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Critical phenomena
Critical phenomena

From Wikipedia, the free encyclopedia

In physics, critical phenomena is the collective name associated with the physics of critical points. Most of them stem from the
divergence of the correlation length, but also the dynamics slows down. Critical phenomena include scaling relations among different
quantities, power-law divergences of some quantities (such as the magnetic susceptibility in the ferromagnetic phase transition)
described by critical exponents, universality, fractal behaviour, ergodicity breaking. Critical phenomena take place in second order phase

transition, although not exclusively.
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The renormalization group matrix

K(/x = R, [K]
_ ORa|K] T.s#T
fos = 8K5 |K:K* 7 /7

Are we sure that the eigenvalues of T actually exist?

Z eflTag — 6%

84



The renormalization group matrix

K(/x = R, [K]
_ ORa|K] T.s#T
fos = 8K5 |K:K* 7 /7

Are we sure that the eigenvalues of T actually exist?

Z el Thp = 6%

84

What if they are complex? Possible, but far too exotic.



The renormalization group matrix

K, = R,[K] Wikipedia
Top = ag}[Kw Lap 7 15e | oY
b IK=K* 1)\L
A1
Are we sure that the eigenvalues of T actually exist? - %
D coTap =1b"Je] g ;|
87

An example of a matrix in a Jordan
normal form. The grey blocks are
called the Jordan blocks.

What if the eigenvalues exist but coincide”? Possible to bring T to the
Jordan normal form

) = A T (2% A?b))

)
Uy = AUz + pUq Tihis is what this talk is aboit.



Correlation functions with Jordan forms
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Correlation functions with Jordan forms

h=e
a = ega | |
Invariant energy

Infinitesimal RG equations — finite RG transformations

dr
% = yu1 uy = b¥u; Z U, / W¢Z (I’)

0 , )
% — i t = Btz b7 In(b) s demands
da note the logarithm
o " % = xP1 + @2
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0 _
Invariance with respect to the above RG demands LY
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a296
(¢1(r1)P2(r2)) = R ¢1(r) Logarithmic operator
1 — 12

(P2(r1)pa(r1)) =0 Cbl (r)7 ¢2 (I'Q) Logarithmic pair



How common are logarithmic operators?

2 Require fine-tuning of the eigenvalues of the RG matrix.

2 So perhaps do not appear except in some special fine-tuned
models?

2 |n fact, that’s not true. Logarithmic operators are ubiquitous
IN certain models, especially in models with disorder.
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3D random bond Ising model
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3D random bond Ising model
Z= 3" exp (K S oo+ Z . ) random and Gaussian 0 /{

S K2
o==1 (r'r'") (r'r’")

P(OK) ~e +?

Need to invoke the famous replica trick

Z exp (KZ Z Ty O prs +zn: Z O K yprpr Ug,aff’,/>
a=1 (r'r’")

o==+1
so that free energy
and average over disorder can then be found if
needed
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o==+1 a=1 (r'r'") a,b=1 (r'r’")



3D random bond Ising model
Z=3" exp (K S opow + Z . ) random and Gaussian 0 /{

S K2
o==1 (r'r'") (r'r’")

P(OK) ~e +?

Need to invoke the famous replica trick

Z exp (KZ Z Ty O prs +Z Z 0K prpr 01‘,‘,0?,,>

o==1

so that free energy
and average over disorder can then be found if
needed
n . (2™ —1
(Z"™) = Z exp KZ Z 0w Oprr + Y Y 0c%0% 00l F=—-T lim
o=x=1 a=1 (r'r’") a,b=1 (r'r’’) e pe
In the vicinity of the conventional Ising critical point K = K™, v =10
=2 ovow thisis the conventional thermal -~~~ 1
= scaling operator, dimension ! o v

zn: -2 52 b b thisis the scaling operator which
a,b=1 Is coupled to disorder strength



Harris criterion

Z exp (KS‘ Y omom + Y S: Ug,ag,,ag,aﬁ,,)

o==+1 a=1 (r'r'") a,b=1 (r'r'’)

Z -2 52 b b thisis the scaling operator which
a,b—=1 IS coupled to disorder strength

2 . .
Yy >0 = v < - disorder Is relevant

equivalentl 0
quivaiently o > RG flow for 3D Ising, with a>0

y

7* disorder-dominated critical point

K*

Ising critical point
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Disorder-dominated point is logarithmic

Let’s look at the energy operator E%(r) = c%0¢

r/

Two physical correlators:  1im (EY(0)E(r)) thermal correlator of two energies
" averaged over disorder

lim (E"(0)E*(r)) product of two thermal averaged
energies further averaged over disorder
However these are complicated n
operators from the RG point of Boym = Z;Ea gl S Tsym (1)
view. Simple correlators are po _ pa_ Baym Tirr ()

Irreducible representations of the
replica permutation group.

