

Mark D. Shattuck Aline Hubard **Benjamin Levich Institute Physics Department** The City College of New York Corey O'Hern Tiangi Shen Mechanical Engineering Yale University NSF-DMR, NSF-CBET

KITP 2014

Experimental setup

- 7 1/8" thick (3.1mm) Photoelastic or stainless steel disks
 - -4 D_S = 1/2" (12.685mm)
 - -3 D_L = 5/8" (15.881mm)
 - $-D_{L}/D_{S}=1.25$
- Thin (2D) container dimensions – Width=4.25D_S x Height=4.13D_S
- Driven from below
 - Oscillating sinusoidally (f=440Hz)
 - $-y(t)=Asin(2\pi ft)$
- High intensity monochromatic LED light source
- Crossed polarizers.

Friction Elimination

Frictional Packings

Contact Evolution

Contact Evolution

Contact Evolution

14

14

12

Isostatic: Nc = 2N = 14

Phase Space Evolution

Surface: 2-dimension

Spring Network

Spring Network

Dynamical Matrix:

$$\kappa_{nk} = \nabla_n \nabla_k V(\mathbf{X}_n^0)$$

Spring Network

Dynamical Matrix:

$$\kappa_{nk} = \nabla_n \nabla_k V(\mathbf{X}_n^0)$$

Null Space: 2D

Particles Move in Null Space

Dynamical Matrix:

$$\kappa_{nk} = \nabla_n \nabla_k V(\mathbf{X}_n^0)$$

Null Space: 2D

Particles Move in Null Space

Fraction of Movement Not in Null Space

Particles Move *Down* in Null Space

Dynamical Matrix:

$$\kappa_{nk} = \nabla_n \nabla_k V(\mathbf{X}_n^0)$$

Null Space: 2D

Project Downward Displacement:

$$A_n = \sum_{k=1}^{2N} g_k \hat{\varepsilon}_{kn}^{-1}$$

Project-Back <u>only</u> in Null Space:

$$\Delta X_{k}^{\text{predict}} = \sum_{n=1}^{m} A_{n} \hat{\varepsilon}_{kn}$$
$$\cos(\alpha) = \frac{\Delta \mathbf{X}^{\text{predict}} \cdot \Delta \mathbf{X}}{\left|\Delta \mathbf{X}^{\text{predict}}\right| \left|\Delta \mathbf{X}\right|}$$

Distribution of Angle Between Experiment and Predicted Displacement

Spring Network with Gravity

Spring Model

- 1) Apply gravity force to spring network for a short time.
- 2) Relax network.
- 3) Repeat (1-2) until new contact forms or reach steady-state.
- 4) If new contact add spring and goto 1).
- 5) If steady and isostatic quit, else break weakest contact and goto 1).

Comparison to Springs with Gravity

Some Experimental Errors

Distribution of Angle Between Experiment and Predicted Displacement

Experimental Results

Frictional Families

- Frictional packings form 1-D families under periodic gravitational compaction.
 - The states evolve along the families.
 - The evolution is described by the dynamical matrix of a normal spring network formed from the contacts of the frictional state.
 - The system evolves in the direction of gravity projected on the null space.
- Frictional families are not equally probable.

-Most/Least probable similar to frictionless.

Frictional Families for Packings Creation by Compression

N=6 Periodic Packings

diameter ratio $\sigma_L/\sigma_s=1.4$

Invariant map: a 2-D representation

Use distance matrix **D**

 D_{ij} = the distance between particle i and j (D_{ij} =0 in case i = j)

• Solve for the invariant of distant matrix D:

Cundall-Strack Frictional Packings 1st Order Saddles (N_{iso}-1)

Spring Model

Cundall-Strack Frictional Packings 1st Order Saddles enumerated

Spring Model

Cundall-Strack Frictional Packings 2nd Order Saddles enumerated

Probability of mth Order Saddles For N=30 Frictional Packings

Probability of mth Order Saddles

 $Z_m(\mu) \propto V_m(\mu) \delta^{2N-1-m}$

 $V_m(\mu) \sim [l(\mu)]^m$

 $\frac{Z_m(\mu)}{Z_0(\mu)} \propto \left(\frac{l(\mu)}{\delta}\right)^m$

Real Space

Partition Function

Probability of mth Order Saddles For N=32 Frictional Packings

Probability of mth Order Saddles

$$P_m(\mu) = \frac{A_m \mu^m}{\sum_{m=0}^{m_{\max}} A_m \mu^m}$$
$$= \frac{a_m \mu^m}{1 + \sum_{m=1}^{m_{\max}} a_m \mu^m}$$
$$A_m = N_0(N) N_B(N,m)$$

$$a_m = \frac{A_m}{A_0} = N_B(N,m) = C_{Nc=2N-1}^m$$

Probability of mth Order Saddles N=30

Probability of mth Order Saddles

$$a_m = \frac{A_m}{A_0} = N_B(N,m) = C_{Nc=2N-1}^m$$

$$a_m = D_m(N)C_{Nc}^m$$

Probability of mth Order Saddles

Probability of mth Order Saddles For N=32 Frictional Packings

Contact Number vs Friction

Simulation/Theory Results

Frictional Families

- Frictional states lie on reduced dimension manifolds in the full configuration space.
- The partition Z_m function for each family m is determined by a simple theory.

-configurational entropy ~ V_R

- –Found that $V_R \sim \mu^m$.
- $-Z_m$ works for all N with 1 fit parameters
- -Predicts the probability of family m as a function of friction and the dependence of z

The End

Frictionless Packings

Characterization of Stable Packings (Center of Mass)

CoM of Stable Granular Packings (Experiments)

Centroids of Stable Granular Packings (Experiments and Simulations)

Centroids of Stable Granular Packings (Experiments and Simulations x30)

Centroids of Stable Granular Packings (Experiments and Simulations x750)

Centroids of Stable Granular Packings (Experiments and Simulations x6000)

Comparison of Stable Packings Phase Space Distance

Probability Distribution of States

Frictionless Results

Experimental Frictionless Packings

- New experimental technique creates stable frictionless packings.
- Experimental packing are distinct. –Well separated in phase space.
- Experimental unique states are not equally probable.
 - -Most/Least probable > 10^4 (10^7 in simulation).
- Experiments and simulations agree.
 - -Most probable states are the same.
 - Probability distribution of states is the same for the highly probable states.
- Properties of most probable states are largely independent of dynamics.

Frictionless Results

Experimental Frictionless Packings

- New experimental technique creates stable frictionless packings.
- Experimental packing are distinct.

-Well separated in phase space.

• Experimental unique states are not equally probable.

-Most/Least probable > 10^4 (10^7 in simulation).

- Experiments and simulations agree.
 - -Most probable states are the same.
 - Probability distribution of states is the same for the highly probable states.
- Properties of most probable states are largely independent of dynamics.