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Plan of  talk

Introduction

BMN matrix model.

Interesting initial conditions: brane collisions.

Geometric objects in motion.

Thermalization: tests and relevant dynamics.
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AdS/CFT ideas: to study (quantum) gravity one can 
solve field theory problems.

 Black hole formation problem is dual to a 
thermalization process. Requires a way to formulate 
geometric initial data (put a lot of matter HERE) on 
dual quantum theory.
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Need to reproduce history of 
formation and evaporation 

of  black hole on dual
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Real time dynamics in complicated quantum systems is 
too hard.

On the other hand, classical time evolution dynamics is 
not too bad.

Only chaotic systems thermalize: too simple a toy 
model (analytic solution) would not work.
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Goal: find system with 
following requirements

Classical evolution is feasible.

Quantum mechanics can be ignored (finitely many 
degrees of freedom at very high temperature).

Has a holographic dual. 

Has initial data that is easy to interpret, plus 
sufficiently well behaved dynamics.
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BMN matrix model

SBFSS =
1

2g2

�
dt

�
(DtX

I)2 +
1
2
[XI , XJ ]2

�
+ fermions

Banks, Fischler, Shenker, Susskind

Start from the BFSS matrix model: dimensional
reduction of U(N) SYM in d=9+1 to 0+1 

There are 9 dynamical matrices and one matrix constraint.
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BFSS describes DLCQ of M-theory in flat space.

Rank of the matrices is identified with momentum in
the periodically identified direction: number of D-zero branes.

Because of the discrete lightcone momentum condition one 
is effectively in type IIA string theory. 
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One can form charged black hole states and simulate them
in the dual matrix model.

Catterall and Wiseman, Nishimura et al.

Good match of statics!
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The bad news

Really Interesting initial conditions correspond to scattering 
gravitons to form black hole. Gravitons are bound states at 

threshold and require full knowledge of details of wave functions. 

Moduli space: makes canonical ensemble bad (runaway that gets 
fixed at infinite N )

10



Natural Fix
Add a mass term that keeps the holographic nature of the system:

prevents runaway.
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Natural Fix
Add a mass term that keeps the holographic nature of the system:

prevents runaway.

SBMN = SBFSS −
1

2g2

�
dt

�
µ2(Xi)2 +

µ2

4
(Y a)2 + 2µi ��jkX�XjXk

�

+fermions

Split 9X into 3 X +6 Y

BMN model (2002)
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Bonus

All ground states are described by classical configurations
so we can ignore quantum wave functions to setup initial 

conditions

The system describes M theory on a maximally supersymmetric 
plane wave geometry in the DLCQ limit. 
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2. The BMN matrix model

The BMN matrix model [12] is a massive deformation of the BFSS matrix model

[8]. The latter is obtained from the dimensional reduction of ten-dimensional N = 1

super Yang-Mills down to 0 + 1 dimensions and has an action given by

SBFSS =
1

2g2

�
dt tr

�
(DtX

I
)
2
+

1

2
[XI , XJ

]
2

�
+ fermions , (2.1)

where XI
(I = 1, . . . , 9) are nine hermitian matrices. The covariant time derivative

is given by

DtX
I
= ∂tX

I
− i[At, X

I
] (2.2)

and g is a dimensionful coupling constant that can be removed by rescaling the fields

and the time coordinate. It can be set to one, if desired, or factored out of the action

and interpreted as determining �. We will not work in detail with the fermions in

this paper, so we shall just suppress them from now on. The Hamiltonian of this

system (in the At = 0 gauge) is given by

H =
1

2
tr

�
g2(ΠI

)
2
−

1

2g2
[XI , XJ

]
2

�
. (2.3)

The BMN matrix model system is a massive deformation of (2.1) that preserves

all 32 supersymmetries. It also preserves a diagonal set of modes that decouple and

constitute a system of free degrees of freedom. These are the ‘center of mass motion’

degrees of freedom in the BFSS matrix model. The BMN matrix model splits the

XI
into two groups of variables: X1,2,3

, that we will label X i
, and X4,...,9

, that we

will label Y a
. The action includes additional terms given by

SBMN = SBFSS −
1

2g2

�
dt tr

�
µ2
(X i

)
2
+

µ2

4
(Y a

)
2
+ 2µi ��jkX

�XjXk

�
. (2.4)

In the conventions above, µ is real and has been rescaled by a factor of 3 with respect

to [12]. It has units of frequency, as XI
. The equations of motion following from this

action are

Ẍ i
= −µ2X i

− 3iµ �ijkXjXk
−
��
X i, XI

�
, XI

�
,

Ÿ a
= −

µ2

4
Y a

−
��
Y a, XI

�
, XI

�
. (2.5)

It is convenient for our study to recast the potential for the X i
fields in the

following form

V (X)
BMN =

1

2g2
tr

��
i[X2, X3

] + µX1
�2

+
�
i[X3, X1

] + µX2
�2

+
�
i[X1, X2

] + µX3
�2�

.

