 2004

- Assume no singularity $\,P(x=0)>0\,$
- Number of events triggered by one: $m \sim \int_0^L \frac{1}{r^d} P(0) r^{d-1} dr \sim \ln(L)$

m>>1 implies exponential explosion!

• In general $G(r) \sim \frac{1}{r^{\alpha}} \implies P(x) \sim x^{d/\alpha - 1}$ for $\alpha < d$

Similar Efros Schklovskii dirty insulators

Numerical validation: Elasto-plastic model

Baret, Vandembroucq, Roux, PRL 2002 Picard, Ajdari, Lequeux, Bocquet, PRE 2005 Martens K, Bocquet L, Barrat 2011

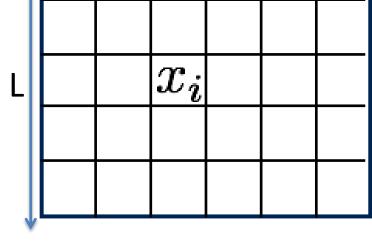
Configuration = { X_i }

$$X_i = \sum_i^{\text{yield}} - \sum_i$$

• Control parameter Σ , or <X_i>= < Σ_i^{yield} > - Σ

$$x_i \to 1$$

 $x'_j = x_j + G(\vec{r_i} - \vec{r_j})$



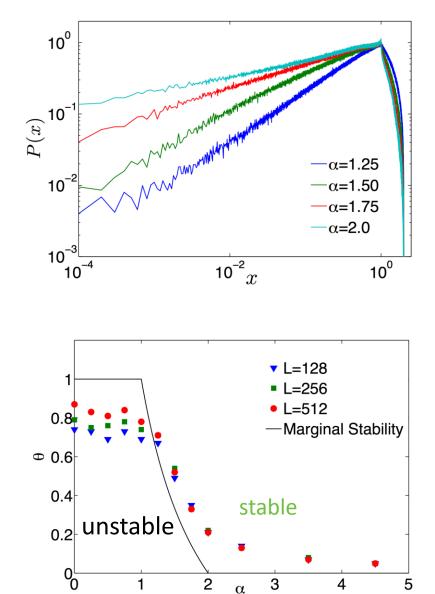
Dynamics:

- If $x_i < 0$ after time au_c
- $\dot{\gamma}$: # plastic events/(time*N)

<u>Behavior:</u> yield stress Σ_c

Power law interaction with random sign at $\Sigma_{\rm c}$

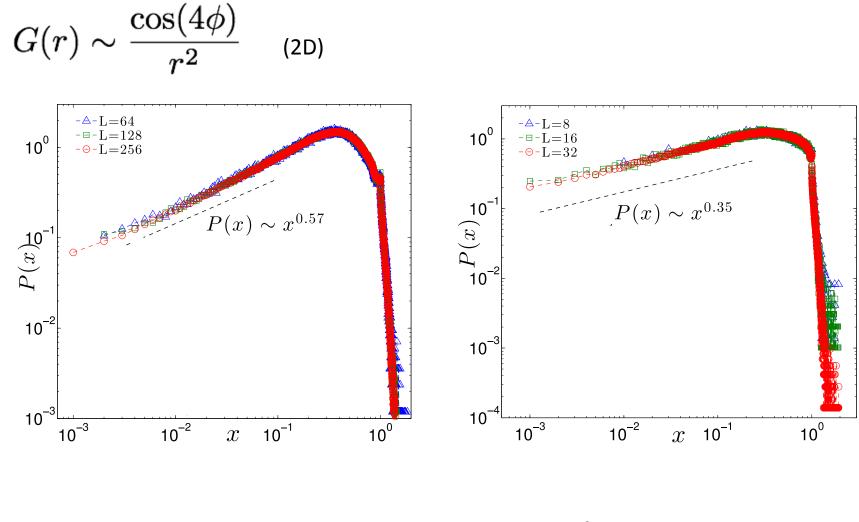
$$G(r) = rac{\eta(r)}{r^{lpha}}$$
 $\eta(r)$ White noise



$$P(x) \sim x^{\theta}$$

- Longer range -> larger θ
- Near stability bound

Realistic interactions



 $\theta_{2d} = 0.57$

 $\theta_{3d} = 0.35$

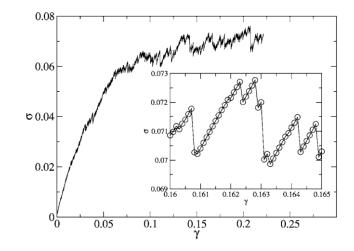
$\theta > 0$ explains curious finite-size effect