L (B (0) Buyen(1)) = (' (OB (1)) + (n— 1) (B0 E(1)) = o 0
B (0)BL () = (B (0B ) — (E' (0B () = 5
St iy

lim <E1(O)E1(r)> — lim l (r S(n) 4 (n_ 1) I(Trl) ) N ln(r)

n—0 n—0 N 2Tsym (n)



Distinct features of the logarithms in this context ?

Logarithms appear directly at the critical point

No fine tuning is needed to get logarithms, and no fine tuning
can eliminate them

This is a generic feature of problems with quenched disorder
(to be discussed later)



Example: 2D percolation



Percolation as Q-state Potts model

corresponds to

Q-state Potts model Q=2 e lelie fest
More generally, known to
Z = Z EXPR|EAS Z 00,10, have a second order

0=1,2,...,Q ) phase transition in 2D for 1 < Q < 4

percolation (Fortuin-
Standard map from Q=1 Potts model to percolation Kasteleyn) clusters

1
- _p>#bonds Z H 1_p+p50 S )

(1 o=1,2,..., Q (r'r’")

—K

p=1—e€

7 1 Z Q# clustersp# cluster bondS(l L p)#remaining bonds

(1 _ p)# bonds

clusters

@Q — 0 counts spanning trees and is
equivalent to computing the
determinant of the lattice laplacian

counts all clusters equally and is

imt Q — 1 , . .
equivalent to studying percolation



Logarithmic observables In percolation
R. Vasseur, J. L. Jacobsen, H. Saleur (2012)

agy

Figure 1. Percolation configurations contributing to (a) Py(r), (b) P,(r) (one cluster
propagating a distance r = |r; — r2|), (¢) P2(r) (two propagating clusters).
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Symplectic fermions



Determinant of a Laplacian

defined via a Grassmann functional integral

det (A) ~ / DODEO(r)(r) e | rou09.0 — TT 1,

n,An 70

necessary to get rid of the “zero mode”

with proper normalization
(A(r)f(r)) =1
() =0

a\ identity

This Is a logarithmic pair:

(L(r1)I(rz)) =0
<1(r1)i(r2)> — 1
<_’f(r1)i(r2)> — 41n(|r; — ro)
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Models related to the determinant of A

2 Any model involving counting of spanning trees, or Q—0
Potts model

2 In particular, dense polymers (self-avoiding random walks
passing through every point of a lattice)

2 Abelian sandpile model
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CFT approach to logarithms

VG, 1993

T(z) = Z n+2 Lo generates scale transformations

Definition of the primary operators in CF
LoA = hA
L,A=0 n > 0



CFT approach to logarithms

VG, 1993

Ly,
T(z) = Z nt2 Lo generates scale transformations

Definition of the primary operators in C
LoA = hA
L,A=0 n > 0

Definition of a logarithmic primary in C
LoC = hC
LoD =hD + C
L,C' =0, L,D=0 n >0

(CO)DE) =
(D(O0)D(2)) =




CFT approach to logarithms

VG, 1993

Ly,
T(z) = Z nt2 Lo generates scale transformations

Definition of the primary operators in CF
LoA = hA
L,A=0 n > 0

c=-2 theory has a zero dimension primary

Lol =1 F OV — 9 .
Ll —0 <I(O)I( )> 21

Definition of a logarithmic primary in C
LoC = hC
LoD =hD + C
L,C' =0, L,D=0 n >0

(CO)DE) =
(DO)D(:)) = g




Conformal field theory for symplectic fermions

S = i d?z 0000
47

T ~ 0000 c= —2

Kac table of degenerate operators

n\mi 1 | 2

3 | 4
) 0 _% 0 g Anm:(Qn—ZzP—l
2 1 |30 |—3
3 3 | 2|1 | 3
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Conformal field theory for symplectic fermions

S = i d?z 0000
47
T ~ 0000 c= —2

Kac table of degenerate operators

> O'(Z)
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(2n —m)? —1
3 -
1 0 8 Anm = 3
2 0 | —3
00 15 3
3 3 | g | 1 5




Conformal field theory for symplectic fermions

S = i d?z 0000
47
T ~ 0000 c= —2

Kac table of degenerate operators
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Conformal field theory for symplectic fermions

S = i d?z 0000
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Relevance to the stat mech models?

