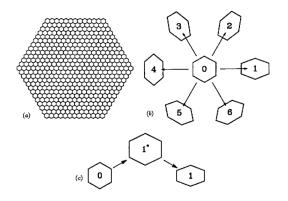
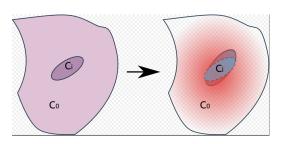

Elasto-plastic models: ingredients

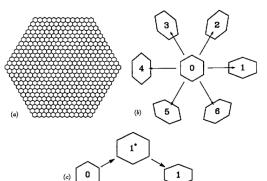
- State description / yielding criterion
 - Eshelby?
 - Compatibility of strain?
 - Near field vs. far field?
 - Elastic heterogeneity allowed/included?
- Stochasticity
 - Quenched disorder?
 - Dynamically generated threshold conditions?
 - Dynamical equations deterministic or stochastic?
- Dynamical evolution
 - Deterministic vs. stochastic?
 - Inertia?
 - Damping?
 - If stochastic, which degrees of freedom does the noise act on?



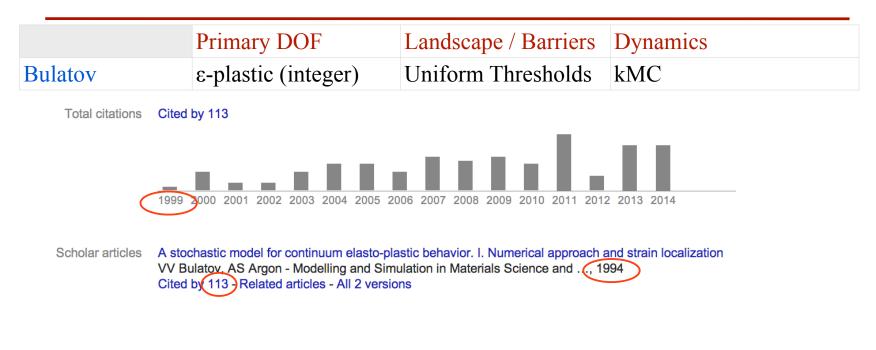
Elasto-plastic models: recipes

- Bulatov and Argon (Mod. Sim. Mat. Sci&Eng 1994)
 - Homer, Rodney and Schuh
- Baret, Vandembroucq and Roux (PRL 2002)
 - Talamali, Vandembroucq, and Roux
 - Budrikis and Zapperi
 - Lin, Lerner, Rosso and Wyart
- Onuki (PRE 2003)
- Picard, Ajdari and Bocquet (PRE 2005)
 Barrat, Martens, Nicolas, Ferrero...
- Jagla (PRE 2007)

