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 E σf 
Steel 200 GPa 0.1-2 GPa 

Glass 70 GPa 300 MPa 

Al2O3 400 GPa <100 Mpa 
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Stress field diverges 
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σ ~ K
r

  Stress intensity factor ~ K 
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Materials would have no 
resistance to failure 

Stress based 
criterion for failure 

  Not like this neither! 

The slit crack model 
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Equation of motion for a crack  
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Hypothesis: 
-  Slow crack growth velocity 
-  Weekly heterogeneous material 
-  Very large sample 

For displacement control experiments:  Gext = Gc + k[vmt − f (z, t)]

Critical driving given by Gc
eff = Gc + k[vmt − f (z, t)

z
] Gc

eff = δGc (z, f (z)) z

vm 
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Determination of the optimal shape and distribution of 
pinning sites to achieve targeted properties 

Application to material design 
S. Xia, L. Ponson, G. Ravichandran and K. Bhattacharya 2012 
and international patent 2011 
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Movie: Courtesy of S. Santucci 

Crack propagation within disordered materials: 
Bridging the gap between experiments and theory 
Experimental setup 

Crack front position measured through fast camera: 



Characterizing the local crack dynamics 

Matrix of waiting time Tw 

Position of the front at a given time 

Definition of clusters such as Tw < C<Tw>  

Avalanche of size S=5 
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K. Maloy et al. 2006, K. Tallakstat et al. 2011 

Distribution of local avalanche sizes 

P(S)  ~ S-γ 

with γ ≈ 1.55 
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Comparison with the interface depinning model 7

FIG. 5: Representation of the threshold velocity matrices V

thres

d

and V

thres

p

. For the depinning case, relatively large areas
represented in white correspond to abrupt advances of the front, while for the pinning case, the rather thin lines corresponds
to front position at arrest for some time.

matrix of Fig. 5. Each of these avalanches is charac-
terized by several quantities: their width l

z

along the
crack front direction, their thickness l

x

along the prop-
agation direction and their size S corresponding to the
total area of the cluster, the statistics of which is used
here to quantify the intermittent crack dynamics and test
the relevance of the theoretical approach proposed here.
Similarly, the pinning clusters are defined as domains of
connected pixels for which the local velocity is lower than
the threshold Chvi.

Figure 6 shows the size distribution of pinning and
depinning clusters for di↵erent values of the threshold
C. Here, we assume the following behavior previously
observed in the experiments,

P (S) ⇠ S

�

exp(�S/S

⇤) with S

⇤ ⇠ C

�� (8)

and determine the values of the exponents � and � by
optimizing the collapse of the distributions corresponding
to di↵erent C values. This procedure leads to the power
law exponents �

d

= 1.55±0.05 for depinning clusters and
�

d

= 1.65 ± 0.1 for pinning clusters that are compatible
with the experimental values �exp

d

= �

exp

p

= 1.56 [23], and
the theoretical one �

d

= 3/2 [30]. On the contrary, the
exponents �

d

= 3.8±0.2 and �

p

= 1.3±0.1 describing the
scaling of the distribution cut-o↵ S

⇤ with the threshold
C are di↵erent from the experimental values �

d

= 1.77±
0.16 and �

exp

p

= 2.81± 0.23.
In order to confirm the value of the exponents � and

�, we use an alternative and independent approach, fol-
lowing the ideas of Ref. [23]. First, we investigate the
number of depinning (resp. pinning) clusters N

cluster

as
a function of the threshold C that follows, as shown on
Fig. 7,

8
<

:

N

depinning

cluster

⇠ C

�

d with �

d

= 1.7± 0.2

N

pinning

cluster

⇠ C

�

d ⇠ N

0

with �

p

= 0
(9)

Then, we compute the total area A

depinning

(resp.
A

pinning

) covered by the depinning (resp. pinning ) clus-
ters as a function of the treshold C. As shown on Fig. 8,

they follow

8
><

>:

