## Elasticity in particle packings near jamming



- Finite shear modulus and yield stress above a critical volume fraction, φ<sub>J</sub>.
- Linear response of static packings anomalous near  $\phi_J$  beyond a lengthscale that diverges at  $\phi_J$ .
- Different characteristic lengths control longitudinal and transverse components of the point response.
- Rigid shear: Modulus dependent on scale
- Free shear: Surprisingly invariant with respect to jamming.

KITP Program Seminar.

November 2014



Craig Maloney
Soft and Nanoscale Mechanics



# Acknowledgements

- Arka Roy
- Kamran Karimi



- DMR-1056564
- CMMI-1250199



### **Outline**

- Background and overview
  - Soft particle suspensions
  - Jamming and random close packing
  - Elasticity: Development of shear modulus
  - Plasticity: Development of yield stress
  - Simple models
- Elasticity
  - Scaling laws, (criticality?) and emergent lengthscales
  - Point response
  - Constrained homogeneous deformation
  - Unconstrained homogeneous deformation
- Plasticity:
  - Shear transformations, slip avalanches, and diffusion
  - Short-time intermittency
  - Long time diffusion
  - Plastic strain correlations



## Soft glasses

- Particles suspended in liquids can behave like glasses or other conventional amorphous solids.
- Particles can be:
  - solid like in a paste
  - liquid like in an emulsion
  - air like in a foam or mousse
- Technological applications:
  - Device fabrication/assembly
  - Oil / Gas drilling/production
  - Food / personal care
  - Bio-related
- This work:
  - Athermal
  - Deformable
  - Jammed







## Jamming: random close packing

#### A brief history of jamming:

- Key quantities: volume fraction, φ; contact #, z.
- Jamming: "Random close packing version 2.0"
- JD Bernal (1960): spheres "pack randomly" at  $\phi \sim 0.64$ ,  $z \sim 6$ .
- Donev et. al. (2004): M&M's do better. φ~0.71 z~10.
- Maxwell constraint counting (frictionless spheres):
  - dN translational DOFs
  - there are zN/2 contacts in the system
  - z/2>d is a necessary condition for rigidity





Fig. 4. Diagram of method of marking (a) close and (b) near contacts between spheres. The areas of adherent black paint are marked

## Jamming: development of a static shear modulus

- Mason et. al. Phys. Rev. Lett. 1995.
- Monodisperse oil-in-water emulsion
- Viscosity vs. concentration
- Shear modulus jumps by 4 orders of magnitude at  $\phi_{\text{rcp}}$
- Analagous to rigidity percolation?

PHYSICAL REVIEW LETTERS

#### **Elasticity of Compressed Emulsions**

T. G. Mason, 1,2 J. Bibette, 3 and D. A. Weitz<sup>1</sup>



Georgetown





## Jamming: development of yield stress

- Nordstrom et. al. Phys. Rev. Lett. 2010.
- μ-gel suspension
- φ>φ<sub>rcp</sub>: yield stress
- φ<φ<sub>rcp</sub>: viscous fluid





Fig. 2. Diagram depicting a microgel particle in a poor (a,  $\chi_{12} > 0.5$ ) and good (b,  $\chi_{12}$  0) solvent, respectively.



## Jamming: critical scaling at φ<sub>c</sub>



- φ,σ rheology scaling near "point J"
- Olsson and Teitel (bubbles), Hatano (grains)...
- •Depinning-like transition (dynamical criticality) at yield surface: (CEM and Robbins -- Vandembroucq et. al.)

## Bubble model (Durian)



- 50:50 bidisperse
- $R_{Small} = 1.4 R_{Big}$



- Repulsion, F<sub>rep</sub>, linear in overlap, s:
  - F<sub>rep</sub>=ks
  - (could be arbitrary power of s)
- Drag, F<sub>drag</sub>, w/r/t imposed flow:
  - F<sub>drag</sub>=b (V<sub>bubble</sub>-V<sub>flow</sub>)
- For (massless) bubbles, F<sub>rep</sub>=F<sub>drag</sub>
  - V<sub>bubble</sub>=F<sub>rep</sub>/b + V<sub>flow</sub>
- Single timescale: τ<sub>D</sub>=bR<sup>4</sup>/k
- Dimensionless shearing rate:
  - De=(dγ/dt) τ<sub>D</sub>
     (Deborah number)

