Local statistics of the abelian sandpile model David B. Wilson

The looping rate and sandpile density of planar graphs Joint work with Adrien Kassel

Spanning trees of graphs on surfaces and the intensity of loop-erased random walk on planar graphs Joint work with Richard Kenyon

[sandpile demo]

\mathbf{C}	
GOOg	P
GUUX	
0	

-

Q

About 1,240 results (0.05 sec)

Articles

Case law

Scholar

My library

Any time

Since 2014 Since 2013 Since 2010 Custom range...

Sort by relevance

Sort by date

include patents

include citations

Create alert

Cited by 236 Related articles All 9 versions Cite Save

Abelian sandpile model on the Bethe lattice

<u>D Dhar</u>, <u>SN Majumdar</u> - Journal of Physics A: Mathematical and ..., 1990 - iopscience.iop.org Abstract. We study Bak, Tang and Wiesenfeld's **Abelian sandpile model** of selforganised criticality on the Bethe lattice. Exact expressions for various distribution functions including the height distribution at a site and the joint distribution of heights at two sites separated by ... Cited by 158 Related articles All 8 versions Cite Save

SN Majumdar, D Dhar - Physica A: Statistical Mechanics and its ..., 1992 - Elsevier

Abstract We establish an equivalence between the undirected **Abelian sandpile model** and the $q \rightarrow 0$ limit of the q-state Potts **model**. The equivalence is valid for arbitrary finite graphs.

Two-dimensional Abelian sandpile models, thus, correspond to a conformal field theory ...

Equivalence between the Abelian sandpile model and the i> g</i>

Height correlations in the Abelian sandpile model

<u>SN Majumdar</u>, <u>D Dhar</u> - Journal of Physics A: Mathematical and ..., 1991 - iopscience.iop.org Abstract. We study the distribution of heights in the self-organired critical state of the **Abelian sandpile model** an a d-dimensional hypercubic lattice. We calculate analytically the concentration of sites having minimum alluwed value in! he critical stafe. We al~ u ... Cited by 136 Related articles All 6 versions Cite Save

Abelian sandpile model

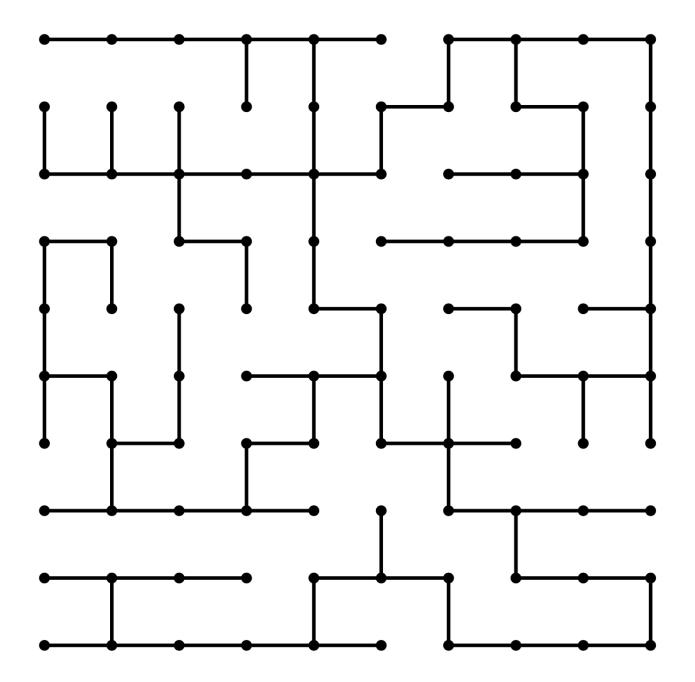
HF Chau - Physical Review E, 1993 - adsabs.harvard.edu Abstract A systematic and simple method to find the correlation function of the **Abelian sandpile model** up to any finite order is developed. In addition, an algorithm for evaluating the distribution function of the avalanche size P (s) exactly is also discovered along the ... Cited by 1 Related articles All 6 versions Cite Save

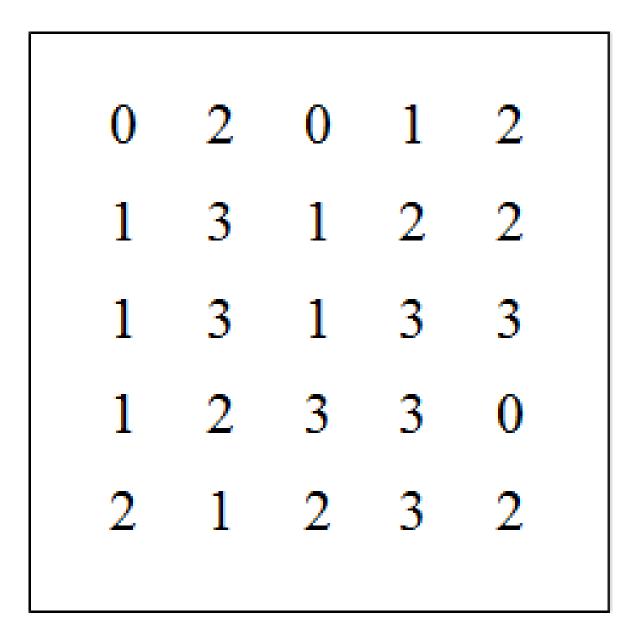
Rare events and breakdown of simple scaling in the Abelian sandpile model

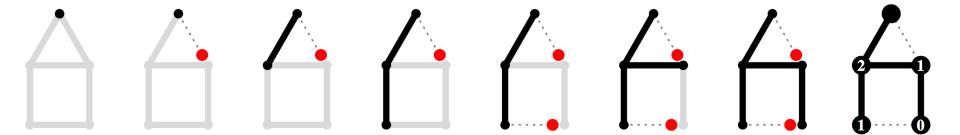
M De Menech, AL Stella, <u>C Tebaldi</u> - Physical Review E, 1998 - APS Due to intermittency and conservation, the **Abelian sandpile** in two dimensions obeys multifractal, rather than finite size scaling. In the thermodynamic limit, a vanishingly small fraction of large avalanches dominates the statistics and a constant gap scaling is ... Cited by 113 Related articles All 8 versions Cite Save

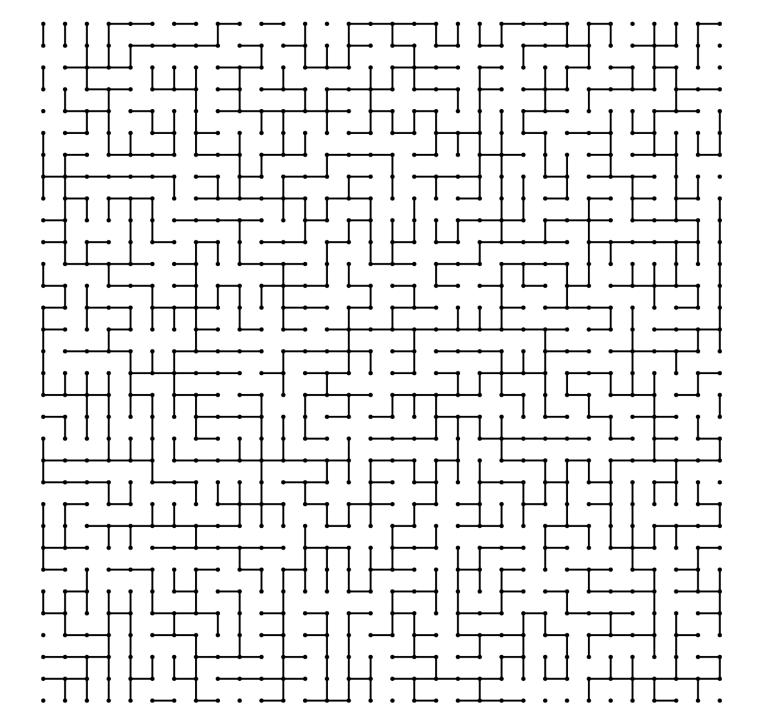
Formation of avalanches and critical exponents in an **Abelian sandpile model** VB Priezzhev, DV Ktitarev, EV Ivashkevich - Physical review letters, 1996 - APS