> |dentification of olbservables related to the operator I

> Meaning of this olbservable in the Abelian sandpile model?

V.S. Poghosyan, S. Y. Grigorey,

V. B. Priezzhev, P. Ruelle, 2010 = Ruelle, 2013

22



CFT at ¢c=0
and problems involving
averaging over disorder



SARW: Effective field theory “

x(t)=x . \
P(t,x) — / Daz(t) 6—% Jo dtir—4 [ didt’ 5(x(t) T (t))
x(0)=0



SARW: Effective field theory 2“

x(t)=x /
P(t7$) _ / DLIZ‘(t) ey - fo dta; — 2 [ dtdt’ 5(x(t) X (t))
x(0)=0

Perturbative expansion

—- L. 00)



SARW: Effective field theory !

x(t)=x
P(t,z) = / Dz (t) o~ Jo dtag—§ [ dtdt’ 5(2(t)—' (¢))
x(0)=0

Perturbative expansion

— -+ Lif0--§- 00 )

IS reproduced by the expansion of this Green’s function with a random imaginary
potential / V(x) in powers of V(x)
1

o+ D25 — iV (@) (V(z)V(y) =gdé(z —y)




SARW: Effective field theory !

x(t)=x
P(t,z) = / Dz (t) o~ Jo dtag—§ [ dtdt’ 5(2(t)—' (¢))
x(0)=0

Perturbative expansion

— -+ Lif0--§- 00 )

IS reproduced by the expansion of this Green’s function with a random imaginary
potential / V(x) in powers of V(x)
1

o+ D25 — iV (@) (V(z)V(y) =gdé(z —y)

_ ngngE o(x) gg(o) ef d2$¢3(D(§%—iv+iw)¢
ID¢DQB ef deq;(D%—iV—l-iw)gb

P(w,x)
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Random potentials: replica approach

f D(MDCB P(x) Qb( ) e J & qb( _ZVJFW)fb Random potential

Plw,x) = (V(z)V(y)) = gd(z —y)

[ DgDG el o Pz =ivHiv)s

De Gennes, 1972
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Random potentials: replica approach

[ D¢pDe ¢(x) ¢(0) o d*x gz(péf_;—wﬂ'w)qﬁ Random potential

D8—22—z'V—|—z'w)gb <V($)V(y)> =g 5(33 — y)

P(w, x) -
[DgDe! ©°7 (D2

Introduce n replicas

P(w,z) = JIIi—; D¢ Do; d1 () ¢1(0) p2im1 [ d*x ¢, (D(,f?_Wer)qsi
ID¢D$ ef deq;(D%—iV—l-iw)qﬁ

De Gennes, 1972
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Random potentials: replica approach

f ngDgE P(x) ¢( ) e J & qb( _'LVJF"’W)(b Random potential

P(w,r) = (V(z)V(y)) = gd(z —y)

[ Do ol P o (P vris)e
Introduce n replicas

[ Ty DD 1 (x) 6 (0) &t | 2 0 (P =i iv)or

A

P
(w x) qubpgb ef d?x ( (9332 ZV—I—uu)gb

take n to zero

) hm/ HD@D@ 61(2) §1(0) X S P2 (Pl iVrio) e,

n—~0
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Random potentials: replica approach

f ngDgE P(x) Qb( ) e J & qb( _'LVJF”’W)(b Random potential

P(w,z) = =) V(@)V(y)) = gé(z —y)

[ DD @ v 3(D3

Introduce n replicas

[ 112, D&DS: () 1 (0) >/ 7% (D& —iV+iv)d:

P(w,z) =
(CU 37) fD¢D$€fd2 ( aa;2 zV—l—w))gb

take n to zero

P(w,r) = lim /HD@D@ b1(z) 1(0) e Sy [ d?w gi (DLy—iVtiv) ¢,

n—~0

and finally average over random potential
= lim /HD¢ZD¢7, o1 (x Qb (0 )e_fd%j [Zyzl DO ¢idudi—iwdidit+§ (L, @@)2]

n—0



Random potentials: rep\ica approach

Plw,x) =

[ DDS () $(0) e fdz“b(

25

2 iV —|—zw) b Random potential

PN CEmRT

Introduce n replicas

V(z)V(y)) = go(x —y)

[ Ty DD 1 (x) 6 (0) &t | 2 0 (P =i iv)or

Plw,z) =
take n to
P(w,x) = 1i

VASI(®

n—~0

fququefdQ 3(Dghz—iV+io) o

T n

im /HD@D@ b1 (2) @1 (0) == L[ A2 i (D Ly —iVtivw) e,

and finally average over random potential

= lim
n—~0

/HD¢’LD¢’L ¢1 ¢1( )

| a2 [S1, D8.G.0.bi—iwdidit(S1y i6:)7]

