Heavy chavk Potentialsin - GT
 and Strings in Higher Dimensions

T ~ -20 degrees Celsius (-4 degrees Fahrenheit)

Outline

Motivation \& Background

- Cornell Model
- strings in 4d

Think Different

a new approach using strings in 5d

- overview of the approach
- first example: heavy quark potential
- second example: baryonic potential
- third example: some hybrid potentials

Conclusion and Future Work

Phenomenological Models and Strings in 4d

Cornell model

$$
V(r)=-\frac{\kappa}{r}+\frac{r}{a^{2}}+C
$$

Eichten et al
three free parameters are adjusted to fit the charmonium spectrum

$$
\kappa \approx 0.48, \quad a \approx 2.34 \mathrm{GeV}^{-1}, \quad C=-0.25 \mathrm{GeV}
$$

effective string models in 4 d

$$
E_{n}=\sigma r+C+\frac{\pi}{r}\left(n-\frac{d-2}{24}\right)+\square_{\substack{\uparrow \\ 1 / \text { corrections }}}, \quad E_{0}=V
$$

It is a series in powers of $1 / r$.

$$
E_{n}=\sigma r\left(1+\frac{2 \pi}{\sigma r^{2}}\left(n-\frac{d-2}{24}\right)\right)^{\frac{1}{2}}+C
$$

Th k Different

Stringy reason for the 5th "dimension"

Faraday picture of fluxes (also from the Cornell potential)

$$
\sigma_{n} l_{n}=\mathrm{const}
$$

Left: a string-like flux tube of tension σ. Right: a "fat string" as a collection of thin strings of different tensions $\left\{\sigma_{n}\right\}$.

- Continuos spectrum. σ can be promoted to a new spacetime coordinate.

```
Polyakov: Liouville field as the 5th dimension.
```

- Discrete spectrum \rightarrow generalized Veneziano models.
\& A big question to ask:
quantum fluctuations in $4 \mathrm{~d} \approx$ geometry modification or $\left\{\sigma_{n}\right\}$ in 5 d

The Model: soft wall metric model

5-dimensional Euclidean background metric (in string frame)
$d s^{2}=\frac{R^{2}}{z^{2}} h(z)\left(\left(d x^{i}\right)^{2}+d z^{2}\right), i=1, \ldots, 4, h(z)=\exp \left\{c z^{2}\right\}$
It is a one-parameter deformation of AdS.
The same number of free parameters as in the Cornell model.
\checkmark History
Hirn and Satz (2005): z^{4}-deformation $\quad h(z)=\exp \left\{k z^{4}\right\}$
Son et al (2006): soft wall dilaton model $\quad h(z)=1, \phi=c z^{2}$
Metsaev (2000): Regge like spectrum of KK modes $m^{2}=c n, n=1, \ldots$ Phenomenology
For the ρ-meson radial excitations

$$
c \approx 0.9 \mathrm{GeV}^{2}
$$

Example I: heavy quark potential

Take a rectangular Wilson loop
then use the proposal

$$
\begin{aligned}
&\langle W(C)\rangle \sim \exp \left\{-S_{N G}\right\} \\
& \text { Rey-Yee-Maldacena }
\end{aligned}
$$

The potential is written in parametric form

$$
\begin{gathered}
r=2 \sqrt{\frac{\lambda}{c}} \int_{0}^{1} d v v^{2} \exp \left\{\frac{1}{2} \lambda\left(1-v^{2}\right)\right\}\left(1-v^{4} \exp \left\{\lambda\left(1-v^{2}\right)\right\}\right)^{-\frac{1}{2}} \\
V=\frac{g}{\pi} \sqrt{\frac{c}{\lambda}}\left(-1+\int_{0}^{1} d v v^{-2}\left[\exp \left\{\frac{1}{2} \lambda v^{2}\right\}\left(1-v^{4} \exp \left\{\lambda\left(1-v^{2}\right)\right\}\right)^{-\frac{1}{2}}-1\right]\right)+C
\end{gathered}
$$

with λ a parameter and $g=\frac{R^{2}}{\alpha^{\prime}}$

Analysis of the potential

We can investigate the properties of V at long and short distances analytically.

$$
\begin{gathered}
V(r)=\sigma r+C+\ldots, \quad \sigma=\frac{g e}{4 \pi} c \\
V(r)=-\frac{\alpha}{r}+C+\underset{\substack{\sigma_{0} \\
\downarrow}}{ }+\ldots, \quad \sigma_{0}=\frac{\Gamma^{4}(1 / 4)}{8 \pi^{2} e} \sigma \approx 0.81 \sigma
\end{gathered}
$$