### **Outline**

- Background and overview
  - Soft particle suspensions
  - Jamming and random close packing
  - Elasticity: Development of shear modulus
  - Plasticity: Development of yield stress
  - Simple models
- Elasticity
  - Scaling laws, (criticality?) and emergent lengthscales
  - Point response
  - Constrained homogeneous deformation
  - Unconstrained homogeneous deformation
- Plasticity:
  - Shear transformations, slip avalanches, and diffusion
  - Short-time intermittency
  - Long time diffusion
  - Plastic strain correlations



# Elasticity near jamming: z, P, K, G

- F=sα; Harmonic: α=1; Hertz: α=3/2
- Previous results from simple models:
  - Excess contacts:  $\Delta z=z-z_{\text{Maxwell}}\sim\Delta\varphi^{1/2}$ 
    - Independent of force law, dimension, and polydispersity!
    - Related to Bernal's "almost-contacts"
  - Pressure,  $P \sim \Delta \phi^{\alpha} \sim s > \alpha$  e.g. Harm:  $P \sim \Delta \phi \sim \Delta z^2$ 
    - Naive expectation
    - Implies compression modulus: K
    - $K = \delta P/\delta ln V \sim \delta P/\delta \phi \sim \Delta \phi^{\alpha-1} \sim < s >^{\alpha-1}$
  - Shear modulus,  $G \sim \Delta \Phi^{\alpha-3/2} \sim <s>^{\alpha-3/2}$ 
    - So G/K~Δz~Δφ<sup>1/2</sup>
    - Particle packings are incompressible at jamming!





PHYSICAL REVIEW E 68, 011306 (2003)

#### Jamming at zero temperature and zero applied stress: The epitome of disorder

Corey S. O'Hern\* and Leonardo E. Silbert

Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, USA

and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA

#### Andrea J. Liu

Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, USA

#### Sidney R. Nagel

Naive

James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA (Received 17 April 2003; published 25 July 2003)



# Diverging lengthscales and criticality at Φ<sub>J</sub>

- φ<sub>J</sub> critical point? Analogy to rigidity percolation? Diverging lengthscale?
- Goodrich et. al. (Soft Matter 2014): rigidity length  $I^*\sim 1/\Delta z \sim \delta \Phi^{-1/2}$ .
  - O(L<sup>d</sup>Δz) excess geometrical constraints
  - Free surface: release O(Ld-1) of them
  - For some  $I^* \sim \Delta z^{-1}$ , L<I\* underconstrained
- Silbert et. al. (PRL 2005): dynamical structure factor at  $\omega^*$ .  $\xi_T \sim \delta \varphi^{-1/4}$
- Ellenbroek et. al. (PRE 2009): longitudinal force fluctuations in response to local dilation.  $I^* \sim \delta \Phi^{-1/2}$
- Lerner et. al. (Soft Matter 2014): single bond extension  $\xi_T \sim \delta \Phi^{-1/4}$
- Our goal: measure **both lengths** in a single, simple, **experimentally realizable** procedure



## Measurement 1: Point response

 $(\lambda + G)\nabla(\nabla \cdot \mathbf{u}) + G\nabla^2 \mathbf{u} = 0$ 

- Standard model and prep. protocol
- harmonic, 50:50, R<sub>big</sub>=1.4R<sub>small</sub>
- Infinitesimal point load on single particle
- (Slight difference with both Ellenbroek et. al. and Lerner et. al.)







 Motivation: Leonforte et. al. PRB 2004 (Lennard-Jones)

## Measurement 1: Point response

 $(\lambda + G)\nabla(\nabla \cdot \mathbf{u}) + G\nabla^2 \mathbf{u} = 0$ 

- Elasticity: Lame'-Navier equation.
- Singular solution: Kelvin
- Lame' coefficients, G (shear modulus) and  $\lambda$  determined by homogeneous loading of large system with PBCs.
- "Continuum" solution computed at particles using Debye-like cutoff and linear dispersion ( $\omega^2 \sim k^2$ )
- Slight dependence on Poisson ratio.
- Point response becomes less and less Kelvin-like near φ<sub>J</sub>



# Measurement 1: Point response $(\lambda + G)\nabla(\nabla \cdot \mathbf{u}) + G\nabla^2 \mathbf{u} = 0$

$$(\lambda + G)\nabla(\nabla \cdot \mathbf{u}) + G\nabla^2 \mathbf{u} = 0$$

- Averaged power spectrum at φ=0.85
- Look at Longitudinal and Transverse contribution separately.
- Kelvin:

$$u_L(q) = \frac{\sin(\theta)}{(K+G)q^2}$$
$$u_T(q) = \frac{\cos(\theta)}{Gq^2}$$

• Note: ui should be zero along  $\theta=0$  and  $u_T$  should be zero along  $\theta=\pi/2$ .