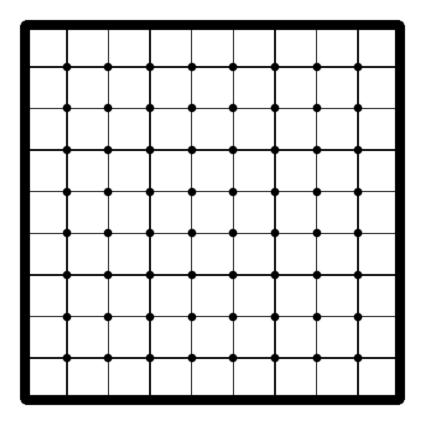
The structure of avalanches in the **Abelian sandpile model** on a square lattice is analyzed. It is shown that an avalanche can be considered as a sequence of waves of decreasing sizes. Being more simple objects, waves admit a representation in terms of spanning trees ...



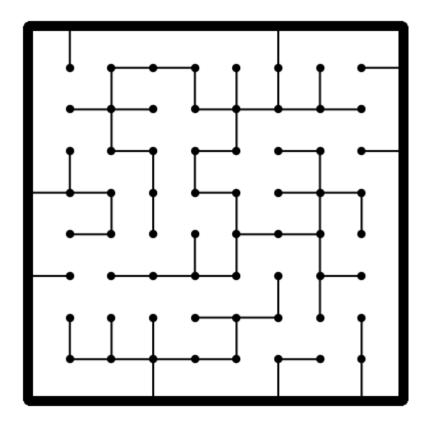








Underlying graph

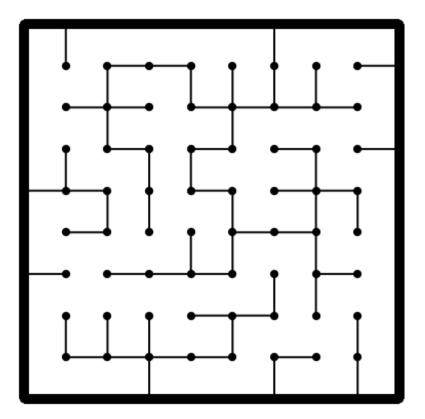


Uniform spanning tree

Uniform spanning tree on infinite grid

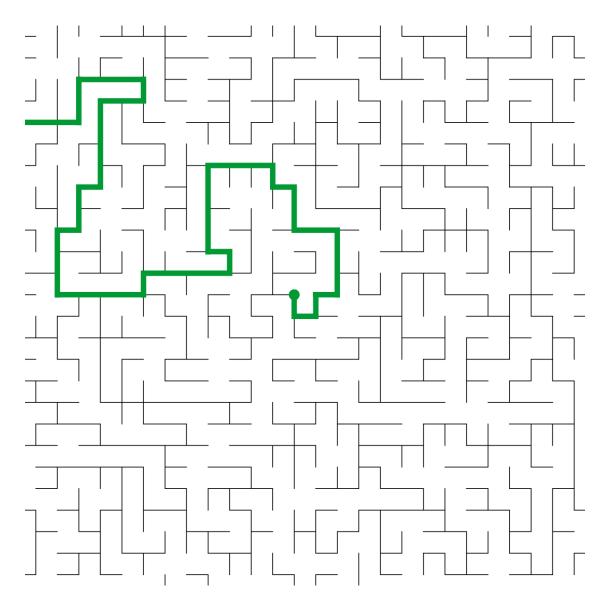
Pemantle: limit of UST on large boxes converges as boxes tend to Z^d

Pemantle: limiting process has one tree if d<=4, infinitely many trees if d>4



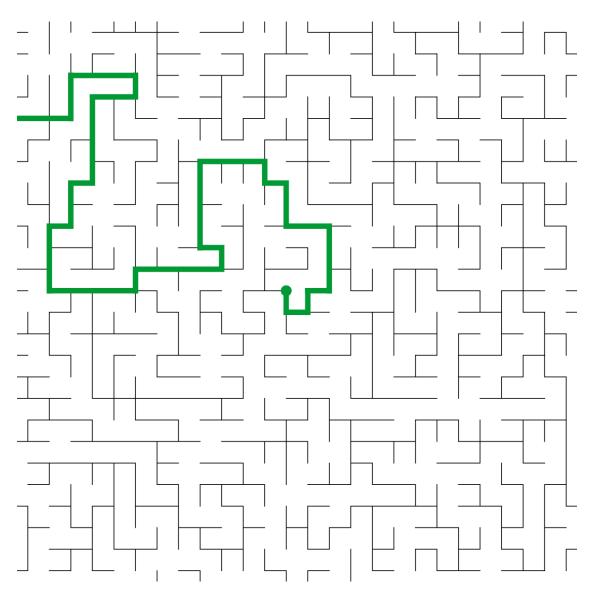
Uniform spanning tree

UST and LERW on Z^2



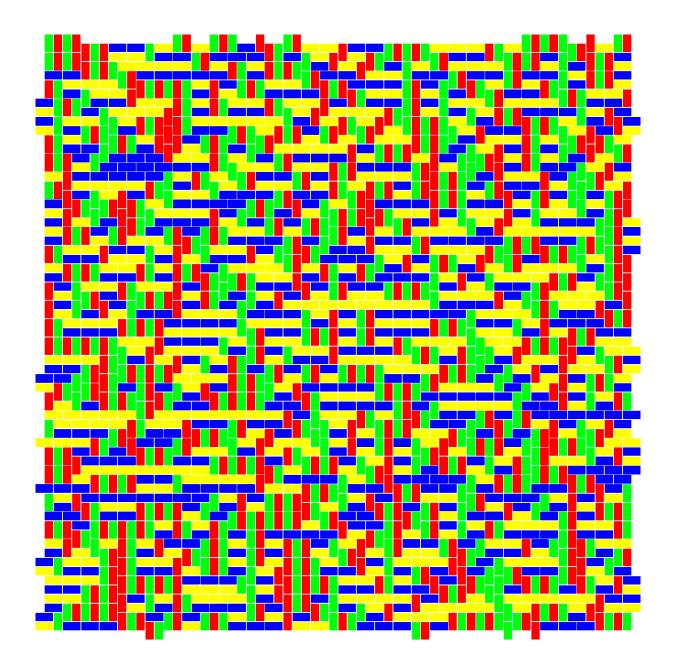
Benjamini-Lyons-Peres-Schramm: UST on Z^d has one end if d>1, i.e., one path to infinity