Fixing the parameters

There are three free parameters: $c, g=\frac{R^{2}}{\alpha^{\prime}}$, and C

Options:

- the Cornell model
- the lattice data
- the heavy meson spectrum

5d string models vs lattice (pure $\operatorname{SU}(3)$ glue)

Heavy meson spectrum from V

Flavor	Level	$J=0$			$J=1$		
		Particle	Th. mass	Exp. mass [6]	Particle	Th. mass	Exp. mass [6]
$c \bar{q}$	$1 S$	D	1.862	1.867	D^{*}	2.027	2.008
	$2 S$		3.393			2.598	2.622
	$3 S$		2.837			2.987	
$c \bar{s}$	$1 S$	D_{s}	1.973	1.968	D_{s}^{*}	2.111	2.112
	$2 S$		2.524			2.670	
	$3 S$		2.958			3.064	
$c \bar{c}$	$1 S$	η_{c}	2.990	2.980	J / ψ	3.125	3.097
	$2 S$		3.591	3.637		3.655	3.686
	$3 S$		3.994			4.047	4.039
$b \bar{q}$	$1 S$	B	5.198	5.279	B^{*}	$\begin{aligned} & 5.288 \\ & 5.819 \\ & 6.220 \end{aligned}$	5.325
	$2 S$		5.757				
	$3 S$		6.176				
$b \bar{s}$	$1 S$	B_{s}	5.301	5.366	B_{s}^{*}	5.364	5.412
	$2 S$		5.856			5.896	
	$3 S$		6.266			6.296	
$b \bar{c}$	$1 S$	B_{c}	6.310	6.286	B_{c}^{*}	6.338	6.420
	$2 S$		6.869			6.879	
	$3 S$		7.221			7.228	
$b \bar{b}$	$1 S$	η_{b}	9.387	9.389	Υ	9.405	9.460
	$2 S$		10.036			10.040	10.023
	$3 S$		10.369			10.371	10.355
	$4 S$		10.619			10.620	10.579

Gianuzzi: solving the Salpiter equation

After that

Do you now believe that string theory can compete with the lattice?

Surprises from example

c is of order $0.9 \mathrm{GeV}^{2}$

Consistency with the soft wall model estimate from the ρ-meson Regge trajectory.

g is of order 1

If $g=\frac{R^{2}}{\alpha^{\prime}}=\sqrt{\lambda}$, it seems likely that in the case of interest supergravity based phenomenology is not reliable.
The gauge theory is neither strongly nor weakly coupled.
Is this a reason why such a warped geometry has not been seen in SUGRA?

Are corrections to $V\left(\alpha^{\prime}, 1 / N\right)$ small?

Do we really need to calculate the corrections?
Or leave it as a mean string theory approximation.

Example II: baryonic potential

Take a baryonic Wilson loop for SU(3)
then use the proposal

$$
\begin{gathered}
\langle W(C)\rangle \sim \exp \left\{-S_{b}\right\} \\
S_{b}=\sum_{i=1}^{3} S_{N G}(i)+S_{b v}
\end{gathered}
$$

with

A 5-dimensional view

Analysis of the potential

In general, the analysis is complicated: 7 equations and 3 parameters.
An illustrative example - the most symmetric configuration of the quarks. Also take the baryonic vertex as a point like particle in 5d: $S_{b v}=m R \sqrt{h\left(r_{0}\right)} T$ The potential is given by

$$
\begin{aligned}
& r= \sqrt{\frac{\lambda}{c}} \rho \\
& \int= \int_{0}^{1} d v v^{2} \exp \left\{\lambda\left(1-v^{2}\right)\right\}\left(1-\rho v^{4} \exp \left\{2 \lambda\left(1-v^{2}\right)\right\}\right)^{-1 / 2} \\
& V= 3 g \sqrt{\frac{c}{\lambda}}[\kappa \exp \{\lambda / 2\}+ \\
&\left.\int_{0}^{1} \frac{d v}{v^{2}}\left(\exp \left\{\lambda v^{2}\right\}\left(1-\rho v^{4} \exp \left\{2 \lambda\left(1-v^{2}\right)\right\}\right)^{-1 / 2}-1-v^{2}\right)\right] \\
& \text { with } \quad \kappa=\frac{1}{3} \frac{m R}{g} \quad \text { and } \quad \rho=1-\kappa^{2}(1-\lambda)^{2} \exp \{-\lambda\}
\end{aligned}
$$