## Measurement 1: Point response $(\lambda + G)\nabla(\nabla \cdot \mathbf{u}) + G\nabla^2 \mathbf{u} = 0$

$$(\lambda + G)\nabla(\nabla \cdot \mathbf{u}) + G\nabla^2 \mathbf{u} = 0$$

- Averaged power spectrum at φ=0.85
- Look at Longitudinal and Transverse contribution separately.
- Kelvin:

$$u_L(q) = \frac{\sin(\theta)}{(K+G)q^2}$$
$$u_T(q) = \frac{\cos(\theta)}{Gq^2}$$

• Note: u<sub>L</sub> should be zero along  $\theta$ =0 and  $u_T$  should be zero along  $\theta=\pi/2$ .



## Measurement 1: Point response

$$(\lambda + G)\nabla(\nabla .\mathbf{u}) + G\nabla^2 \mathbf{u} = 0$$

- Take isotropic average of Log(S) for better statistics.
- S=1 means Kelvin.
- Note: long wavelength behavior determined by "macroscopically" measured G and K.
- No free parms. in fit to low-q.



## Point response: scaling with pressure



## Point response: scaling with pressure



- •Note: longitudinal scaling function more severe than transverse.
- $S_L \sim q^2$ ,  $S_T \sim q^1$

Detour: non-affine elastic formalism

- Single particle toy problem:
  - Start at F=0



Lutsko (J. App. Phys. 1988)
 CEM+Lemaître (PRL 2004)

- Single particle toy problem:
  - Start at F=0
  - Apply affine shear
  - Forces remain zero
  - No correction necessary



- Single particle toy problem:
  - Start at F=0



- Single particle toy problem:
  - Start at F=0
  - Apply strain



- Single particle toy problem:
  - Start at F=0
  - Apply strain

Use Hessian to compute "Affine force"

$$\vec{\Xi}_i = \gamma \sum_j \mathbf{H}_{ij} \hat{\mathbf{x}} \delta y_j$$



- Single particle toy problem:
  - Start at F=0
  - Apply strain

Use Hessian to find position correction

$$\vec{\Xi}_i = \mathbf{H}_{ii} \vec{dr}_i$$
$$\vec{dr}_i = \mathbf{H}_{ii}^{-1} \vec{\Xi}_i$$



•Back to full assembly:

$$\vec{\Xi}_i = \gamma \sum_j \mathbf{H_{ij}} \hat{\mathbf{x}} \delta y_{ij}$$

- Measure of local disorder.
- Only short range correlations in our samples.



•Back to full assembly:

$$\vec{dr}_i = \gamma \sum_j \mathbf{H}_{ij}^{-1} \vec{\Xi}_j$$

Force balance:

Affine forces,  $\Xi$ , must be balanced by correction forces,  $H^{-1}_{ij}dx_j$ 



## Tangent modulus

$$\sigma \doteq \frac{dU}{d\gamma} = \frac{\partial U}{\partial \mathring{r}_{i\alpha}} \frac{d\mathring{r}_{i\alpha}}{d\gamma} + \frac{\partial U}{\partial \gamma} = \frac{\partial U}{\partial \gamma}$$
$$\mu \doteq \frac{d\sigma}{d\gamma} = \frac{\partial^2 U}{\partial \gamma^2} - \Xi_{i\alpha} H_{i\alpha j\beta}^{-1} \Xi_{j\beta} = \mu_a - \mu_{na}$$



#### Crucial for this talk:

Non-affine motion gives negative definite correction to any physical modulus. e.g.  $\mu_{net} < \mu_{affine}$  and  $K_{net} < K_{affine}$  (but not necessarily  $\lambda$ )

#### Parenthetical:

Tangent modulus goes to negative infinity at bifurcation points

Detour finished... back to results

- As usual: modulus,  $\mu$ = $\Delta$ stress/strain
- Apply homogeneous shear at boundaries, but material responds inhomogeneously in interior
- inhomogeneous motion always lowers  $\mu$  relative to "naive" value

•Q) how big a chunk of material do I need before I converge to a well defined



- Small R, inhomogeneous corrections are suppressed (Cauchy-rule enforced).
- μ decays to μ∞ as R -> ∞
- known: near  $\phi_{rcp} \mu(R=0)$  -> constant and  $\mu(R=\infty)$  goes to zero.
- so what?: at  $\phi$ =0.88 R=100 gives  $\mu$  to 10%, at  $\phi$ =0.85, need R=500!