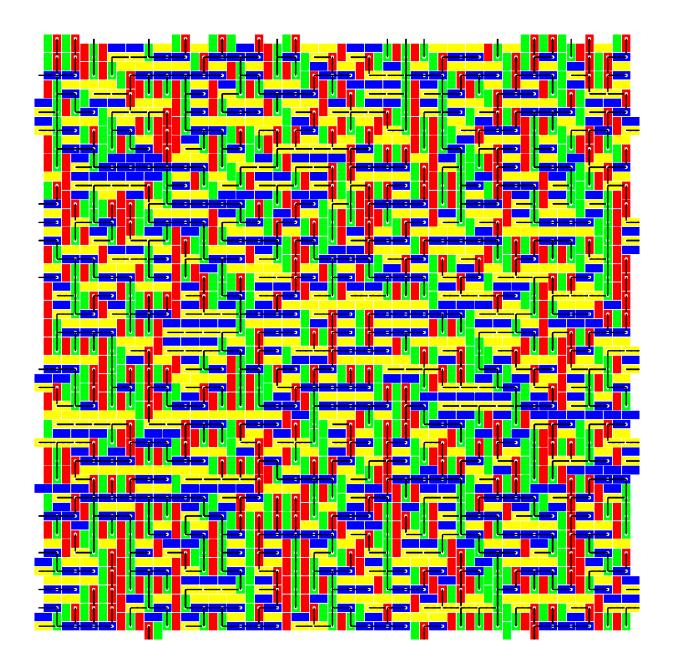
Local statistics of UST

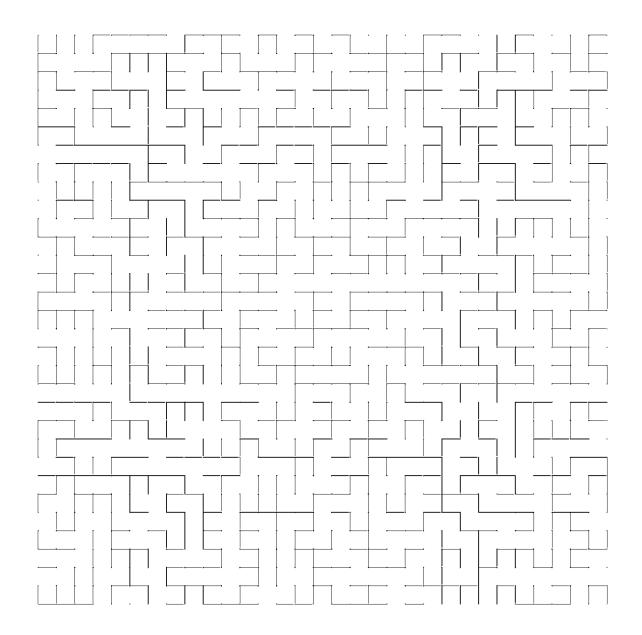


Local statistics of UST can be computed via determinants of transfer impedance matrices (Burton—Pemantle)

Why doesn't this give local statistics of sandpiles?







Infinite volume limit

- Infinite volume limit exists (Athreya—Jarai '04)
- $\Pr[h=0] = \frac{2}{\pi^2} \frac{4}{\pi^3}$ (Majumdar—Dhar '91)
- Other one-site probabilities computed by Priezzhev ('93)

$$I_0 = \frac{1}{(2\pi)^4} \iiint_0 \frac{i \sin(\beta_1) \det(\mathbf{M})}{D(\alpha_1, \beta_1) D(\alpha_2, \beta_2) D(\alpha_1 + \alpha_2, \beta_1 + \beta_2)}$$

$$P(2) = \frac{1}{2} - \frac{3}{2\pi} - \frac{2}{\pi^2} + \frac{12}{\pi^3} + \frac{I_0}{4}$$

$$\times d\alpha_1 d\alpha_2 d\beta_1 d\beta_2$$
 (2)

where

$$D(\alpha, \beta) = 2 - \cos(\alpha) - \cos(\beta)$$
(3)

and **M** is a 4×4 matrix

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & e^{i\alpha_2} & 1 \\ 3 & e^{i(\beta_1 + \beta_2)} & e^{i(\alpha_2 - \beta_2)} & e^{i\beta_1} \\ (4/\pi) - 1 & e^{i(\alpha_1 + \alpha_2)} & 1 & e^{-i\alpha_1} \\ (4/\pi) - 1 & e^{-i(\alpha_1 + \alpha_2)} & e^{2i\alpha_2} & e^{i\alpha_1} \end{pmatrix}$$
(4)

The numerical evaluation of the integral (2) leads to P(2) = 0.1739 The solution is based on an analogy

$$P(2) = \frac{1}{2} - \frac{3}{2\pi} - \frac{2}{\pi^2} + \frac{12}{\pi^3} + \frac{I_1}{4}$$
(3)

$$P(3) = \frac{1}{4} + \frac{3}{2\pi} + \frac{1}{\pi^2} - \frac{12}{\pi^3} - \frac{I_1}{2} - \frac{3I_2}{32}$$
(4)

$P(4) = \frac{1}{4} - \frac{1}{\pi^2} + \frac{4}{\pi^3} + \frac{I_1}{4} + \frac{3I_2}{32}$ (5)

Here I_v , v = 1, 2, are integrals:

$$I_{v} = \frac{1}{(2\pi)^{4}} \iiint_{0}^{2\pi} \frac{i \sin(\beta_{1}) \det(M_{v})}{D(\alpha_{1}, \beta_{1}) D(\alpha_{2}, \beta_{2}) D(\alpha_{1} + \alpha_{2}, \beta_{1} + \beta_{2})} d\alpha_{1} d\alpha_{2} d\beta_{1} d\beta_{2}$$
(6)

where

$$D(\alpha, \beta) = 2 - \cos(\alpha) - \cos(\beta)$$
(7)

and M_1 , M_2 are matrices,

$$M_{i} = \begin{pmatrix} 1 & 1 & e^{i\alpha_{2}} & 1 \\ 3 & e^{i(\beta_{1} + \beta_{2})} & e^{i(\alpha_{2} - \beta_{2})} & e^{-i\beta_{1}} \\ 4/\pi - 1 & e^{i(\alpha_{1} + \alpha_{2})} & 1 & e^{-i\alpha_{1}} \\ 4/\pi - 1 & e^{-i(\alpha_{1} + \alpha_{2})} & e^{2i\alpha_{2}} & e^{i\alpha_{1}} \end{pmatrix}$$
(8)

and

$$M_{2} = \begin{pmatrix} e^{i\beta_{2}} & e^{-i(\alpha_{1} + \alpha_{2}) - i(\beta_{1} + \beta_{2})} & e^{i\beta_{1}} \\ e^{-i\alpha_{2}} & 1 & e^{-i\alpha_{1}} \\ e^{i\alpha_{2}} & e^{-2i(\alpha_{1} + \alpha_{2})} & e^{i\alpha_{1}} \end{pmatrix}$$
(9)

The numerical evaluation of integrals in Eq. (6) leads to P(2) = 0.1739..., P(3) = 0.3063..., P(4) = 0.4461..., in good agreement with the high-statistics data.

Priezzhev ('94)

Jeng—Piroux—Ruelle ('06)

$$P_{2} = \frac{1}{2} - \frac{1}{\pi} - \frac{3}{\pi^{2}} + \frac{12}{\pi^{3}} - \frac{\pi - 2}{2\pi} J_{2} \simeq 0.1739, \qquad (4.10)$$

$$1 = \frac{1}{2} - \frac{12}{\pi^{2}} - \frac{8 - \pi}{\pi^{2}} J_{2} \simeq 0.1739, \qquad (4.10)$$

$$P_3 = \frac{1}{4} + \frac{2}{\pi} - \frac{12}{\pi^3} - \frac{6\pi}{4\pi} J_2 \simeq 0.3063.$$
(4.11)

$$J_{2} = \frac{4}{\pi^{2}} - \frac{14}{\pi} - 8 - \frac{4\sqrt{2}}{\pi^{2}} \int_{0}^{\pi} \frac{d\beta_{1}}{\sqrt{3 - \cos\beta_{1}}} \int_{-\pi}^{\pi} \frac{d\beta_{2}}{1 - t_{1}t_{2}t_{3}} \sin\frac{\beta_{1} - \beta_{2}}{2} \left[\cos\frac{\beta_{1} - \beta_{2}}{2} - 2\cos\frac{\beta_{1} + \beta_{2}}{2}\right] \times \left[(3 - \cos\beta_{1} + \cos\beta_{2})\cos\frac{\beta_{1}}{2} - 2\sin\beta_{2}\sin\frac{\beta_{1}}{2}\right],$$
(4.16)