Typical stress increment to generate a new avalanche is x_{min}

$$P(x) \sim x^{\circ}$$

 $x_{min} \sim N^{-1/(\theta+1)}$

Δ



Maloney, Lemaitre, PRE 2006 Salerno, Robbins, PRE 2013 Karmakar, Lerner, Procaccia, PRE 2010

 $\begin{array}{ll} \theta \approx 0.54 \ {}_{2\mathrm{D}} & \theta_{2d} = 0.57 \\ \theta \approx 0.47 \ {}_{3\mathrm{D}} & \theta_{3d} = 0.35 \end{array}$

Salerno, Robbins, PRE, 2013

Scaling description

Lin, Lerner, Rosso, Wyart PNAS 2014

- Generalization of depinning *Fisher 1998* with $\theta > 0$
- 3 independent exponents (instead of 2)

Definitions of exponents:

Yielding transition

$$\dot{\gamma} \sim (\Sigma - \Sigma_c)^{\beta}$$

$$P(x) \sim x^{\theta}$$

$$\xi \sim |\Sigma - \Sigma_c|^{-\nu}$$

Picard et al., 2005, Lemaitre Caroli 2009, Barrat, Martens

Depinning transition

$$V \sim (F - F_c)^{\beta}$$

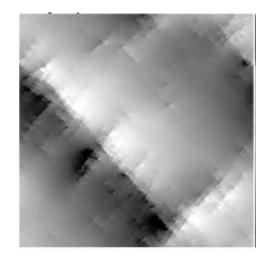
- $P(x) \sim x^0$
- $\xi \sim |F F_c|^{-\nu}$

Avalanche exponents

- Distribution of size for quasi static shear (Σ_c)
 - S: amount of plastic activity $S\sim \Delta\Sigma L^d$

$$\sim S^{-\tau} \quad \tau \in [1.2, 1.5]$$

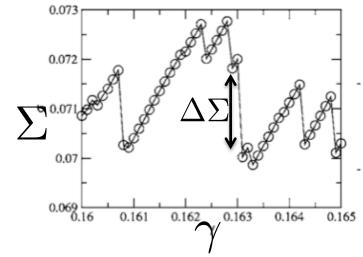
$$\begin{bmatrix} \mathbf{1} \cdot \mathbf{2} \\ \mathbf{3} \end{bmatrix}$$



Relation size/spatial extension

$$S \sim l^{d_f} \Longrightarrow S_c \sim L^{d_f}$$

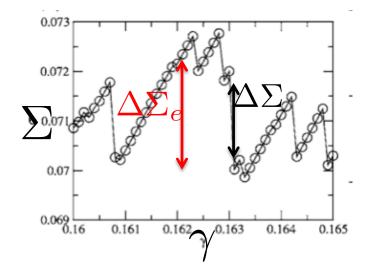
Duration T



Maloney Lemaitre 2006

Scaling relation 1: stationary

$$\Delta \Sigma_e = \langle \Delta \Sigma \rangle$$
$$\langle \Delta \Sigma \rangle = L^{-d} \langle S \rangle$$
$$= L^{-d} S_c^{2-\tau}$$
$$= L^{d_f(2-\tau)-d}$$



Maloney Lemaitre 2004 Karmakar, Lerner, Procaccia 2010 Salerno, Robbins 2012

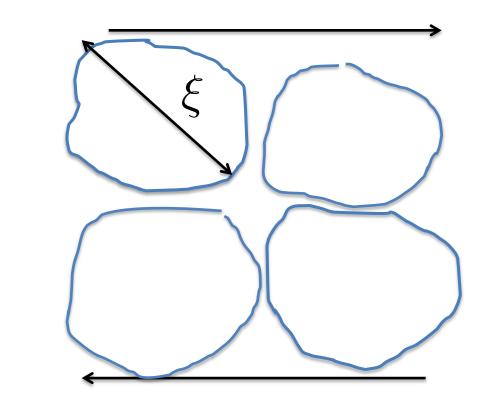
As seen above:

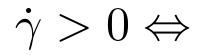
$$\Delta \Sigma_e \sim x_{min} \sim L^{-d/(1+\theta)}$$