- Simple scaling form: bulk vs. boundary says  $\mu(R)/\mu-1 \sim 1/R$
- Collapse to 1/R form when R scaled by p-0.5.
- Reminiscent of Goodrich rigidity percolation procedure and  $I^* \sim 1/\Delta z \sim 1/p^{1/2}$

## Measurement 3: Unconstrained (wave)

- Wave forcing: Impose external field
- Measure projected response to infer modulus:  $\mu(\lambda)$





- Inferred  $\mu(\lambda)$  rapidly approaches bulk value.
- Small λ error can be understood as pseudo-Brillouin-boundary effects
- Move it along... nothing to see here...
- Recent update. Private conversation w/S Teitel... interesting scaling for  $K(\lambda)$

### Measurement 3: Unconstrained deformation

- Unconstrained homogeneous deformation with periodic boundary conditions.
- Moduli (both K and G) rapidly converge with system size to bulk values.
  (as in seminal work by O'Hern et. al. PRE 2003)
- Consistent with 2D Lennard-Jones (Tanguy et. al. PRB 2002)



## Measurement 3: Unconstrained deformation ( $\phi$ =92%)

• Measure local dilatancy (longitudinal),  $\Phi$ , and local vorticity (transverse),  $\omega$  in response to both compression ( $\Phi_c$ , $\omega_c$ ) and shear ( $\Phi_s$ , $\omega_s$ ).



- One or two dominant displacement quadrupoles ("STZ"s?) in a typical 320x320 box.
- shear: disp. quadrupoles align (vertical compression, horizontal extension)
- compression: quadrupoles random orient.
- Φ=92% just like Lennard-Jones
- •Effective-medium-like calculations (Didonna & Lubensky PRE 2005, Maloney PRL 2006) imply Gaussian random whitenoise for both  $\Phi$  and  $\omega$  fields. (Obvious: not strictly true)

## Measurement 3: Unconstrained deformation ( $\phi$ =85%)



- •At φ=85%, dilatancy is less "coherent" in both compression and shear.
- Shear induced vorticity very similar to φ=92%. VERY SURPRISING! (Related to Ellenbroek, et. al. "sliding only" result?)
- Shear induced quadrupoles are no longer visible in long-range dilatancy field.
- Very small hint of compression induced quadrupoles in the vorticity (but not dilatancy)
- Idea: dilatancy must vanish outside STZ cores, but may be non-zero inside.

## Measurement 3: Unconstrained deformation ( $\phi$ =92%)



- Power spectra for dilatancy (longitudinal) and vorticity (transverse)
- •EMT says q<sup>2</sup>S(q) should be flat and isotropic for both dilatancy and vorticity
- Clear deviations from both S~q-2 and isotropy (compression response is isotropic by **construction** for qL<sub>cell</sub>>>1)... that is: quadrupoles align with the shear.
- Anisotropy much more pronounced in dilatancy than vorticity (agreement with impression from real-space images).

#### Measurement 3: Unconstrained deformation



- Take isotropic average of log(q<sup>2</sup>S(q))
- •EMT says q<sup>2</sup>S(q) should be flat and isotropic for both dilatancy and vorticity
- Clear deviations from both S~q<sup>-2</sup> and isotropy (compression response is isotropic by **construction** for qL<sub>cell</sub>>>1)... that is: quadrupoles align with the shear.
- Anisotropy much more pronounced in dilatancy than vorticity (agreement with impression from real-space images).

## Conclusions (Elasticity)

- Method 1) Point response:
  - $\xi_L \sim p^{-0.4}$ ,  $\xi_T \sim p^{-0.25}$
  - hard to see  $\xi_L$  since G/K -> 0 so  $S_L/S_T \sim 0$
  - shape of scaling function S(ξq)?
- Method 2) Constrained deformation:
  - $\mu(R)/\mu$ -1 ~ 1/(Rp<sup>-0.5</sup>)
  - analogous to rigidity-based approaches and I\*
- Method 3) Unconstrained deformation:
  - "Wave method" G(λ)
    - quick convergence G<sub>∞</sub> beyond λ~5
    - insensitive to φ<sub>J</sub>
    - (Should also check K)!
  - S<sub>T</sub>
    - effective medium (uncorrelated strains) good approx
    - puzzle: insensitive to φ!
  - S<sub>I</sub>
    - effective medium only OK approx
    - details depend on φ
    - "incoherent" beyond "shear zone size".
    - peak position independent of φ
    - shear transformation zones / soft spots???