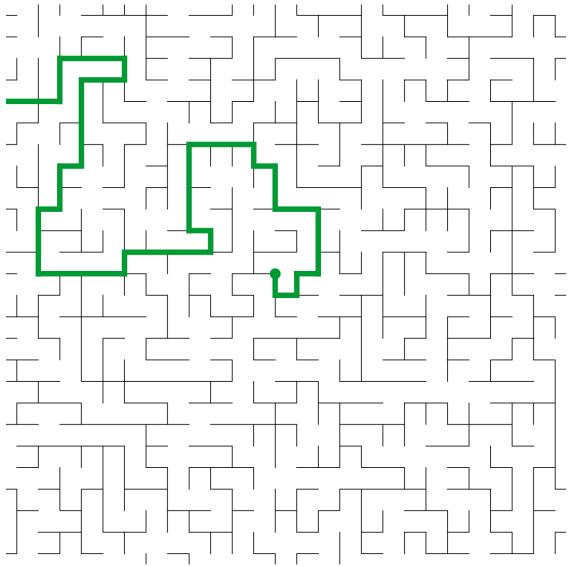
where $t_i = y_i - \sqrt{y_i^2 - 1}$, $y_i = 2 - \cos \beta_i$ and $\beta_3 = -(\beta_1 + \beta_2)$. This integral expression has been used for the numerical evaluation of J_2 , yielding $J_2 = 0.5 + o(10^{-12})$.

Remarkably these values imply an even simpler formula for the mean height in the bulk,

$$\langle h \rangle = P_1 + 2P_2 + 3P_3 + 4P_4 = \frac{25}{8},$$
(4.15)

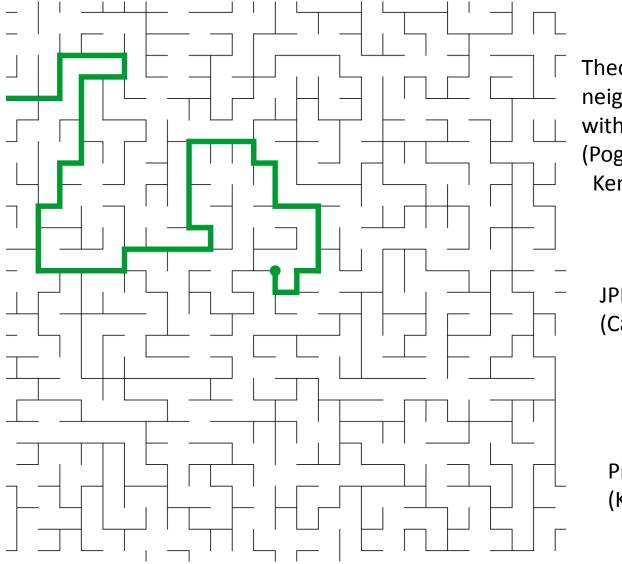
a value conjectured by Grassberger [3]. The striking simplicity of this result clearly calls for a

Sandpile density and LERW



Conjecture: path to infinity visits neighbor to right with probability 5/16 (Levine—Peres, Poghosyan—Priezzhev)

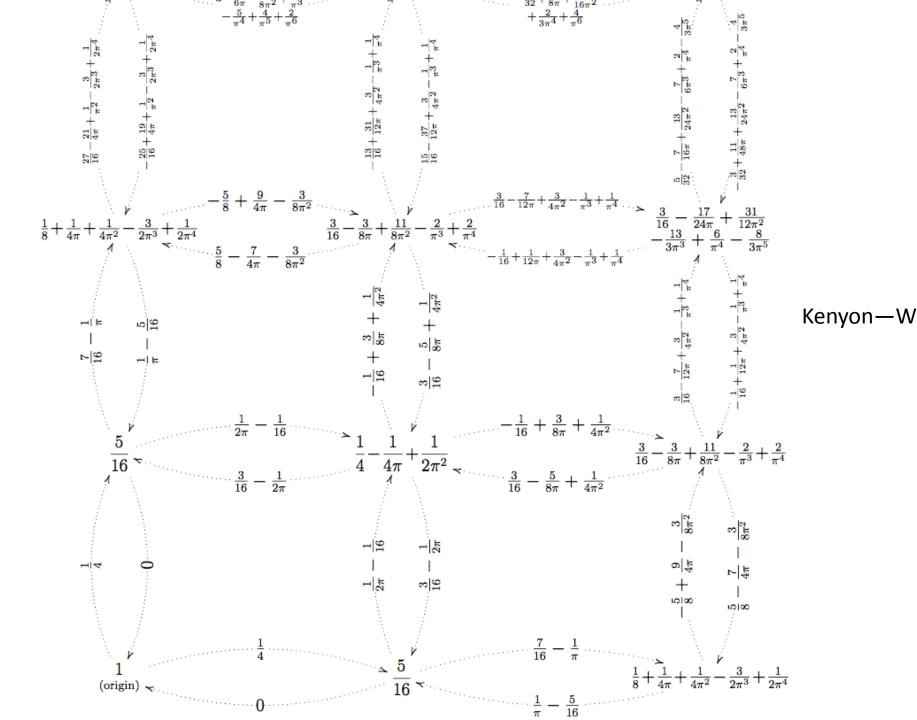
Sandpile density and LERW



Theorem: path to infinity visits neighbor to right with probability 5/16 (Poghosyan-Priezzhev-Ruelle, Kenyon—W)

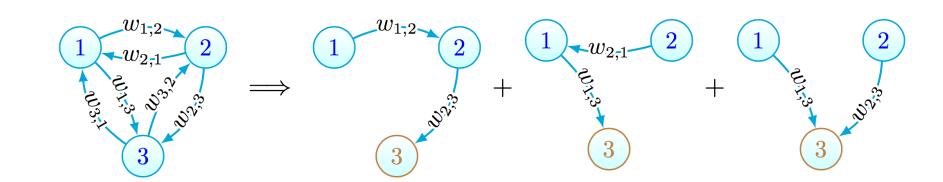
JPR integral evaluates to ½ (Caracciolo—Sportiello)

Proof involving only rationals (Kassel—W)



lattice	discrete-time LERW looping rate	sandpile density	
	$\rho = \tau + \frac{1}{2} \Pr[e \in T]$	$ar{\sigma} = (\delta ho+\delta-1)/2$	
square	5/16	17/8	
	0.3125	2.125	
triangular	5/18	10/3	
	0.277778	3.333333	
honeycomb	13/36	37/24	
	0.361111	1.541667	
kagomé / trihexagonal	1/3	13/6	
	0.333333	2.166667	
dice /	5/16	17/8	
rhombille	0.3125 2.125		
Fisher /	359/900	959/600	
truncated hexagonal	0.398889	1.598333	
triakis triangular	7/25	167/50	
	0.28	3.34	
square-octagon /	$\frac{3}{2} \operatorname{arcsec}(3) \operatorname{arcsec}(3)^2$	$\frac{25}{25} \operatorname{arcsec}(3) \operatorname{arcsec}(3)^2$	
truncated square	$8 12\sqrt{2}\pi 8\pi^2$	$16 8\sqrt{2}\pi$ $16\pi^2$	
· · · ·	0.371102	1.556654	
tetrakis square	$\frac{7}{2}$ arcsec(3) $\frac{1}{2}$ arcsec(3) ²	$\frac{27}{27} - \frac{\operatorname{arcsec}(3)}{27} + \frac{3 \operatorname{arcsec}(3)^2}{27}$	
	$24 12\sqrt{2}\pi 16\pi^2$	$8 4\sqrt{2}\pi 16\pi^2$	
	0.278174	$3.334521\ldots$	

$$\det \underbrace{ \begin{bmatrix} w_{1,2} + w_{1,3} & -w_{1,2} & -w_{1,3} \\ -w_{2,1} & w_{2,1} + w_{2,3} & -w_{2,3} \\ -w_{3,1} & -w_{3,2} & w_{3,1} + w_{3,2} \end{bmatrix}}_{\text{graph Laplacian } \Delta} = w_{1,2}w_{2,3} + w_{2,1}w_{1,3} + w_{1,3}w_{2,3}$$