This is the famous O(n) model in the n—0 limit



Random potentials: “supersymmetry approach” &

_ [ D¢pDe ¢(x) ¢(0) o) d2w$(D5L;—iv+iw)¢

P(CU,CU) _ fd2x§g(Da_22—’iV—|—iw)qﬁ
[D¢Dge G




Random potentials: “supersymmetry approach” &

_ [ D¢pDe ¢(x) ¢(0) o) dzw%(Dga—;—iv+iw)¢

P(w,x) — fdza:gE(Da—QQ_ieriw)qg
| D¢De z

Introduce fermionic fields

52

P(w, z) = / DDEDUIDY ¢(x) 3(0) ! L2 (PP Tz =iV +iw) o+ (D =iV +iv)y)




Random potentials: “supersymmetry approach” %

[ DD p() §(0) ! ©7 ¢ (P =iV Hie)e
[ D¢Dg e a2 §(D Ly —iV+iw) s

P(w,x) =

Introduce fermionic fields
P(ij) _ /D¢D$D%D¢¢( )¢( ) [ d*x [ (D ki —zV—I—zw)qb—I—w(Di—zV—l-zw>w]

Average over random potential, to find
effective field theory with the action

S = /d2$ {D (8u$au¢ + @ﬂv; 8u¢) T g ($¢ + @Ew)Z}

We would like to study CFTs corresponding to the
field theories of this type. All have ¢c=0.
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“Supersymmetric” critical theories

® Supersymmetric effective field theories describe a variety
of interesting critical behavior in 2 dimensions. Most have
not been understood.

® Examples include self-avoiding random walks and
percolation (mostly understood, although not completely)
and quantum motion in random potentials under various
conditions (mostly not understood).

® \ost famous example, the guantum Hall transition, has
been extensively studied, and yet is not understood.




Supersymmetry
A typical action

S= [ @2 [D (0,00, + 0,09, + 5 (30 + 50

()= (7 o) ()
0y e a) \Y
Superunitary (more precisely, in this example,

orthosymplectic) group Is the symmetry group of this
action

28
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Supersymmetry
A typical action

S= [ @2 [D (0,00, + 0,09, + 5 (30 + 50

()= (7 o) ()
0y e a) \Y
Superunitary (more precisely, in this example,
orthosymplectic) group Is the symmetry group of this
action
Strange reducible but indecomposable representations

of the superunitary group

scalar at the bottom



Logarithms and the indecomposable reps

D
¢ — c _ogarithmic operators love
T~(— iIndecomposable multiplets

/. Masarani, D. Serban, 1996

C

29
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Logarithms and the indecomposable reps

D
¢ — c _ogarithmic operators love
T~(— iIndecomposable multiplets

/. Masarani, D. Serban, 1996

C

<C(Z) C’(w)} — () Used to be mysterious, now natural <C(z)C(w)> — ()
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Logarithms and the indecomposable reps

D
¢ — c _ogarithmic operators love
T~ (— iIndecomposable multiplets

C

<C(Z) C(w)> — () Used to be mysterious, now natural <C(z)C(w)> — ()

(C(x) D(w) = ——ax 9{DENW) = ()W) ~(DE)Cw) =0
So C are just the usual primary fields

- 1
<<(Z)<(UJ)> E (Z [ UJ)2>‘
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Logarithms and the indecomposable reps

D
¢ — c _ogarithmic operators love
T~ (— iIndecomposable multiplets

C

<C(Z) C(w)> — () Used to be mysterious, now natural <C(z)C(w)> — ()

(C(x) D(w) = ——ax 9{DENW) = ()W) ~(DE)Cw) =0
So C are just the usual primary fields

- 1
<<(Z)<(UJ)> E (Z [ UJ)2>‘

Finally:

<D(Z) D(w)> — Q(Ln(_zuj) ;1;\) because why not??




Stress-energy tensor at ¢=0: CFT perspective

Any primary operator with a
nonvanishing norm in a CFT satisfies

A(2)A(0) = Z%\ (1 : QCAT(Z) +>

hus the direct limit c—0 Is problematic.

30



Stress-energy tensor at ¢=0: CFT perspective

Any primary operator with a
nonvanishing norm in a CFT satisfies

A(2)A(0) = Z%\ (1 227 +>

C

hus the direct limit c—0 Is problematic.