 \boldsymbol{a}

Lin, Lerner, Rosso, Wyart 2014

Scaling relation 2: flow consists of avalanches





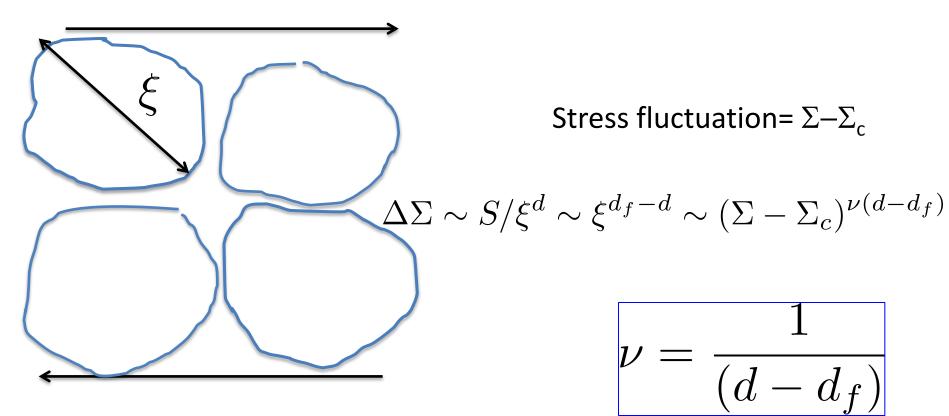
 $\dot{\gamma} = \frac{S}{T\xi^d}$

 $\dot{\gamma} = \text{strain scale avalanche}/ \text{ avalanche duration}$

$$\beta = \nu(d - d_f + z)$$

Lin, Lerner, Rosso, Wyart 2014

Scaling relation 3: systems knows it is not critical only for length > ξ



Salerno Robbins, PRE 2013 Lin, Lerner, Rosso, Wyart PNAS 2014

Summary: proposed scaling description

exponent	expression	relations	
θ	$P(x) \sim x^{\theta}$		
z	$T \sim l^z$		
d_f	$S_c \sim L^{d_f}$		
β	$\dot{\gamma} \sim (\Sigma - \Sigma_c)^eta$	$eta = 1 + z/(d-d_f)$	
au	$ ho(S) \sim S^{- au}$	$ au=2-rac{ heta}{ heta+1}rac{d}{d_f}$	
ν	$\xi \sim (\Sigma - \Sigma_c)^{-\nu}$	$ u=1/(d-d_f)$	

• In which system does it apply? Inertia?

Results in automaton model

- Exponents measured in a variety of systems/models
- All of them in one single model Lin, Lerner, Rosso, Wyart PNAS 2014

exponent	expression	relations	2d measured/prediction	3d measured/prediction
θ	$P(x) \sim x^{\theta}$		0.57	0.35
z	$T \sim l^z$		0.57	0.65
d_{f}	$S_c \sim L^{d_f}$		1.10	1.50
β	$\dot{\gamma} \sim (\Sigma - \Sigma_c)^eta$	$eta = 1 + z/(d-d_f)$	1.52/1.62	1.38/1.41
au	$\rho(S) \sim S^{-\tau}$	$ au=2-rac{ heta}{ heta+1}rac{d}{d_f}$	1.36/1.34	1.45/1.48
ν	$\xi \sim (\Sigma - \Sigma_c)^{-\nu}$	$ u=1/(d-d_f)$	1.16/1.11	0.72/0.67

 3 methods: fixed strain (extremal dynamics), stress or strain rate: Very good agreement with theory overall (τ smaller by ~0.15 if extremal dynamics is used, more size effect however)

Conclusion

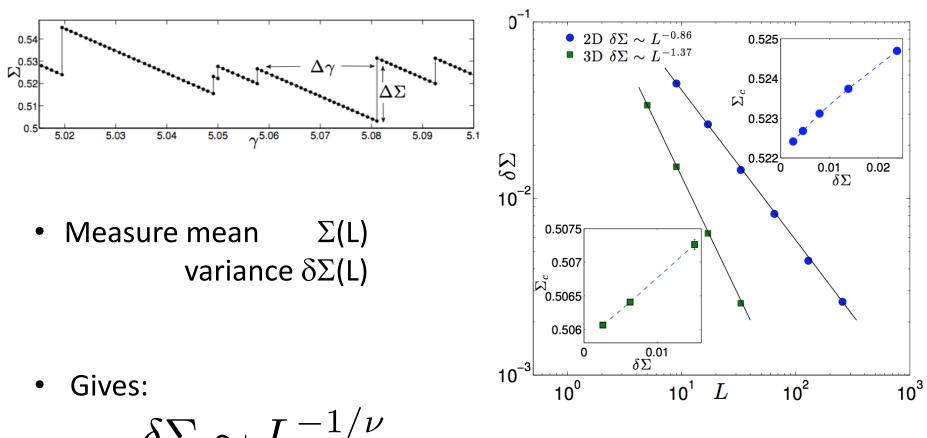
- Associated exponent θ enters in the scaling description of flow
- Analogy between depinning and yielding transition:
 Scaling description with 3 (instead of 2) independent exponents

Some questions:

1/computation of the exponents? Does θ vanish above some critical dimension where some mean field description may apply?