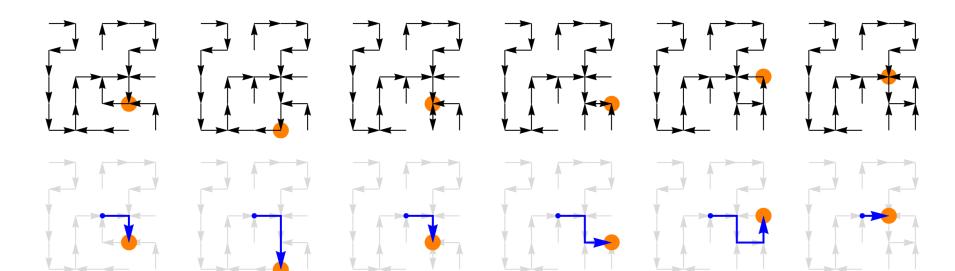
$$F_2(\mathcal{G}) = \sum_{v \neq s} \det \Delta_{\widehat{v,s}}^{\widehat{v,s}} - \sum_{\substack{u \sim v \\ u, v \neq s}} w_{u,v} \det \Delta_{\widehat{u,v,s}}^{\widehat{u,v,s}}$$

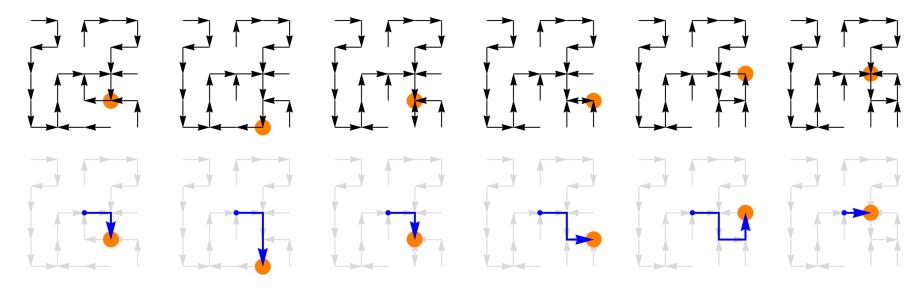
$$\frac{F_2(\mathcal{G})}{F_1(\mathcal{G})} = \sum_{v \neq s} \det G_v^v - \sum_{\substack{u \sim v \\ u, v \neq s}} w_{u,v} \det G_{u,v}^{u,v}$$
$$= \sum_{v \neq s} G_{v,v} - \sum_{\substack{u \sim v \\ u, v \neq s}} w_{u,v} \left[G_{u,u} G_{v,v} - G_{u,v}^2 \right]$$

$$G_{u,v}^{(s)} = \begin{cases} \left[(\Delta_{\widehat{s}}^{\widehat{s}})^{-1} \right]_{u,v} & u, v \neq s, \\ 0 & u = s \text{ or } v = s \end{cases}$$

$$\frac{F_2(\mathcal{G})}{F_1(\mathcal{G})} = \sum_{u \sim v} w_{u,v} \left[\left(A_{u,v}^{(s)} - A_{v,u}^{(s)} \right)^2 + A_{u,v}^{(s)} A_{v,u}^{(s)} \right]$$

 $A_{u,v}^{(s)} = G_{u,u}^{(s)} - G_{u,v}^{(s)}$





 $\rho = \text{discrete-time LERW looping rate} = \frac{\text{weighted sum of oriented CRST's}}{\text{weighted sum of marked oriented CRST's}}$

 $\tau = \frac{\text{weighted sum of oriented CRST's with cycle length} \geq 3}{\text{weighted sum of marked oriented CRST's}}$

$$\rho - \tau = \frac{1}{2} \Pr[\text{random edge } e \in \text{random tree } T]$$

$$\tau = \frac{\sum_{u^* \sim v^*} w_{u^*,v^*} \left(A_{u^*,v^*}^{(s^*)} A_{v^*,u^*}^{(s^*)} + \left(A_{u^*,v^*}^{(s^*)} - A_{v^*,u^*}^{(s^*)} \right)^2 \right)}{\sum_{u^* \sim v^*} 1/w_{u^*,v^*}}$$

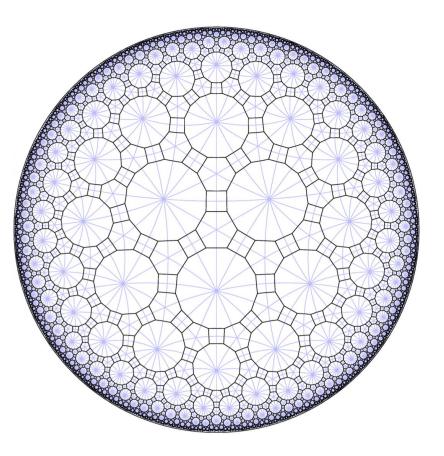
$$T_{\mathcal{G}}(x,y) = \sum_{E' \subseteq E} (x-1)^{k(E')-k(E)} (y-1)^{k(E')+|E'|-|V|}$$

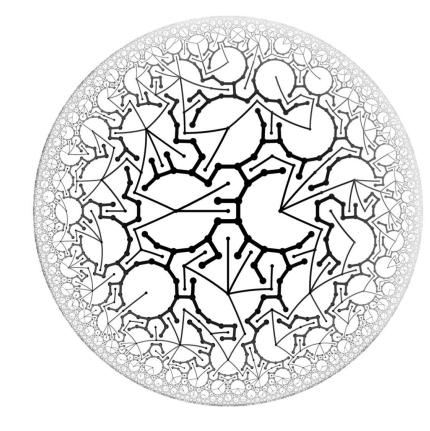
$$\sum_{\text{ecurrent}} y^{\text{level}(\sigma)} = T_{\mathcal{G}}(1, y)$$

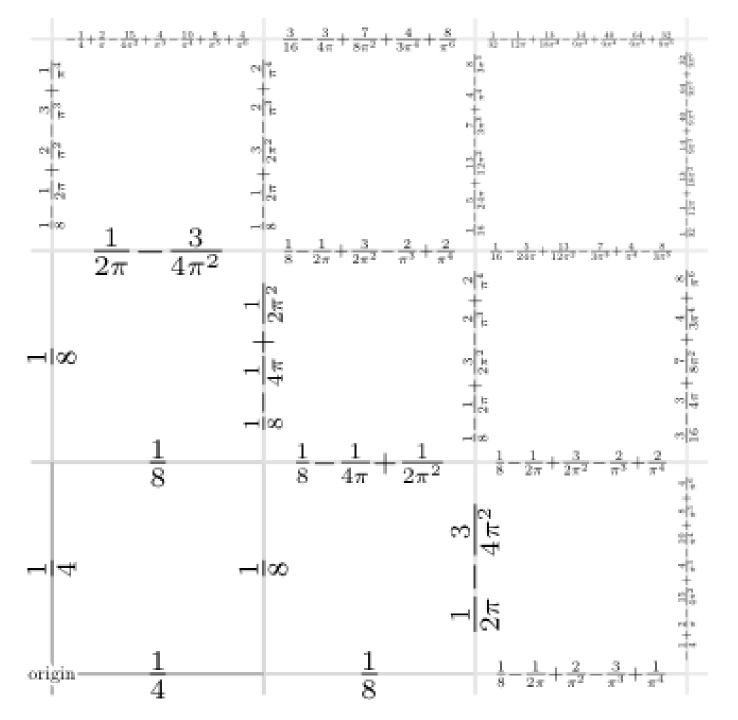
recurrent sandpiles σ

$$\sum_{\substack{\text{recurrent}\\\text{sandpiles }\sigma}} \binom{\text{level}(\sigma)}{j} = \frac{1}{j!} \frac{d^j}{dy^j} T_{\mathcal{G}}(1,y) \Big|_{y=1} = \underset{\text{with } |V| + j - 1 \text{ edges.}}{\# \text{ connected subgraphs of } \mathcal{G}}$$

