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Purely Repulsive Jammed Solids

2D Molecular Dynamics

• 2D frictionless bidisperse mechanically 

stable disk packings.

–50:50 mixture, DL /DS =1.4

–Jammed (J), many Δ=-J

–Vary Temperature

–Measure Density of Vibrational States

–Measure Response to Shear

•Compare repulsive interaction to two-sided 

springs



Purely Repulsive

F=-Kδ F=0

F=-Kδ F=Kδ

Double Sided Springs



Normal Modes in Disorder System
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Displacements:

Dynamical Matrix:

Newton’s Law:

Solution:



Vibrational Density of States



Vibrational Density of States
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Eigenvalues:
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Density of States ∆ϕ=10-6, N=10,T=10-13
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Density of States N=10

Log(Temperature)
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Heat Capacity



Stress vs. Strain

Purely Repulsive 

vs. 

Double-Sided



Stress vs Strain

γ



Stress vs Strain T=0
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Jamming Density (ϕJ) vs Strain
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Jamming Density (ϕJ) vs Strain

Density ϕJ

Strain



Stress vs Strain T>0
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Stress vs. Time 

(shear step displacement)

2D Molecular Dynamics

• Apply a shear displacement to all particles at 

time t=0.

• Let system evolve under constant NVE for 

both double and single sided springs.



Stress vs. Time 

(shear step displacement)
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Stress vs. Time 

(shear step displacement)
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FFT of Stress 

(shear step displacement)
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FFT of Stress 

(shear step displacement)
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FFT of Stress 

(shear step displacement)
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Aline Hubard Escalera

Avalanches in a Rotating Drum.



Our Rotating Drum

=0.01degrees/s

Drum diameter=125 
spheres diameter.

The drum is half filled with 
more than 8000 spheres.



Small Avalanche
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Comparison of Experiment.  

Universal Quantities for 

densely packed grains

Mean Field 

Theory

Granular Shear 

experiment

Our Rotating drum

Avalanche size 

distribution  

1.5 1.5 1.36

Avalanche duration 

distribution 

2 2 or exponential 1.67

Averaged Source 

function

Symmetric 

(parabola)

Symmetric 

(parabola)

Asymmetric

Quasi-Periodic event 

statistics

sometimes sometimes Not for slow 

rotations.
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The End



Density of States N=128



Temperature dependence of ωk



Testing Harmonic Approximation

2D Molecular Dynamics

• 2D frictionless bidisperse mechanically stable 

disk packings.

–Jammed (J).

–Wide range of Δ=-J

• Apply perturbations with amplitude 

–along eigen-direction from the dynamical matrix.

• Measure system response:

– at constant energy.

• Harmonic system will remains in the original 

eigenmode of the perturbation.
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Fourier Spectrum
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Amplitude of Several Fourier Modes

Perturbation Amplitude
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Inherently Anharmonic
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Effects of Nonharmonic Behavior

Simulation

• Heat Capacity.

• Density of States D():

–response to external perturbation.

–thermal transport

Experiment

• Do “real” systems show nonharmonic 

behavior?



Example Effect: Heat Capacity of 

Granular Solids (Packings)
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Displacement matrix – the 

„true‟ vibrational DOS

In harmonic approximation:

Granular solid: modes of M & C will differ due to 

nonharmonicities. How much?

Dynamical matrix: 

Displacement 

matrix:

Carl Schreck: J13.00002: Vibrational density of states for granular solids



Vibrational DOS for granular solids
soft spheres - DM 

method

hard

spheres

toward jamming 

from above φJ

toward 

jamming from 

below φJ

-- DM

Brito & Wyart, J. Chem. Phys. 131, 24504 (2009)

O‟Hern, Silbert, Liu, Nagel, PRE 68 011306 

(2003)

vibrated soft 

spheres 

E/N = 10-6

- E/N = 10-12

Carl Schreck: J13.00002: Vibrational density of states for granular solids



Experiments: “Real” systems
0.01 g 0.10 g 0.50 gDriving :

• 53 Photo elastic 

particles

• (41) 3/8”

• (12) 1/2”

• Constant pressure 

weight: 10 x Ms

• Sinusoidal Drive

• Max Acceleration: 

=A2/g

• Brightness ~ 

proportional to 

stress 



Frequency Response
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Conclusions

Simulation
• 2D frictionless bidisperse mechanically stable packings.

• Perturbations  along eigen-directions:
– fluctuations abruptly spread to all discrete harmonic modes at c.

– Above c all harmonic modes disappear into a continuous 
frequency band. 

• c scales with Δ/N:

– No linear vibrational response as N → ∞. regardless of Δ.

– No linear vibrational response as Δ → 0 for all N. (Jamming)

• Nonharmonic behavior dramatically affects all aspects of 
system response:

– heat capacity, density of states, elastic moduli, and energy 
propagation.  

Experiments
• Dramatic change in disturbance propagation:

– Frequency Response becomes erratic and time-dependent.

– Fluctuations explode to a band of frequencies, even with constant 
frequency driving.

– Critical Amplitude decreases with confining pressure. 



Final Conclusions

The Dynamical Matrix 

Rarely Matters