A

depinning

⇠ log(
C

0

C

) with C

0

= 9± 1

A

pinning

⇠ C

�

p with 

p

= 0.42± 0.03

(10)

The logarithm variations of A
depinning

indicates the value


d

= 0 in the scaling relation A

depinning

⇠ C



d .
Finally, this quantity can be related to the total nu-

meber of clusters and their average size by noticing that

A = N

cluster

hSi (11)

valid bor both depinning and pinning cluster. Using the
shape of the probability distribution of the cluster size of
Eq. (8), one can predict the scaling of the average cluster
size

hSi = (S⇤)2�� ⇠ C

��(2��) (12)

here also valid for both depinning and pinning clusters.
Inserting the scaling relations (10), (9) and (12) into
Eq. (11) leads to the relationship between exponents [23]

 = �(2� �)� � (13)

that applies both in the depinning and pinning regime.
Using the speficic values 

d

= 0 and �

p

= 0, one gets the
simplified relations

8
<

:

�

d

= �

d

(2� �

d

)



p

= �

p

(2� �

p

)
(14)

that are well verified by the exponents measured on the
simulations, and listed in Table II.

Interestingly, one can establish a connection between
the cut-o↵ S

⇤ of the cluster size distribution P (S) and
the size of the largest avalanche S

⇤
av

along an elas-
tic disordered interface driven at velocity hvi. The
largest avalanche S

⇤
av

⇠ ⇠

1+⇣ are set by the correlation

White pixels 
correspond to 

P(S)  ~ S-τ 

with τd ≈ 1.55 

Tw <C Tw

Tw >C Tw

P(S)  ~ S-τ 

with τp ≈ 1.65 

Depinning clusters Pinning clusters 



Energy transfer during brittle fracture 
t = 0- t = 0+ t = tend 



Energy transfer during brittle fracture 

Etot = E0 = Epot +Eel +Es At time t=0: 
Em = E0
Es = 0

!
"
#

$#
At time t=tend: 

Em = 0
Es = E0

!
"
#

$#
Em

t = 0- t = 0+ t = tend 

Total 
energy: { 



Energy transfer during brittle fracture 

Etot = E0 = Epot +Eel +Es At time t=0: 
Em = E0
Es = 0

!
"
#

$#
At time t=tend: 

Em = 0
Es = E0

!
"
#

$#
Em

t = 0- t = 0+ t = tend 

Rate of energy transfert: 

P(t) = δEs

δt
= −

δEm

δt
= b G(z, t) f (z, t)dz ≈ b Gc vm∫

Total 
energy: { 

P(t) ~ vm (t)
Rate of energy transfer 

given by the average crack 
growth velocity 



Energy transfer during brittle fracture 

Etot = E0 = Epot +Eel +Es At time t=0: 
Em = E0
Es = 0

!
"
#

$#
At time t=tend: 

Em = 0
Es = E0

!
"
#

$#
Em

t = 0- t = 0+ t = tend 

Rate of energy transfert: 

P(t) = δEs

δt
= −

δEm

δt
= b G(z, t) f (z, t)dz ≈ b Gc vm∫

2

for details): Parallelepiped samples of size 140 × 125 ×
15 mm in the x (propagation), y (loading) and z (sample
thickness) were loaded in mode I by pushing a wedge at
constant speed Vwedge into a 25× 25 mm cut out on one
the two (y − z) edges. An initial seed crack (10 mm-
long) was introduced with a razor blade in the middle
of the cut. It prevents dynamic fracture and enables
growing slow stable cracks. Two go-between steel blocks
were placed between the wedge and the specimen to limit
parasitic mechanical dissipation and ensure the damage
and failure processes to be the sole dissipation source for
mechanical energy in the system (see [21] for details on
the experimental setup).

