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Plastic Deformation and Dislocations in Crystals



A.H. Cottrell (2002)  “Strain hardening [rather than turbulence], is 
the most difficult remaining problem in classical physics.  …. 
Neither of the two main strategies of theoretical many-body 
physics -- the statistical mechanical approach; and the reduction 
of the many-body problem to that of the behaviour of a single 
element of the assembly -- is available to [strain] hardening. The 
first fails because the behaviour of the whole system is governed 
by that of weakest links … and is thermodynamically irreversible. 
The second fails because dislocations are flexible lines, 
interlinked and entangled, so that the entire system behaves 
more like a single object of extreme structural complexity and 
deformability … a bird's nest … rather than as a set of separate 
small and simpler elementary bodies. 

“[The theory of strain hardening] is still at the stage of being 
merely interpretive, not predictive. … It may never develop into 
such a theory.”



Kocks and Mecking (2003):  ``An ab initio theory of strain 
hardening, with a quantitative prediction of the numerical 
constants, is unlikely to ever be derived even for a specific case, 
and impossible with any generality.'‘

These authors advocate what, from a physicist's point of view, is 
a purely phenomenological approach, based on extensive 
observations and a search for trends, but with no hope of 
uncovering fundamental principles that might lead to predictive 
theories.  

Devincre, Hoc and Kubin (2008): ``The present dislocation-
based models for strain hardening still have difficulties 
integrating elementary dislocation properties into a continuum 
description of bulk crystals or polycrystals.  As a consequence, 
current approaches cannot avoid making use of extensive 
parameter fitting.'' 
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Constant Strain Rate Measurements:
Cu at high temperatures
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The solid curves are PTW phenomenological fits to a wide range of data.

Strain hardening



How can thermodynamics be relevant to dislocations?

Consider only systems that are undergoing persistent 
deformation in response to external driving forces. The 
dislocations are moving chaotically.  Therefore, we can 
assume that they are exploring statistically significant 
fractions of their configuration spaces.

Accordingly, a macroscopically large system of 
dislocations must be near its state of maximum 
probability – i.e. maximum entropy – or else it must be 
moving toward that state.  

This system must obey some form of the second law of 
thermodynamics.



Thermodynamics and dislocations

Dislocation energies are vastly greater than kT.  However,
The energy UC of a configuration of dislocations is well 
defined, and the number of such configurations in an energy 
interval is countable.  Thus, the configurational entropy SC is 
also well defined.

The quantity                              is an “effective” 
temperature. In fact, it is a real temperature. 

According to Gibbsian statistical mechanics, the state that 
minimizes the free energy

is the most probable state of the sytem.  
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Steady-State Deformation

Start by considering deformation at fixed shear rate. 

ρ = length of dislocations per unit volume. Measure χ in units 
of some (very large) characteristic energy per dislocation. 
FC is minimized by

where a is a length scale (~ 10 lattice spacings ?). 

(See B-L 09 for a derivation of this familiar result in a 
nonequilibrium context.) 
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(1) An expression for the plastic strain rate              
as a function of  the stress σ and the 
dislocation density ρ (a physics-based 
constitutive law).

(2) A relation between the strain rate and the 
effective temperature χ (a statistical relation 
between a steady deformation rate and the 
state of disorder). 
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Taylor stress 
~ depinning stress

ρµµσ b'b
TT ≡=



b = Burgers vector 
~ lattice spacing

b’ ~ b/10

(This is fundamentally just 
dimensional analysis.)

The edge dislocations that produce shear deformation 
(     and     ) must move through a “forest” of perpendicular 
dislocations and other defects that exert pinning forces.



Depinning model of dislocation dynamics
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For arbitrarily large σ, write the 
depinning barrier in the form
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This is the simplest possible smooth function with only one stress 
scale, chosen here to be the Taylor stress.

