Granular Materials Laboratory

Mark D. Shattuck

Benjamin Levich Institute and Physics Department The City College of New York NSF-DMR, NSF-CBET, IFPRI

City College of New York

Novel plasticity of purely repulsive solids near jamming

Mark D. Shattuck

Benjamin Levich Institute and Physics Department City College of New York **Carl Schreck** Thibault Bertand **Tianqi Shen** Corey O'Hern Yale University NSF-DMR-PREM-0934206 NSF-CBET-0968013

Purely Repulsive Jammed Solids

2D Molecular Dynamics

- 2D frictionless bidisperse mechanically stable disk packings.
 - -50:50 mixture, $D_L/D_S = 1.4$
 - –Jammed (ϕ_J), many $\Delta \phi = \phi \phi_J$
 - -Vary Temperature
 - -Measure Density of Vibrational States
 - -Measure Response to Shear
 - •Compare repulsive interaction to two-sided springs

Purely Repulsive

F=-Κδ

Double Sided Springs

F=-Kδ

F=Kδ

Normal Modes in Disorder System

Displacements:

$$\mathbf{U}_n = \mathbf{X}_n - \mathbf{X}_n^{\mathbf{0}}$$

Dynamical Matrix:

$$\kappa_{nk} = \nabla_n \nabla_k V(\mathbf{X}_n^0)$$

Newton's Law:

$$m\ddot{\mathbf{U}}_n \cong \sum_{k=1}^{2N} \kappa_{nk} \mathbf{U}_k$$

Solution:

$$\mathbf{U}_n = \sum_{k=1}^{2N} A_k \hat{\varepsilon}_{kn} \cos(\omega_k t + \varphi_k)$$

Vibrational Density of States

Vibrational Density of States

Dynamical Matrix:

$$\kappa_{nk} = \nabla_n \nabla_k V(\mathbf{X}_n^0)$$

Covariance Matrix:

$$\widetilde{\kappa}_{nk} = C_{nm}^{-1} V_{mk}$$
$$C_{nm} = \left\langle \mathbf{U}_n \mathbf{U}_m \right\rangle$$
$$V_{nm} = \left\langle \mathbf{V}_n \mathbf{V}_m \right\rangle$$

Eigenvalues:

$$\omega_n = \sqrt{\lambda_n / m} = \widetilde{\omega}_n = \sqrt{\widetilde{\lambda}_n / m}$$

$$D(\omega) = \sum_{n} \delta(\omega - \omega_{n}) = \sum_{n} \delta(\omega - \widetilde{\omega}_{n}) = \sum_{k} \int \frac{\vec{V}_{k}(t) \cdot \vec{V}_{k}(0)}{\sum_{m} \vec{V}_{m}(0) \cdot \vec{V}_{m}(0)} e^{i\omega t} dt$$

Density of States $\Delta \phi = 10^{-6}$, N=10,T=10⁻¹³

Density of States $\Delta \phi = 10^{-6}$, N=10,T=10⁻⁸

Density of States $\Delta \phi = 10^{-6}$, N=10,T=10⁻³

Density of States $\Delta \phi = 10^{-6}$, N=10

Density of States N=10

Heat Capacity

Stress vs. Strain

Purely Repulsive vs. Double-Sided

Stress vs Strain T=0

Jamming Density (ϕ_J) vs Strain

Jamming Density (ϕ_J) vs Strain 0.84 0.835 Density ϕ_1 0.83 0.825 0.82 0.815 __0.01 -0.005 0.005 0.01 0 Strain

Stress vs Strain T>0

Stress vs. Time (shear step displacement)

2D Molecular Dynamics

- Apply a shear displacement to all particles at time t=0.
- Let system evolve under constant NVE for both double and single sided springs.

Stress vs. Time (shear step displacement)

Stress vs. Time (shear step displacement)

FFT of Stress (shear step displacement)

FFT of Stress (shear step displacement)

FFT of Stress (shear step displacement)

Avalanches in a Rotating Drum. Aline Hubard Escalera

Our Rotating Drum

The drum is half filled with more than 8000 spheres.