The wedge speed Vwedge was varied from 16 nm/s to
1.6 µm/s. During each test, the force f(t) applied by
the wedge was monitored in real time by a S-type Vishay
cell force (acquisition rate of 50 kHz, accuracy of 1 N).
As soon as the wedge starts to push on the specimen
(time origin set at this onset), f increases. When f gets
large enough (∼ 200 − 300 N), the seed crack starts to
propagate. This propagation was imaged at the speci-
men surface via a camera (USB2 uEye from IDS Imag-
ing Development), which provided the variation of crack
length c(t) as a function of time (space and time ac-
curacy of 130 µm and 0.1 s, respectively). Direct dif-
ferentiation of this curve gives a coarse approximation
of the instantaneous crack speed v(t). Still, a much
more accurate signal can be derived from the force sig-
nal by analyzing the variations of the specimen stiffness
k = f(t)/Vwedge× t as function of c(t). In a linear elastic
material, this curve is a continuous decreasing function
set by the specimen geometry only, and independent of
the other experimental parameters (e.g. Vwedge). We
hence averaged all the k vs. c curves obtained in our ex-
periments and smoothed the result via a Tikhonov reg-
ularization. The so-obtained curve k(c) was then used
to infer c(t) = k−1(f(t)/Vwedge × t) from the signal f(t).
Time derivation of c(t) then provides a signal v(t) about
50 times less noisy than that obtained directly from the
camera. Finally, the time evolution of the mechanical
energy E(t) stored in the specimen at all time t is given
by E(t) = f(t)× Vwedge × t.

Results – Figure 1(A) presents the time evolution of
v(t) and E(t) in a typical fracture experiment. These
profiles exhibit the intermittent features characteristic of
crackling dynamics, with random violent bursts (resp.
sudden drops) in v(t) (resp. in E(t)) spanning a vari-
ety of scales. The superposition of the two also reveals
that the velocity bursts coincide with the energy drops.
Beyond this occurrence coincidence, the fluctuation am-
plitude v(t) is found to be proportional to the power
P(t) = −dE/dt released at each moment t (fig. 1(B)).
This proportionality was observed in all our experiments,
irrespectively of the loading rate (Vwedge value). It be-
trays the characteristics of a nominally brittle fracture:
P(t) = G(t) × v(t) where G(t) = −dE/dc is the energy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1000
0.03

0.04

0.05

0.06

0.07

0.08

0.09 0.4

0.3

0.2

0.1

0

0 0.05 0.1 0.15 0.2 0.25

10-2

10-1

10-2 10-1

A B

FIG. 1. A: Zoomed view of the crack tip speed v(t) (black)
and stored mechanical energy E(t) (gray) as a function of time
in a typical fracture experiment (Here, Vwedge = 16 nm/s). B:
Instantaneous power release P = −dE/dt as a function of v(t)
for all t. The axes are linear in the main panel, and logarith-
mic in the inset. In both cases, straight lines indicate propor-
tionality. The proportionality constant Γ = 100 ± 10 J/m2

gives the material’s fracture energy.

release rate. Now, for a stable crack slowly driven in a
nominally brittle material, LEFM framework states that
G(t) ∼ Γ where the fracture energy Γ is a material con-
stant. In other words, a nominally brittle fracture com-
patible with LEFM assumptions yields P(t) = Γ × v(t)
at all times t, irrespectively of the precise values of P(t)
and v(t), as observed here. In this scenario, the propor-
tionality constant in fig. 1(B) gives Γ for the considered
material, which, here, is found to be Γ = 100± 10 J/m2.

We turn now to the statistical characterization of the
crack dynamics. Here, we analyzed the temporal evolu-
tion P(t) in preference to that of v(t) since the former is
directly obtained from the experimental measurement of
applied force f(t), while the latter calls for the addition
of the k vs. c curve. The distribution of instantaneous
power released is first analyzed. Note that, in experi-
ments, an "instantaneous" quantity is actually averaged
over a finite time scale τ , the value of which affects the
fluctuation amplitude. The distributions of P(t), hence,
have been computed for different values of τ . A Gaus-
sian distribution (centered at zeros, standard deviation
decreasing as 1/