Assume that a dislocation spends almost all of its time in a pinned 
state, and occasionally jumps instantaneously from one such 
state to another.  Then, after some dimensional analysis a la
Orowan, the dimensionless plastic strain rate q turns out to be:
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We already have some important information.  For all but very 
small stresses σ, we can drop the – σ term in the formula for 
q(σ,ρ), and solve for (positive) σ as a function of q and ρ:
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So long as the strain rate is almost entirely plastic, the 
stress is proportional to the Taylor stress, and the 
proportionality factor  is an extremely slowly varying 
function of its arguments.  

Note the double logarithm.

This is the physics-based constitutive relation that we need.



We next need a relation between the deformation rate  
and the state of disorder specified by the effective 
temperature χ.

Borrow an idea from nonequilibrium theories of 
amorphous materials, in this case, numerical 
simulations of a sheared foam by Ono et al.  The 
basic idea is that shearing is like “stirring,” and that 
stirring produces disorder.



Ono, O’Hern, Durian, (S.) Langer,
Liu, and Nagel, PRL 095703 (2002)

Temperature, measured in several 
different ways (response-fluctuation
theorems, etc.),  goes to a nonzero
constant in the limit of vanishing 

shear rate.

Sheared Foam

0χχ →

More generally, as seen in the 
graphs,

( )plγχχ ˆ→
which apparently diverges at a 
large but finite strain rate. 



Rotate graph of effective temperature versus strain rate



0τε plq =The dimensionless strain rate is           
where, as before,         is a microscopic time scale.0τ
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becomes an expression for ρ(q). Finally

gives us the stress – strain-rate relation σ(q).
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Steady-state stress versus strain rate for Cu at T = 300K. The two 
points at smaller strain rates are steady-state limits of selected 
laboratory experiments. The fall-off at the highest strain rates is fit 
by a heating effect. 

Main idea --- the rapid growth of (q) as q→1 rapidly increases 
the density of dislocations and, accordingly, increases the stress.



Same stress versus strain rate curve as in previous graph, but 
also showing higher and lower temperatures. 



Steady-State Parameters
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From observed dislocation densities

Pinning energy ~ 3eV

(T) = shear modulus ~ 50 GPa at 300 K

Fits both upper slope and crossover 
between low and high strain rates.

These are the only parameters needed in the 
steady-state theory, except for a thermal transport 
coefficient used to describe the heating effect at 
the highest strain  rates. 



Strain-Hardening Theory

The crucial ingredients are equations of motion for χ and ρ that 
describe the way these quantities approach their steady-state 
equilibrium values as functions of time or total strain. These 
equations are: 
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D = dislocation energy per unit length. The κ’s are 
dimensionless proportionality factors.  Note that both rates are 
determined by the rate at which work is done on the system by 
the applied stress σ. 

Entropy flow (first law of 
thermodynamics)

Energy 
conservation



Stress-strain curves for copper at high temperatures, for constant (shear) 
strain rates as shown.  The theoretical curves are from JSL et al.



Stress-strain curves for copper at about room temperature, 
for constant, very different, (shear) strain rates as shown. 
The theoretical curves are from JSL et al.



Heresies

• The principles of nonequilibrium thermodynamics are 
relevant to dislocation-mediated plasticity.

• There is no useful distinction between “stored” and 
“mobile” dislocations.

• The Kocks-Mecking equation for the dislocation density 
is incorrect; it violates fundamental physical principles.  It 
can be replaced by a simple statement of energy 
conservation.

• In most nonequilibrium situations, the speed at which a 
dislocation moves from one pinning site to another is 
irrelevant; only the depinning rate makes a difference.  



Unsolved, Probably Solvable Problems

• Include elastic energy explicitly.

• Onset of hardening.

• Dynamic origin of cellular dislocation patterns.

• Dynamics of shear banding and shear fracture.             
(Is dynamic recrystallization an entropic effect?  Is it the 
relevant softening mechanism?) 
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