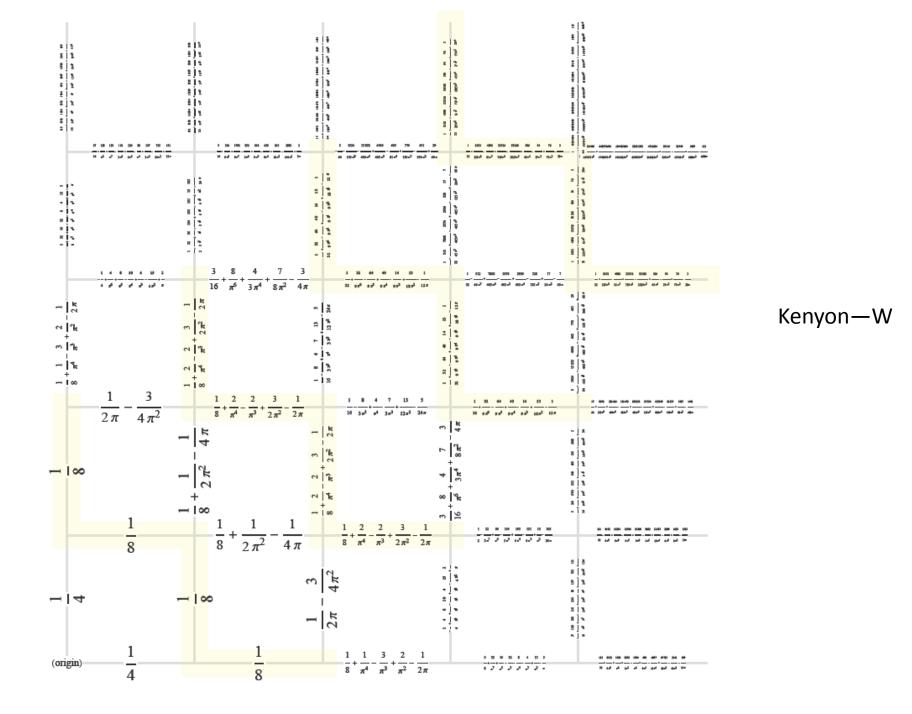
$$\mathbb{E}[\operatorname{level}(\sigma)] = \frac{\# \text{ unicycles of } \mathcal{G}}{\# \text{ spanning trees of } \mathcal{G}} = \tau \times |E|$$