√
τ ) is observed at small scales (plain

lines in Figs. 2A and B), and a power-law tail is ob-
served at large scales (Fig. B). The Gaussian part of
the curve stems from the electrical noise on the measure-
ment of the force signal, and has thus been withdrawn.
The denoised distributions are all found to collapse onto
a single master curve (Fig. 2C) exhibiting two power-
law scaling, a small scale regime with a scaling expo-
nent asmall = 1.4 ± 0.15 and a large scale regime with
alarge = 2.5 ± 0.1. Note that the latter is close to the
exponent value a % 2.5 observed on the fat-tail decay of
the (local) velocity fluctuations in experimental [16, 22]
and numerical [23] studies of 2D interfacial crack growth.
Here, the two scaling regimes, together with the value of
the associated crossover (PC ≈ 0.34 mW), is observed
to depend neither on τ , nor on the loading rate Vwedge.
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FIG. 2. Distribution of instantaneous power release for dif-
ferent coarse-graining time τ plotted in logarithmic (panel A)
and linear scales (panel B). Here, Vwedge = 16 nm/s. Plain
curves are Gaussian distributions with zero average and a
variance σ(τ ) prescribed so as the Gaussian curve fits the ex-
perimental data on the small scale plateau. This Gaussian
part results from the experimental noise in the measurement
of the force signal. C, main panel: Same graphs as in A af-
ter having withdrawn, for each curve, the noise-dominated
Gaussian part of each distribution. Empty and filled symbols
correspond to Vwedge = 16 nm/s and Vwedge = 160 nm/s,
respectively. The curves associated to Vwedge = 160 nm/s
have been shifted vertically for sake of clarity. For each value
Vwedge, the denoised curves obtained at different τ are found
to collapse onto a master curve characterized by two scaling
regimes: A small scale regime with an exponent 1.4±0.15 and
a large scale regime with an exponent 2.5±0.1. The crossover
is found to be around 0.34 mW, irrespectively of Vwedge. C,
inset: maximum value Pmax observed for P(t) as a function
of τ . Dash line shows a 1/

√
τ dependency.

Conversely, the maximal value Pmax (resp. vmax) of P(t)
(resp. v(t)) decreases with τ , as 1/

√
τ (Inset in Fig. 2C),

as expected for independent fluctuation peaks.

The scale-free statistics observed for the fluctuations
P(t) (or equivalently for the fluctuations v(t)) is a first
hint toward crackling dynamics. We adopt the stan-
dard procedure in the field, and identify the underlying
avalanches with the bursts where P(t) is above a pre-
scribed reference level Pr = C〈P〉. Then, the avalanche
duration T of each pulse is given by the interval be-
tween the two intersections of P(t) with Pr, and the
avalanche size S is defined as the energy released dur-
ing the event, i.e. the integral of P(t) between the two
intersection points. As expected for a crackling signal,
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FIG. 3. A: Distribution of the avalanche size S, defined as
the energy released during the event. B: Scaling between
normalized size S/〈S〉 and duration D/〈D〉. In both pan-
els, the various symbols correspond to various values for
{τ, C} (specified in the inset of A) and Vwedge (empty symbol
for Vwedge = 16 nm/s, filled ones for Vwedge = 160 nm/s;
the latter have been shifted vertically for sake of clarity).
Straight lines correspond to power-law fits P (S) ∝ S−τ and
S ∝ Dγ , with τ = 1.4 ± 0.1 (resp. τ = 1.1 ± 0.15) and
γ = 1.38± 0.05 (resp. γ = 1.17± 0.05) for Vwedge = 16 nm/s
(resp. Vwedge = 160 nm/s).