Small Avalanche

Large Avalanche

g

Comparison of Experiment.

Universal Quantities for densely packed grains	Mean Field Theory	Granular Shear experiment	Our Rotating drum
Avalanche size distribution $D(s) = s^{-\tau}$	1.5	1.5	1.36
Avalanche duration distribution $D(T) = T^{-\alpha}$	2	2 or exponential	1.67
Averaged Source function	Symmetric (parabola)	Symmetric (parabola)	Asymmetric
Quasi-Periodic event statistics	sometimes	sometimes	Not for slow rotations.

The End

Density of States N=128

ω

Temperature dependence of ω_k

Testing Harmonic Approximation

2D Molecular Dynamics

- 2D frictionless bidisperse mechanically stable disk packings.
 - -Jammed (ϕ_J).

–Wide range of $\Delta \phi = \phi - \phi_J$

- Apply perturbations with amplitude δ
 - -along eigen-direction from the dynamical matrix.
- Measure system response:
 - at constant energy.
- Harmonic system will remains in the original eigenmode of the perturbation.

Fourier Spectrum

Fourier Spectrum

Amplitude of Several Fourier Modes

Perturbation Amplitude

Inherently Anharmonic

Effects of Nonharmonic Behavior

Simulation

- Heat Capacity.
- Density of States D(ω):
 - -response to external perturbation.
 - -thermal transport

Experiment

 Do "real" systems show nonharmonic behavior? Example Effect: Heat Capacity of Granular Solids (Packings)

 $\hat{C}_V = \frac{C_V}{Nk_B} = 2$

Heat Capacity

Heat Capacity

Displacement matrix – the 'true' vibrational DOS

Dynamical matrix
$$M_{kl} = \frac{\partial^2 V}{\partial r_k \partial r_l}\Big|_{\vec{r}=\vec{r}_0}$$

Displacement $C_{kl} = \langle (r_k - r_k^0)(r_l - r_l^0) \rangle_t$
matrix:

In harmonic approximation: $M = T \times C^{-1}$

Granular solid: modes of M & C will differ due to nonharmonicities. How much?

Carl Schreck: J13.00002: Vibrational density of states for granular solids

Vibrational DOS for granular solids

Carl Schreck: J13.00002: Vibrational density of states for granular solids

Brito & Wyart, J. Chem. Phys. 131, 24504 (2009)

Experiments: "Real" systems Driving Γ: 0.01 g 0.10 g 0.50 g

- 53 Photo elastic particles
- (41) 3/8"
- (12) 1/2"
- Constant pressure weight: 10 x M_s
- Sinusoidal Drive
- Max Acceleration: Γ=Aω²/g
- Brightness ~ proportional to stress

Frequency Response

Frequency Response vs. Driving Amplitude

Frequency Response vs. Driving Amplitude (Low Pressure)

Conclusions

Simulation

- 2D frictionless bidisperse mechanically stable packings.
- Perturbations δ along eigen-directions:
 - fluctuations abruptly spread to all discrete harmonic modes at δ_c .
 - Above $\delta_{\rm c}$ all harmonic modes disappear into a continuous frequency band.
- δ_c scales with $\Delta \phi/N$:
 - No linear vibrational response as $N \to \infty$. regardless of $\Delta \phi$.
 - No linear vibrational response as $\Delta \phi \rightarrow 0$ for all N. (Jamming)
- Nonharmonic behavior dramatically affects all aspects of system response:
 - heat capacity, density of states, elastic moduli, and energy propagation.

Experiments

- Dramatic change in disturbance propagation:
 - Frequency Response becomes erratic and time-dependent.
 - Fluctuations explode to a band of frequencies, even with constant frequency driving.
 - Critical Amplitude decreases with confining pressure.

Final Conclusions

The Dynamical Matrix Rarely Matters