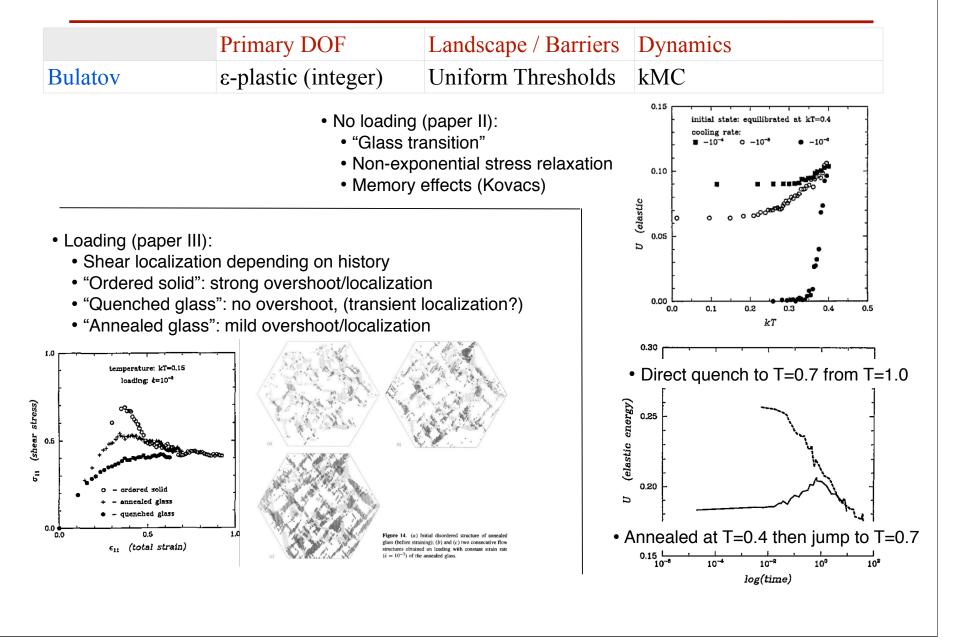

Elasto-plastic models: recipes


	Primary DOF	Landscape / Barriers	Dynamics
Bulatov	ε-plastic (integer)	Uniform Thresholds	kMC
Onuki	displacement (continuous)	Uniform Thresholds	Langevin
Baret / Talamali	ε-plastic (integer)	Redrawn Thresholds	Extremal
Picard / Martens	ε-plastic (integer)	Uniform Thresholds	Threshold+Poisson
Jagla	total strain (continuous)	Quenched Disorder	Langevin + "Relaxation"

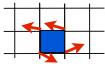
Bulatov and Argon (Mod. Sim. 1994)


	Primary DOF	Landscape / Barriers	Dynamics
Bulatov	ε-plastic (integer)	Uniform Thresholds	kMC

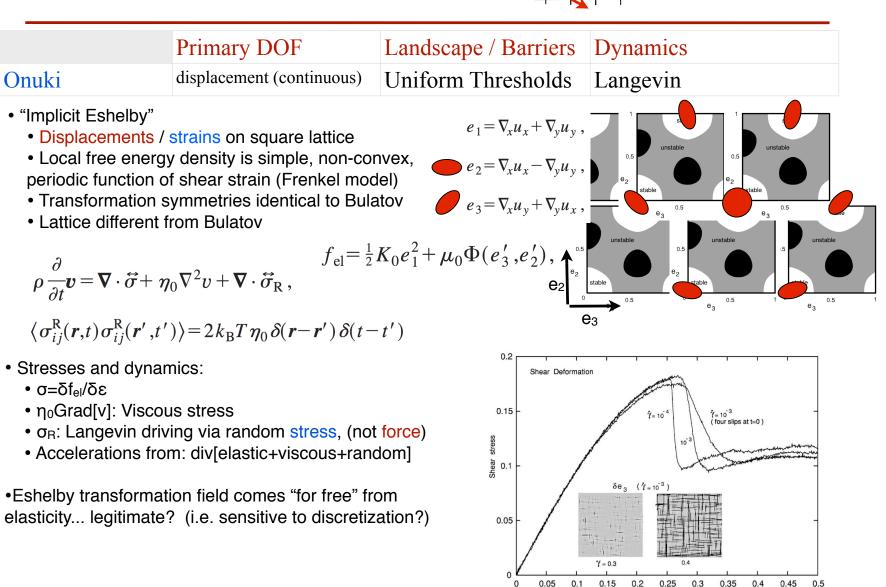
- Explicit Eshelby description of plastic transformation:
 - Space is tiled.
 - Any tile may undergo plasticity
 - Reference strain incremented in one of six eigenstrains.
 - Stress (elastic strain) computed via Eshelby
 - Need to assume small deformations
- Dynamics:
 - kinetic Monte Carlo
 - $w(n, \alpha) = \omega_0 \exp\left\{-\left[\Delta F_0 \Omega \langle \sigma_{ij}(n, t) \rangle e_{ij}^*(\alpha)\right]/kT\right\}$
 - ω is the rate for the n-th tile to make the $\alpha\text{-th}$ transition
 - $\bullet \ e^{\star}$ is a transitory state including some dilation
 - $\sigma_{ij}(n,t)$ is the stress at the n-th tile calculated from global load and all other previous plastic transformations.
 - $\omega_0 exp[-\Delta F_0/kT]$: spontaneous, unbiased transformation rate
- Disorder:
 - Plastic strain increment fixed
 - Initial stresses before loading either:
 - •homogeneous (if no initial plasticity) or
 - disordered (if initial plasticity)