S follows a power-law distribution P (S) ∝ S−τ (Fig.
3:A) and the mean avalanche size goes as a power-law
with T , S ∝ T γ (Fig. 3:B). The associated exponents
τ and γ are found to be independent of the procedure
analysis (i.e. of the precise values of τ and C). Con-
versely, they both decrease with the loading rate, from
{τ = 1.4± 0.1, γ = 1.38± 0.05} at Vwedge = 16 nm/s to
{τ = 1.1 ± 0.15, γ = 1.17± 0.05} at Vwedge = 160 nm/s.
This rate dependency together with the values of these
exponents differ from the rate independent values {τ =
1.28± 0.01, γ = ±1.80± 0.02} expected in the LR inter-

P(S)  ~ S-τ 

with τ ≈ 1.40 

J. Barès, D. Bonamy et al. 2014 

S ~ vm (t)dt
t1

t2

∫

Avalanche size: 

Avalanche duration: T = t2-t1 
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Conversely, the maximal value Pmax (resp. vmax) of P(t)
(resp. v(t)) decreases with τ , as 1/
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τ (Inset in Fig. 2C),

as expected for independent fluctuation peaks.

The scale-free statistics observed for the fluctuations
P(t) (or equivalently for the fluctuations v(t)) is a first
hint toward crackling dynamics. We adopt the stan-
dard procedure in the field, and identify the underlying
avalanches with the bursts where P(t) is above a pre-
scribed reference level Pr = C〈P〉. Then, the avalanche
duration T of each pulse is given by the interval be-
tween the two intersections of P(t) with Pr, and the
avalanche size S is defined as the energy released dur-
ing the event, i.e. the integral of P(t) between the two
intersection points. As expected for a crackling signal,
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Straight lines correspond to power-law fits P (S) ∝ S−τ and
S ∝ Dγ , with τ = 1.4 ± 0.1 (resp. τ = 1.1 ± 0.15) and
γ = 1.38± 0.05 (resp. γ = 1.17± 0.05) for Vwedge = 16 nm/s
(resp. Vwedge = 160 nm/s).

S follows a power-law distribution P (S) ∝ S−τ (Fig.
3:A) and the mean avalanche size goes as a power-law
with T , S ∝ T γ (Fig. 3:B). The associated exponents
τ and γ are found to be independent of the procedure
analysis (i.e. of the precise values of τ and C). Con-
versely, they both decrease with the loading rate, from
{τ = 1.4± 0.1, γ = 1.38± 0.05} at Vwedge = 16 nm/s to
{τ = 1.1 ± 0.15, γ = 1.17± 0.05} at Vwedge = 160 nm/s.
This rate dependency together with the values of these
exponents differ from the rate independent values {τ =
1.28± 0.01, γ = ±1.80± 0.02} expected in the LR inter-

P(S)  ~ S-τ 

with τ ≈ 1.40 

J. Barès, D. Bonamy et al. 2014 

S ~ vm (t)dt
t1

t2

∫

Avalanche size: 

Prediction of the interface depinning model: 
P(S)  ~ S-τ 

with τ ≈ 1.28 

O. Narayan and D. Fisher 1992, A. Dobrinevski, K. Wiese, P. Le Doussal 2014 

Avalanche duration: T = t2-t1 



Avalanche shape defined… 

See S. Santucci’s talk at the conference 

Asymetric shape and scaling exponent 
(γth = 1.80) consistent with the depinning 
model 

Fig. S6 and Supplementary Note 5). The corresponding skewness
(computed by interpreting hV(t | T) i as a probability density17) of
the avalanches exhibits a similar evolution with a (Supplementary
Fig. S7, Supplementary Note 6). Thus, avalanches whose
dynamics is governed by interaction kernels that are not fully
non-local are temporally asymmetric, as illustrated by the time-
irreversible nature of the corresponding space-time activity
patterns (Fig. 1).