Now, \# parameters 3+1: c, g, C, and κ

Fixing the parameter

At short distances the form of the potential depends on the value of κ.
One possibility to fix it is to assume $\quad \alpha_{3 q}=\frac{1}{2} \alpha_{q \bar{q}}$
I† gives $\kappa \approx 0.02$

Additional remarks to example II

For a generic quark configuration: universality of the string tension $\sigma_{q \bar{q}}=\sigma_{3 q}$ the Y -law at large quark separations
generalization to $S U(N)$ is easy generalization to spatial baryonic loops
(no lattice simulations yet?)
universality of the spatial string tension $\sigma_{q \bar{q}}^{(s)}=\sigma_{3 q}^{(s)}$ also at finite T the Y-law for the pseudopotential at large quark separations

Example III: hybrid potentials

Hybrid mesons

excited states of the flux tube

> Isgur-Paton
to get hybrid meson spectrum

$$
V_{0} \rightarrow V_{n}
$$

in the Schroedinger equation
Morningstar et al

$$
; \quad \mathrm{S} \quad \mathrm{P}
$$

\checkmark Excited states of the gluon flux tube

 classification via reps. of $D_{4 h}$ here $\Sigma_{g}^{+} \equiv V$if Λ is a projection of angular momentum onto the quark-antiquark axis, then $\Sigma^{\prime} s$ have $\Lambda=0$, etc

Where do 4d strings fail?

The energy gap between Σ_{u}^{-}and Σ_{g}^{+}

5d model for the Σ 's

assume that flux excitations are due to a little loop/baryon-antibaryon vertices
so take $S_{\Sigma}=\sum_{i=1}^{2} S_{N G}(i)+S_{b b}$
then treat the loop as a point-like defect with $S_{b b}=m R \mathcal{V}\left(r_{0}\right) T$
(Warning: obviously, this approximation fails at short distances)
The potential is given by

$$
\begin{aligned}
& r=2 \sqrt{\frac{\lambda}{c} \bar{\rho}} \int_{0}^{1} d v v^{2} \exp \left\{\lambda\left(1-v^{2}\right)\right\}\left(1-\bar{\rho} v^{4} \exp \left\{2 \lambda\left(1-v^{2}\right)\right\}\right)^{-1 / 2} \\
& V_{\Sigma}=C+2 g \sqrt{\frac{c}{\lambda}}[\kappa \exp \{-2 \lambda\}+ \\
& \left.\quad \int_{0}^{1} \frac{d v}{v^{2}}\left(\exp \left\{\lambda v^{2}\right\}\left(1-\bar{\rho} v^{4} \exp \left\{2 \lambda\left(1-v^{2}\right)\right\}\right)^{-1 / 2}-1-v^{2}\right)\right]
\end{aligned}
$$

with $\kappa=\frac{1}{2} \frac{m R}{g} \quad$ and $\quad \bar{\rho}=1-\kappa^{2}(1+4 \lambda)^{2} \exp \{-6 \lambda\}$
Now, \# parameters 3+1: c, g, C, and κ

And this is how it works

Additional remarks to example III

a flux loop is tricky

baryon vertex is nothing but a D5-brane in 10d witten baryon/antibaryon vertices $\rightarrow D_{5} \bar{D}_{5}$ bound state in 10d (Warning: stability at short separations)
the form of $S_{b b}$ can depend on a warp factor of the internal space
\checkmark Unlike V, there is no Coulomb term note that Luescher-Weisz have it

Approximation breaks down

We still do not understand what string theory is...

We do not have a formulation of the dynamical principle behind string theory....

Perhaps we are missing a fundamentally new principle of symmetry, of dynamics, of consistency, ...

D.J. Gross

What to do?

CALCULATE,

CALCULATE,

CALCULATE and OBSERVE!

D.J. Gross

What to calculate?

"In my opinion, string theory in general may be too ambitious. We know too little about string dynamics to attack the fundamental questions of the right vacua, hierarchies, to choose between anthropic and misanthropic principles etc. The lack of control from the experiment makes going astray almost inevitable. I hope that gauge/string duality somewhat improves the situation. There we do have some control, both from experiment and from numerical simulations. Perhaps it will help to restore the mental health of string theory."
A.M. Polyakov