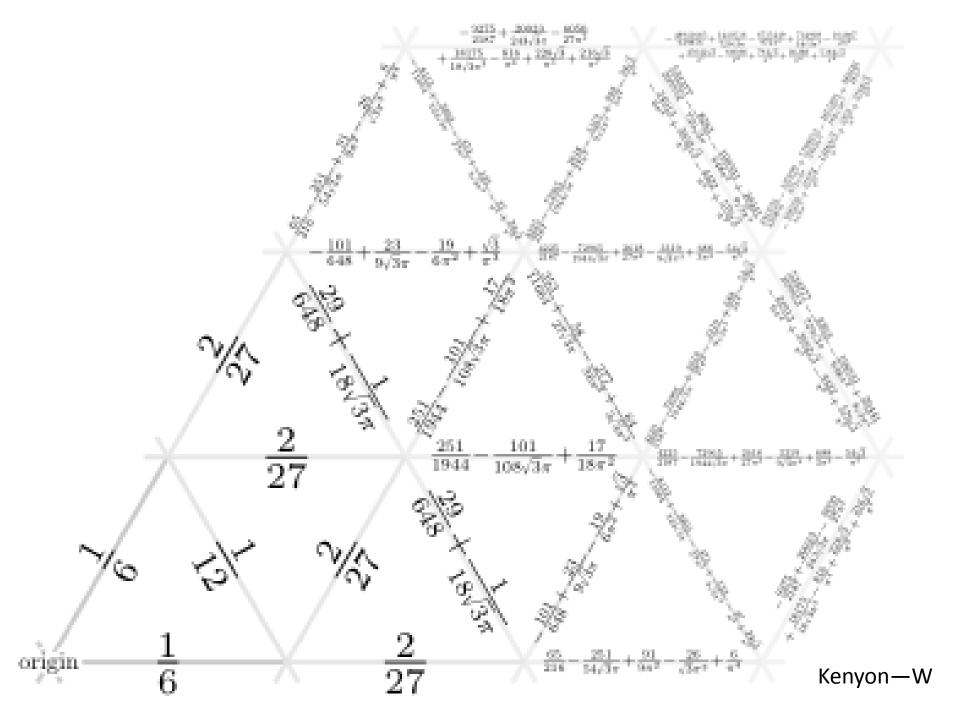


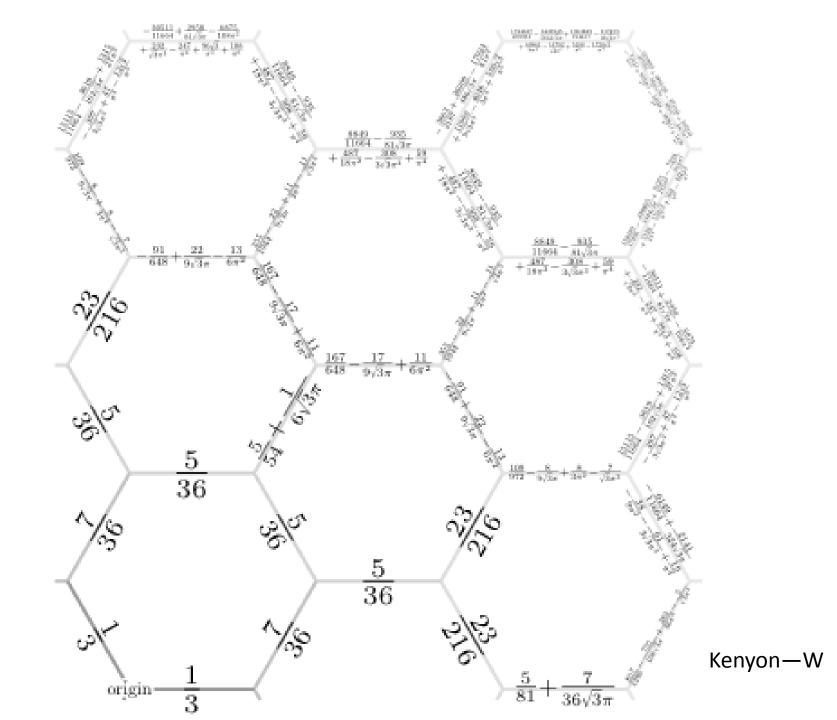




Kenyon—W







Joint distribution of heights at two neighboring vertices

0	$\frac{9}{32} - \frac{9}{2\pi} + \frac{47}{2\pi^2} - \frac{48}{\pi^3} + \frac{32}{\pi^4}$	$-\frac{33}{64}+\frac{191}{32\pi}-\frac{383}{16\pi^2}+\frac{81}{2\pi^3}-\frac{47}{2\pi^4}$	$\frac{15}{64} - \frac{47}{32\pi} + \frac{39}{16\pi^2} + \frac{7}{2\pi^3} - \frac{17}{2\pi^4}$
$\frac{9}{32} - \frac{9}{2\pi} + \frac{47}{2\pi^2} - \frac{48}{\pi^3} + \frac{32}{\pi^4}$	$-\frac{69}{32}+\frac{453}{16\pi}-\frac{1059}{8\pi^2}+\frac{521}{2\pi^3}-\frac{167}{\pi^4}-\frac{32}{\pi^5}$	$\frac{83}{32} - \frac{243}{8\pi} + \frac{537}{4\pi^2} - \frac{256}{\pi^3} + \frac{619}{4\pi^4} + \frac{59}{\pi^5}$	$-\frac{15}{32} + \frac{97}{16\pi} - \frac{227}{8\pi^2} + \frac{111}{2\pi^3} - \frac{79}{4\pi^4} - \frac{27}{\pi^5}$
$-\frac{33}{64}+\frac{191}{32\pi}-\frac{383}{16\pi^2}+\frac{81}{2\pi^3}-\frac{47}{2\pi^4}$	$\frac{83}{32} - \frac{243}{8\pi} + \frac{537}{4\pi^2} - \frac{256}{\pi^3} + \frac{619}{4\pi^4} + \frac{59}{\pi^5}$	$-\frac{107}{32}+\frac{617}{16\pi}-\frac{1259}{8\pi^2}+\frac{291}{\pi^3}-\frac{375}{2\pi^4}-\frac{108}{\pi^5}$	$\frac{105}{64} - \frac{421}{32\pi} + \frac{753}{16\pi^2} - \frac{175}{2\pi^3} + \frac{225}{4\pi^4} + \frac{49}{\pi^5}$
$\frac{15}{64} - \frac{47}{32\pi} + \frac{39}{16\pi^2} + \frac{7}{2\pi^3} - \frac{17}{2\pi^4}$	$-\frac{15}{32}+\frac{97}{16\pi}-\frac{227}{8\pi^2}+\frac{111}{2\pi^3}-\frac{79}{4\pi^4}-\frac{27}{\pi^5}$	$\frac{105}{64} - \frac{421}{32\pi} + \frac{753}{16\pi^2} - \frac{175}{2\pi^3} + \frac{225}{4\pi^4} + \frac{49}{\pi^5}$	$-\frac{33}{32}+\frac{129}{16\pi}-\frac{161}{8\pi^2}+\frac{65}{2\pi^3}-\frac{28}{\pi^4}-\frac{22}{\pi^5}$

0.	0.0103411	0.0238479	0.0394473
0.0103411	0.0260442	0.0525221	0.0849925
0.0238479	0.0525221	0.0930601	0.136861
0.0394473	0.0849925	0.136861	0.184871

Higher dimensional marginals of sandpile heights

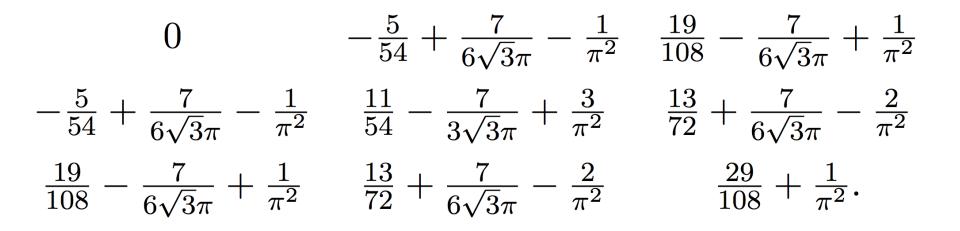
Pr[3,2,1,0 in 4x1 rectangle] =

61815	1856395	99783277	964096235	5588534021	5014047485
$-\frac{128}{128}$	128π	$-576\pi^2$	$+\frac{1}{864\pi^3}$	$-1296\pi^4$	$-486\pi^{5}$
108841368	816 + 2576	5891840 2	23058546688	$\frac{319225856}{-}$	0.00169649.
$-729\pi^{6}$	-+ 21	$87\pi^7$	$6561\pi^8$ -	$-\frac{1}{729\pi^9} = 0$	5.00109049.

Sandpiles on hexagonal lattice

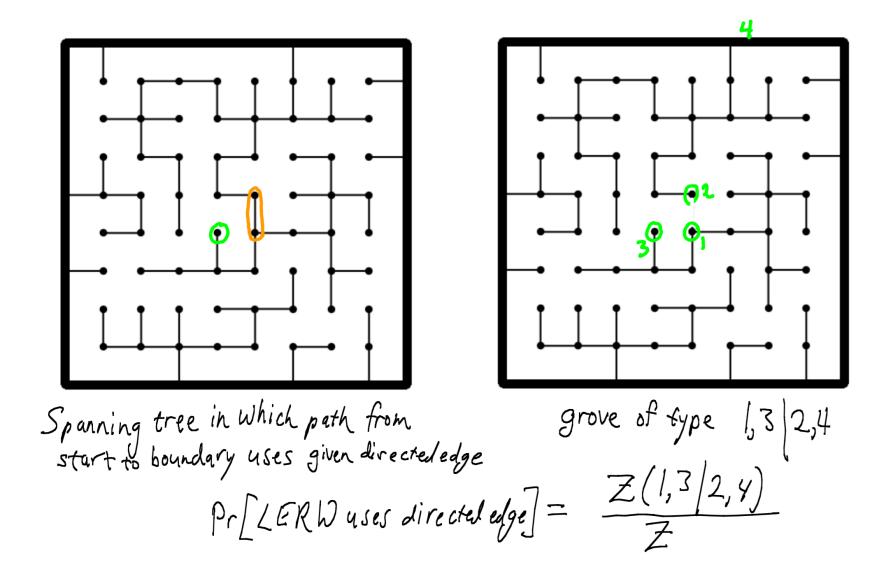
$$\Pr[h=0] = \frac{1}{12}$$
$$\Pr[h=1] = \frac{7}{24}$$
$$\Pr[h=2] = \frac{5}{8}$$

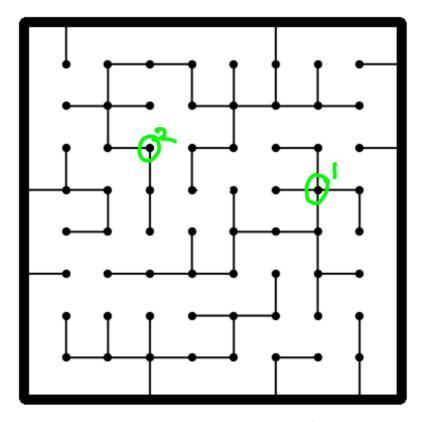
(One-site probabilities also computed by Ruelle)