Planar crack front propagation experiments. Finally, we con-
sider data from planar crack front propagation experiments9,32, as
an example of an experimental system with non-mean-field
avalanche dynamics, see Methods for details. The scaling of the
average size of the avalanches of crack front propagation as a
function of their duration is shown in Fig. 3b. In the scaling
regime, these are characterized by g¼ 1.67±0.15, in agreement
with the 1d non-local elasticity depinning model with a¼ 2
(refs 27,28), see also Supplementary Fig. S8. The average
avalanche shape is shown in Fig. 3a. Owing to the non-
negligible statistical fluctuations present in the data, it is not
possible to detect the small asymmetry predicted by the crack line
model: thus, we choose to fit the leading-order behaviour,
equation (4), to the data (see also Supplementary Fig. S9). This
leads to g¼ 1.74±0.08, in agreement with the g-value obtained
from the fit to the shape obtained from the crack line model27,28.
Notice also that the experimental shape clearly differs from both
the mean-field inverted parabola and the shape expected for the
local qEW equation.

Discussion
We have shown how the average avalanche shape of systems
exhibiting crackling noise depends on the universality class of the
avalanche dynamics. It is a fundamental fingerprint of an
avalanching system and extrapolates when tuning elastic inter-
actions between an inverted parabola for mean-field systems and
a shape close to a semicircle for the 1d short-range interface. The
broken time-reversal symmetry in the avalanche dynamics
emerging from the spatially localized interactions is manifested
as a temporal asymmetry in the avalanche shape evolving with the
interaction range (see also Supplementary Discussion). Thus,
such asymmetries should be looked for in experimental data in
systems where the interactions mediating the avalanche dynamics
are not fully non-local. These include, for example, domain wall
dynamics in magnetic thin films33 and fluid invasion into
disordered media34,35.

Methods
Numerical simulations of interface depinning models. We simulate the inter-
face depinning model, equation (6) with periodic boundary conditions. The parallel
dynamics of the interface is defined in discrete time t by setting the local velocity
vi(t)"hi(tþ 1)$ hi(t)¼ y(Fi), where y is the Heaviside step function. The interface
is driven with a quasistatic constant velocity drive, where avalanches are triggered
by increasing Fext just enough to make exactly one interface element unstable (that
is, Fi40 for some i) whenever the previous avalanche has ended. Thus, avalanches
can be defined unambiguously without thresholding28. During an avalanche, Fext is
decreased at a rate proportional to the instantaneous avalanche velocity,
_Fext ¼ $ k=L

P
i viðtÞ. k is a parameter analogous to the demagnetizing factor for

ferromagnetic domain walls36 or to the elastic stiffness of the specimen-machine
system in a mechanical loading experiment37 and controls the cut-off of the
avalanche distribution, with the cut-off size s0 obeying s0 ' k$ 1=sk . The crackling
noise signal of interest is given by VðtÞ ¼

P
i viðtÞ. To compute the average

avalanche shapes, we collect a large ensemble of avalanches from various duration
ranges. For T in the scaling regime, the average shapes corresponding to the various
duration ranges fall onto a single curve after normalizing with the maximum
amplitude, hV(t | T) imax. The simulations are performed in large system sizes
(L¼ 8,192¼ 213 for aZ3, L¼ 32,768¼ 215 for a¼ 2, L¼ 131,078¼ 217 for a¼ 1
and L¼ 8,388,608¼ 223 for the infinite range model), and by using sufficiently
small k-values such that the avalanche cut-off s0 ' k$ 1=sk is large. Examples of the
crackling noise signals VðtÞ ¼

P
i viðtÞ obtained from the model for different

interaction ranges are shown in Fig. 4.

Planar crack front propagation experiments. To extract the average avalanche
shape for the planar crack propagation experiments, slow creep motion of a planar
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Figure 3 | The average avalanche shape in planar crack front propagation
experiments. (a) Symbols with error bars (corresponding to statistical error
(s.e.m.), quantified by the s.d. of V(t/T) normalized by the square root of
the number of avalanches) show the measured average avalanche shape,
along with a best fit of equation (4), or equation (5) with a¼0,
corresponding to g¼ 1.74±0.08. The mean-field (dash-dotted black line)
and the symmetrized qEW (dashed red line) results are shown for
comparison. (b) shows the scaling of the avalanche size s with the
normalized duration T/TV (see Methods), with a fit to the scaling regime
giving g¼ 1.67±0.15.
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Figure 4 | Examples of the crackling noise or interface velocity signals
from the interface depinning models. The interface velocity VðtÞ ¼P