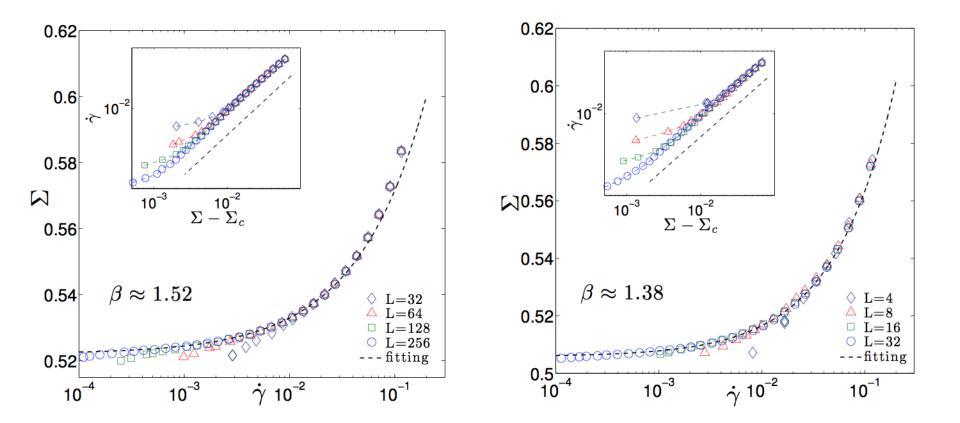
2/ Plasticity in crystal with dislocations: same argument may apply (similar interaction kernel between dislocations). Curious finite size Effects?

Extremal dynamics

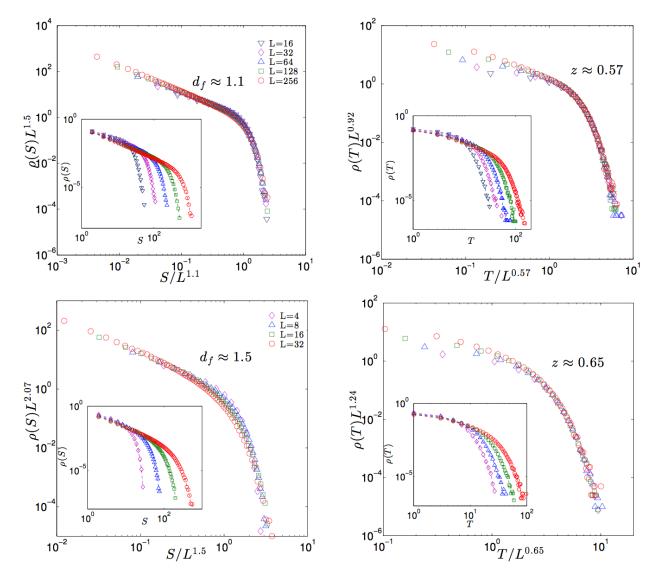


$$\frac{\delta \Sigma \sim L^{-1}}{\Sigma_c}$$

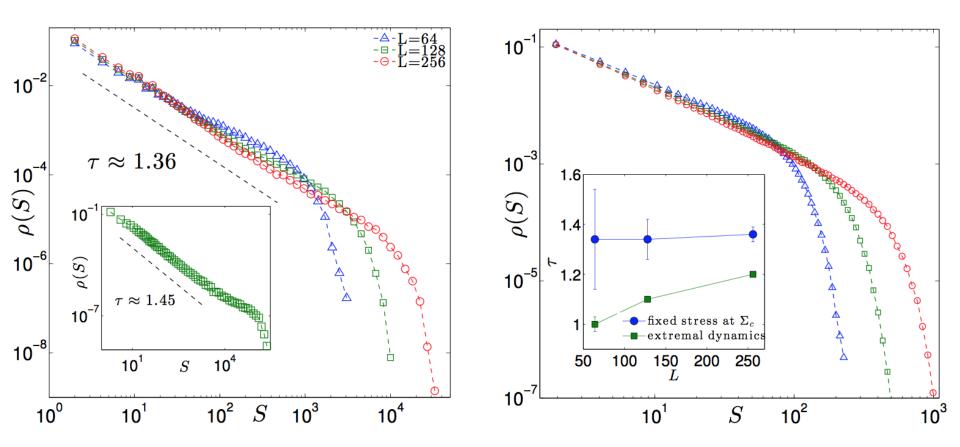
Dynamics: fix strain rate



Avalanches extension and duration



Avalanches distribution



crackling

Conclusion

- Jamming ~ geometry
- Yielding transition ~ depinning

Common points:

- due to long distance interaction, density of elementary excitations (STZ, weak contacts) must vanish.
- associated exponent enters in the scaling description and affects macroscopic flow properties
- Analogy between depinning and yielding transition: Scaling description with 3 (instead of 2) independent exponents

Some questions:

1/computation of the exponents? RG? Mean-field?2/ Plasticity in crystal with dislocations?