Sandpiles on triangular lattice

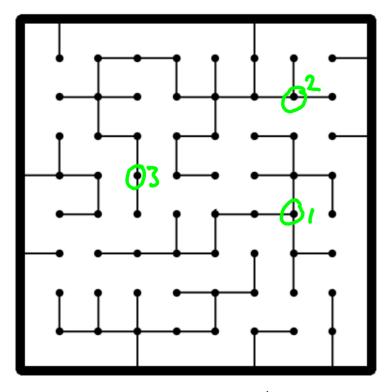
$$\begin{aligned} \Pr[h=0] &= -\frac{25}{648} - \frac{55}{72\sqrt{3}\pi} + \frac{7}{3\pi^2} + \frac{11\sqrt{3}}{\pi^3} - \frac{90}{\pi^4} + \frac{54\sqrt{3}}{\pi^5} &\doteq 0.053623 \\ \Pr[h=1] &= \frac{47}{1296} + \frac{301}{24\sqrt{3}\pi} - \frac{193}{6\pi^2} - \frac{29\sqrt{3}}{\pi^3} + \frac{405}{\pi^4} - \frac{270\sqrt{3}}{\pi^5} &\doteq 0.091525 \\ \Pr[h=2] &= \frac{3}{8} - \frac{5929}{144\sqrt{3}\pi} + \frac{1441}{12\pi^2} - \frac{9\sqrt{3}}{\pi^3} - \frac{720}{\pi^4} + \frac{540\sqrt{3}}{\pi^5} &\doteq 0.137356 \\ \Pr[h=3] &= \frac{3427}{2592} + \frac{6515}{144\sqrt{3}\pi} - \frac{2125}{12\pi^2} + \frac{91\sqrt{3}}{\pi^3} + \frac{630}{\pi^4} - \frac{540\sqrt{3}}{\pi^5} &\doteq 0.189037 \\ \Pr[h=4] &= -\frac{2663}{1296} - \frac{71\sqrt{3}}{16\pi} + \frac{1331}{12\pi^2} - \frac{94\sqrt{3}}{\pi^3} - \frac{270}{\pi^4} + \frac{270\sqrt{3}}{\pi^5} &\doteq 0.242307 \\ \Pr[h=5] &= \frac{1175}{864} - \frac{365}{144\sqrt{3}\pi} - \frac{289}{12\pi^2} + \frac{30\sqrt{3}}{\pi^3} + \frac{45}{\pi^4} - \frac{54\sqrt{3}}{\pi^5} &\doteq 0.286152 \end{aligned}$$





grove of type 1/2

Kirchhoff: $R_{1,2} = \frac{Z(1/2)}{Z}$



 $\frac{Z(1/23)}{Z} = \frac{1}{2}R_{1,2} + \frac{1}{2}R_{1,3} - \frac{1}{2}R_{2,3}$

 $\frac{Z(1/2/3)}{Z} = \frac{R_{1,2}R_{1,3} + R_{1,2}R_{2,3} + R_{1,3}R_{2,3}}{2}$ $\frac{R_{1,2}R_{1,3} + R_{1,2}R_{2,3} + R_{2,3}}{2}$ $\frac{R_{1,2} + R_{1,3}^{2} + R_{2,3}^{2}}{4}$

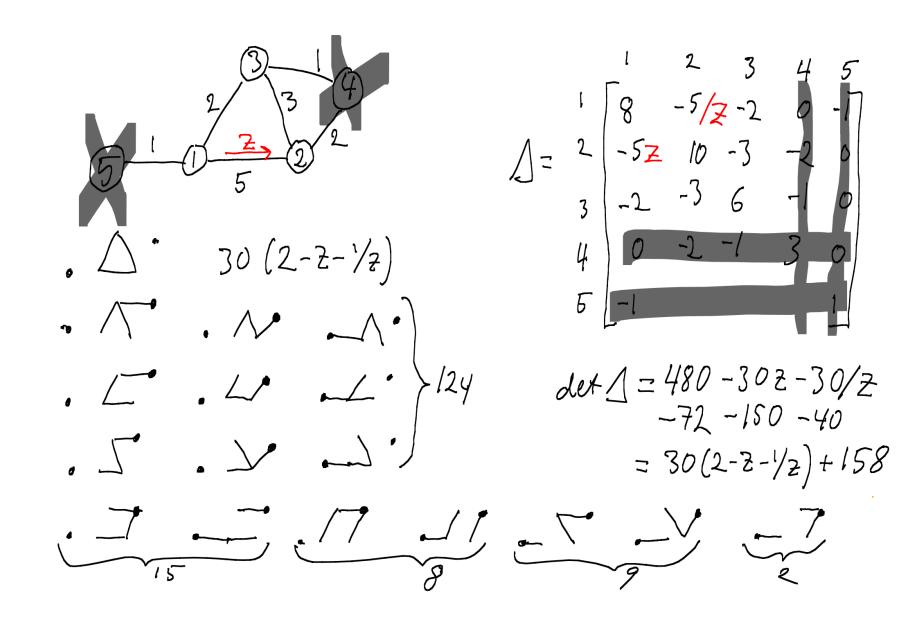
4 nodes No formula at the above type that holds for general graphs. Pairwise resistances do not determine $\frac{Z(1,2|3,4)}{Z}$ for general graphs.

If graph is planar and all nodes on the same face, then $\frac{Z(\sigma)}{Z}$ is a polynomial in the R_{ij} 's. (KW)(KW)

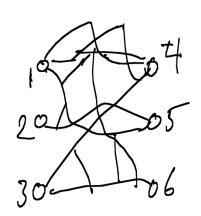
Line Bundle Laplacian

$$2/3$$

 $3/2$
 $3/2$
 $3/2$
 $3/2$
 $1=2$
 $5/2-2$
 $-5/2-2$
 $-5/2-2$
 $-5/2-3$
 -2
 $-3/5$
Forman:
 $det A = 30(2-2-1/2)$
 $=$ Weighted sum of
 $cycle - rooted$ spanning forests



Cartis - Ingerman-Morrow

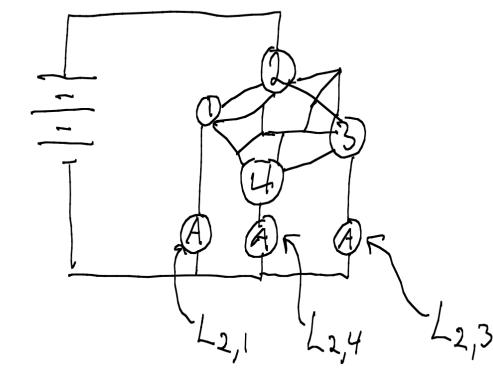


general graph with 2n vertices

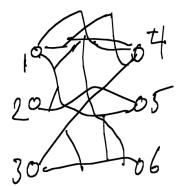
 $det L_{123}^{4,5,6} = Z(14|25|36) - Z(14|26|35)$ $+ \frac{2}{(15|26|34)} - \frac{2}{(15|24|36)} + \frac{2}{(16|24|35)} - \frac{2}{(16|25|34)}$ Z(1|2|3)4|5|6)

Response matrix

Liji : apply voltage at i, mensure correct at j.



Fact: Lij=Lii $\sum_{i} L_{ij} = 0$ $\binom{n}{2}$ (n) Lij variables (n) Rij variables



general graph with 2n vertices

 $\det \mathcal{L}_{1,2,3}^{4,5,6} = \mathcal{Z} \begin{pmatrix} 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix} - \mathcal{Z} \begin{pmatrix} 4 & 5 & 5 \\ 1 & 2 & 3 \end{pmatrix}$ includes parallel transports $+ \sum \begin{pmatrix} 5 & 6 & 4 \\ 1 & 2 & 3 \end{pmatrix} - \sum \begin{pmatrix} 5 & 4 & 6 \\ 1 & 2 & 3 \end{pmatrix}$ + $2\left(\frac{6}{1}\left(\frac{4}{2}\right)^{5}\right) - 2\left(\frac{6}{1}\left(\frac{5}{2}\right)^{4}\right)$ - Cycle rootel groves Z(1|2|3|4|5|6)

(proof similar to C-I-M proof, but starts with Forman's MTT)