i viðtÞ for different ranges of the elastic interactions, with (a) the infinite
range model, (b) the crack line model (a¼ 2) and (c) the local qEW
equation shown here. Owing to the quasistatic driving mechanism, the
avalanches can be unambiguously defined without thresholding. Here, for
visual clarity a fixed quiet time tq¼ 100 has been added between each
avalanche. All three signals are of the same length.
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Fig. S6 and Supplementary Note 5). The corresponding skewness
(computed by interpreting hV(t | T) i as a probability density17) of
the avalanches exhibits a similar evolution with a (Supplementary
Fig. S7, Supplementary Note 6). Thus, avalanches whose
dynamics is governed by interaction kernels that are not fully
non-local are temporally asymmetric, as illustrated by the time-
irreversible nature of the corresponding space-time activity
patterns (Fig. 1).

Planar crack front propagation experiments. Finally, we con-
sider data from planar crack front propagation experiments9,32, as
an example of an experimental system with non-mean-field
avalanche dynamics, see Methods for details. The scaling of the
average size of the avalanches of crack front propagation as a
function of their duration is shown in Fig. 3b. In the scaling
regime, these are characterized by g¼ 1.67±0.15, in agreement
with the 1d non-local elasticity depinning model with a¼ 2
(refs 27,28), see also Supplementary Fig. S8. The average
avalanche shape is shown in Fig. 3a. Owing to the non-
negligible statistical fluctuations present in the data, it is not
possible to detect the small asymmetry predicted by the crack line
model: thus, we choose to fit the leading-order behaviour,
equation (4), to the data (see also Supplementary Fig. S9). This
leads to g¼ 1.74±0.08, in agreement with the g-value obtained
from the fit to the shape obtained from the crack line model27,28.
Notice also that the experimental shape clearly differs from both
the mean-field inverted parabola and the shape expected for the
local qEW equation.

Discussion
We have shown how the average avalanche shape of systems
exhibiting crackling noise depends on the universality class of the
avalanche dynamics. It is a fundamental fingerprint of an
avalanching system and extrapolates when tuning elastic inter-
actions between an inverted parabola for mean-field systems and
a shape close to a semicircle for the 1d short-range interface. The
broken time-reversal symmetry in the avalanche dynamics
emerging from the spatially localized interactions is manifested
as a temporal asymmetry in the avalanche shape evolving with the
interaction range (see also Supplementary Discussion). Thus,
such asymmetries should be looked for in experimental data in
systems where the interactions mediating the avalanche dynamics
are not fully non-local. These include, for example, domain wall
dynamics in magnetic thin films33 and fluid invasion into
disordered media34,35.

Methods
Numerical simulations of interface depinning models. We simulate the inter-
face depinning model, equation (6) with periodic boundary conditions. The parallel
dynamics of the interface is defined in discrete time t by setting the local velocity
vi(t)"hi(tþ 1)$ hi(t)¼ y(Fi), where y is the Heaviside step function. The interface
is driven with a quasistatic constant velocity drive, where avalanches are triggered
by increasing Fext just enough to make exactly one interface element unstable (that
is, Fi40 for some i) whenever the previous avalanche has ended. Thus, avalanches
can be defined unambiguously without thresholding28. During an avalanche, Fext is
decreased at a rate proportional to the instantaneous avalanche velocity,
_Fext ¼ $ k=L

P
i viðtÞ. k is a parameter analogous to the demagnetizing factor for

ferromagnetic domain walls36 or to the elastic stiffness of the specimen-machine
system in a mechanical loading experiment37 and controls the cut-off of the
avalanche distribution, with the cut-off size s0 obeying s0 ' k$ 1=sk . The crackling
noise signal of interest is given by VðtÞ ¼