Any c=0 CFT must contain operators with

dimension 2 distinct from the stress-energy tensor.

At least one of them, called t, must satisfy

30
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Stress-energy tensor at ¢=0: CFT perspective

Any primary operator with a
nonvanishing norm in a CFT satisfies

A(2)A(0) = Z%\ (1 227 +>

C

hus the direct limit c—0 Is problematic.

Any c=0 CFT must contain operators with
dimension 2 distinct from the stress-energy tensor.
At least one of them, called t, must satisfy




Stress-energy tensor at ¢c=0: supersymmetry perspective

Stress-energy tensor is always a
part of a reducible but
iIndecomposable multiplet

§/ t\_
\T/g

31



Stress-energy tensor at ¢c=0: supersymmetry perspective

Stress-energy tensor is always a
part of a reducible but
iIndecomposable multiplet

§/t\
\T/g

Possible consistent OP
27°(0)

b 2t(0)

T(z)T(0)

o) = 240

2
Z
Realized in supergroup-based WZW
models.




Stress-energy tensor at ¢c=0: supersymmetry perspective 3|

Stress-energy tensor is always a

§/t\‘
\T/g

part of a reducible but

iIndecomposable multiplet

Possible consistent OP
B 2T(O)
= —

b 2t(0)

T(z)T(0)

o) = 240

2
Z
Realized in supergroup-based WZW
models.

Sut these are also possible
consistent OPE:

T(2)T(0) = 21;20) |
T()4(0) = Zb4 I 2t(0);T(0) I
£(2)t(0) = _Qijm :

Makes t logarithmic. Realized in c=0 minimal model.



Logarithmic t: supersymmetry emerges

b 26(0) 4+ 7(0)  #(0)

22 Z

VG, A. Ludwig, 2002
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Logarithmic t: supersymmetry emerges

b 2t(0)+7(0) #(0)

T(2)t(0) =

H)E(0) = 2b ;gz : t(0)[1 — 4log 2] — 1;0) log z + 2log” 2]
£(2)E(0) = %T(Z)T(O) | 224 | H0) + 1;2(0) 08 2 ...
t(2)&(0) = iT(z)f(O) — T (2)&(0) log 2 A 5/2(3) ...

These follow from the assumption of logarithmic t by
conformal invariance only
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Logarithmic t: supersymmetry emerges

b 26(0) 4+ 7(0)  #(0)

H)E(0) = QbL(zlgz : t(0)[1 — 4log 2] — 1;0) log z + 2log” 2]
£(2)E(0) = %T(Z)T(O) | 224 | H0) + 22(0) 08 2 ...
t(2)&(0) = iT(z)f(O) — T (2)&(0) log 2 A 5/2(3) ...

These follow from the assumption of logarithmic t by
conformal invariance only

_— t ~__ Yet they automatically form the
§ ~_ . _—¢& indecomposable repres_entat'on

shown on the left
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Logarithmic t: minimal model at ¢c=0
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b £13<24
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Logarithmic t: minimal model at ¢c=0
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Logarithmic t: minimal model at ¢c=0
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Nontrivial critical models in 2D with a central charge ¢ = 0 are described by logarithmic conformal
field theories (LCFTs), and exhibit, in particular, mixing of the stress-energy tensor with a “logarithmic™
partner under a conformal transformation. This mixing is quantified by a parameter (usually denoted b),
introduced in Gurarie [Nucl. Phys. B546, 765 (1999)]. The value of b has been determined over the last
few years for the boundary versions of these models: bperco = — % for percolation and by, = % for dilute
polymers. Meanwhile, the existence and value of b for the bulk theory has remained an open problem.
Using lattice regularization techniques we provide here an ‘“‘experimental study’ of this question. We
show that, while the chiral stress tensor has indeed a single logarithmic partner in the chiral sector of the
theory, the value of b is not the expected one; instead, b = —35 for both theories. We suggest a theoretical
explanation of this result using operator product expansions and Coulomb gas arguments, and discuss the
physical consequences on correlation functions. Our results imply that the relation between bulk LCFTs
of physical interest and their boundary counterparts is considerably more involved than in the non-

logarithmic case.
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Conclusions and outlook



c=0 theories: modern developments

€ Logarithmic scaling at certain fixed points of
renormalization group Is unavoidable

€ In some examples it affects certain correlation functions
and is relatively easy to study

€ In other examples, it affect the whole structure of the
theory and makes it very difficult to understand it.

3€ Problems with disorder generally have logarithmic
correlators. Exact solutions to the critical points in 2D
Involving disorder are supposed to involve logarithmic
structure and are very hard to study.
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