Bulatov and Argon (Mod. Sim. 1994)

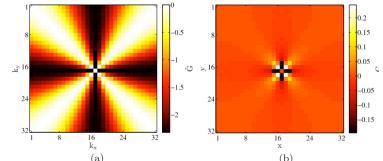


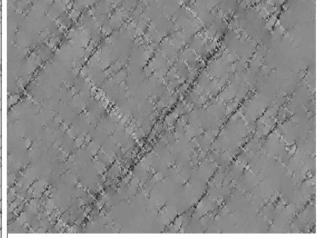
- No citations for first 5 years!
- First non-self-citation from Falk and Langer review in MRS Bulletin 2000


Bulatov and Argon (Mod. Sim. 1994)

Onuki (PRE 2003)

Strain $\gamma = \dot{\gamma}t$




	Primary DOF	Landsca	pe / Barriers	Dynamics	
Onuki	displacement (continuous)	Uniform	Thresholds	Langevin	
Seeds with four ' C:Clockwise and	'slips" I CC: Counterclockwise		Shear deformation	γ= Ÿt	
C C		<u>c</u> cc			
С	сс	γ = 0	0.176	δe ₃ 0.25	0.387
CC		с эо [*] сс			
	x	$\gamma = 0$	0.176	0.25 δf _{el}	0.387

Talamali et. al. (Compt. Rend. Mech. 2012)

Prin	nary DOF	Landscape / Barriers	Dynamics
Baret / Talamali ε-pla	astic (integer)	Redrawn Thresholds	Extremal

- Explicit Eshelby (but far field only)
 - Plastic transformation redistributes stresses
 - Kernel from far-field Eshelby.
 - Discretized and truncated in Fourier space
 - Plastic strain amplitude, "d/a", uniform
 - Plastic strain orientation aligned with global loading
- Extremal dynamics:
 - Local threshold stress chosen from a distribution
 - Global load adjusted so that one site is at threshold
 - Stress is transferred, plastic strain incremented, stress is redistributed

- MD (2D Lennard-Jones) simulation, L=1000, $\Delta\epsilon_{plastic}$ =0.04
- CM and Mark Robbins. PRL 2008

Extremal model, L=256, Δε_{plastic}=0.01

• Talamali et. al. Compt. Rend. 2012

Jagla (PRE 2007)

Picard et. al. (PRE 2005)

	Primary DOF	Landscape / Barriers	Dynamics
Picard / Martens	ε-plastic (integer)	Uniform Thresholds	Threshold+Poisson

- Similar to Baret, but...
 - Threshold stresses are uniform
 - But yielding events occur stochastically in time
 - Initiate Poisson process above threshold
 - Recent versions: deterministic, finite rate (Ezequiel?)

-0.5 0.15 0.05 ا جر $\overline{O} > 1$ -1.5 -0.05 -0.1 0.15 16 x $^{16}_{k_x}$ 24 24 32 (a) (b)

Questions / issues

	Primary DOF	Landscape / Barriers	Dynamics
Bulatov	ε-plastic (integer)	Uniform Thresholds	kMC
Onuki	displacement (continuous)	Uniform Thresholds	Langevin
Baret / Talamali	ε-plastic (integer)	Redrawn Thresholds	Extremal
Picard / Martens	ε-plastic (integer)	Uniform Thresholds	Threshold+Poisson
Jagla	total strain (continuous)	Quenched Disorder	Langevin + "Relaxation"

• Continuous degrees of freedom vs. automata:

- connection to floppy modes / soft spots possible with continuous approach... fruitful?
- number of possible transitions important?
 - Baret / Picard: n=1
 - Bulatov/Onuki: n=6
 - Jagla: n~infinity
- Dynamics:
 - dynamic vs. quenched disorder
 - Langevin on stresses rather than displacements?
 - form of the drag
 - inertia?

• Discretization of elasticity / form of stress kernel?

• What do we want to get out??? "Better" than particle-scale models?