P
i viðtÞ. To compute the average

avalanche shapes, we collect a large ensemble of avalanches from various duration
ranges. For T in the scaling regime, the average shapes corresponding to the various
duration ranges fall onto a single curve after normalizing with the maximum
amplitude, hV(t | T) imax. The simulations are performed in large system sizes
(L¼ 8,192¼ 213 for aZ3, L¼ 32,768¼ 215 for a¼ 2, L¼ 131,078¼ 217 for a¼ 1
and L¼ 8,388,608¼ 223 for the infinite range model), and by using sufficiently
small k-values such that the avalanche cut-off s0 ' k$ 1=sk is large. Examples of the
crackling noise signals VðtÞ ¼

P
i viðtÞ obtained from the model for different

interaction ranges are shown in Fig. 4.

Planar crack front propagation experiments. To extract the average avalanche
shape for the planar crack propagation experiments, slow creep motion of a planar
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Figure 3 | The average avalanche shape in planar crack front propagation
experiments. (a) Symbols with error bars (corresponding to statistical error
(s.e.m.), quantified by the s.d. of V(t/T) normalized by the square root of
the number of avalanches) show the measured average avalanche shape,
along with a best fit of equation (4), or equation (5) with a¼0,
corresponding to g¼ 1.74±0.08. The mean-field (dash-dotted black line)
and the symmetrized qEW (dashed red line) results are shown for
comparison. (b) shows the scaling of the avalanche size s with the
normalized duration T/TV (see Methods), with a fit to the scaling regime
giving g¼ 1.67±0.15.
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Figure 4 | Examples of the crackling noise or interface velocity signals
from the interface depinning models. The interface velocity VðtÞ ¼P

i viðtÞ for different ranges of the elastic interactions, with (a) the infinite
range model, (b) the crack line model (a¼ 2) and (c) the local qEW
equation shown here. Owing to the quasistatic driving mechanism, the
avalanches can be unambiguously defined without thresholding. Here, for
visual clarity a fixed quiet time tq¼ 100 has been added between each
avalanche. All three signals are of the same length.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3927

4 NATURE COMMUNICATIONS | 4:2927 | DOI: 10.1038/ncomms3927 | www.nature.com/naturecommunications

& 2013 Macmillan Publishers Limited. All rights reserved.

Experiment 
Theory 

S  ~ Tγ with γexp ≈ 1.75 

…at the global scale …at the local scale 

L. Laurson et al. 2013 N. Pindra and L. Ponson. 2014 

Size vs duration 

Exponent (γth = 0.65) consistent 
with the depinning model. Shape ?? 

Aspect ratio 

lx  ~ lz
α  with αexp ≈ 0.65 

Propagation 
direction 

Theory 



Interface depinning model: A relevant framework to 
describe the failure of brittle disordered materials? 

the avalanches dynamics at the local and 
global scale 

Yes ! Depinning concepts capture 

the self-affine roughness of crack fronts 

the average crack dynamics 
Depinning transition: vm ~ (G - Gc)θ 

S. Santucci et al. 2010 

L. Ponson 2009 



Interface depinning model: A relevant framework to 
describe the failure of brittle disordered materials? 

the avalanches dynamics at the local and 
global scale 

Yes ! Depinning concepts capture 

the self-affine roughness of crack fronts 

the average crack dynamics 
Depinning transition: vm ~ (G - Gc)θ 

S. Santucci et al. 2010 
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But under some 
specific conditions 

Very large sample size 
Specimen width >> spatial extent of avalanches 

Scale separation between the material 
heterogeneity and the process zone 
Process zone size << material heterogeneity size 
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Coming back to the model.. 

Crack propagation is possible below the critical 
threshold through thermal activation processes 

(long range elasticity) 

T. Natterman 1987, A. B. Kolton et al. 2005, L. Ponson et al. 2007 
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Intermittent crack propagation at the transition and below 

At the transition and below, the crack propagates through sudden jumps 
(avalanches) with no characteristic size (power law distributed) 

3. Intermittency and avalanches during crack propagation 