(2.6)

– 5 –

Solutions with V=0 correspond to 

Solutions of  V=0 are representations of SU(2)

[X2, X3] = iµX1

µ = 1Can always rescale to
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– 5 –

Solutions with V=0 correspond to 

Solutions of  V=0 are representations of SU(2)

An irreducible is called a Fuzzy sphere.

[X2, X3] = iµX1

µ = 1Can always rescale to
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One gets the other six directions from the Y’s.

Together they give the 9 transverse directions on plane wave.
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But if we take matrices of dimension 1, 

One gets the other six directions from the Y’s.

Together they give the 9 transverse directions on plane wave.
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But if we take matrices of dimension 1, 
motion is characterized by solutions of differential equation

One gets the other six directions from the Y’s.

Together they give the 9 transverse directions on plane wave.
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But if we take matrices of dimension 1, 

ẍ = −µ2x

motion is characterized by solutions of differential equation

One gets the other six directions from the Y’s.

Together they give the 9 transverse directions on plane wave.
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But if we take matrices of dimension 1, 

ẍ = −µ2x

motion is characterized by solutions of differential equation

Harmonic oscillator.

One gets the other six directions from the Y’s.

Together they give the 9 transverse directions on plane wave.
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But if we take matrices of dimension 1, 

ẍ = −µ2x

motion is characterized by solutions of differential equation

Harmonic oscillator.

One gets initial conditions as points in  

One gets the other six directions from the Y’s.

Together they give the 9 transverse directions on plane wave.
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But if we take matrices of dimension 1, 

ẍ = −µ2x

motion is characterized by solutions of differential equation

Harmonic oscillator.

One gets initial conditions as points in  

It is natural to identify this with space.

R3

One gets the other six directions from the Y’s.

Together they give the 9 transverse directions on plane wave.
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The trace mode always decouples and follows the above equation.

More importantly: direct sums of solutions to equations of 
motion are solutions to equation of motion.

Any object can be made to oscillate rigidly 
in space for free by exciting the trace mode (these motions are 

related to isometries of plane wave)
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Each fuzzy sphere of rank n is interpreted as a graviton with n
units of momenta in the discrete lightcone direction.

A fuzzy sphere can also be interpreted as a spherical M2 brane.

How to look at it depends on the strength of interactions.
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Aside

The BMN matrix model also results from the SU(2) invariant 
dimensional reduction of N=4 SYM on a three sphere. 

(Kim, Klose, Ple&a)

Any trajectory found describes a classical trajectory of the
N=4 SYM theory.
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INITIAL CONDITIONS
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Work with D. trancanelli

Ground state is made of concentric fuzzy 
spheres.

Spheres can be kicked independently:
after all, direct sums of solutions are 

solutions.

arXiv:1011.2749
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If we attach n states to one sphere, and n� to the other, we get a total of nn�

possible strings stretched between them. The one of maximum length has angular
momentum given by j + j� and a mass of order j + j� in appropriate units .he net
angular momentum can be obtained by subtracting the vector positions of the ends
of the string.

If we compare with the spectrum of the Y a fluctuations, we get a precise match
between the possible values of angular momentum we compute geometrically this
way and with the field theory calculation. These are transverse polarizations of the
strings to the three directions in which the branes are embedded. For polarizations
of the string modes in the brane 3-plane, they have extra spin: indeed, they carry
one unit of spin that is either along the direction of the string, or opposite to it (only
transverse polarizations appear on the string) and one can match to the values of
angular momentum of the X i fluctuations as well. Again, the geometric estimate of
the mass is good enough. Notice that there are in general correction of order one to
the mass.

Figure 1: Calculating the angular momentum of an off-diagonal mode.

The angular momentum vector of the string state points parallel to the string.
The one with maximum angular momentum in a multiplet will go parallel to the
ones that go from the north pole to the north pole of the spheres. This is depicted
in figure 1. The angular momentum vector is obtained by taking the difference of
the two end point positions of the strings. Also, the length is proportional to the
length of the angular momentum vector. We depict various highest weight states
for representations in the figure. The longest string goes from the north pole of

– 7 –

Picture as D2-branes with D0 charge
(magnetic flux)

String ends carry angular momentum
(highest weight states depicted)

Constant density of  possible
string ends on each sphere

Mass of  off-diagonal modes proportional to distance.
20



one to the south pole of the other fuzzy sphere. Notice also that each string end

can be though of as occupying an uniform fixed area on each sphere. The sphere

with n1 eigenvalues has n1 such patches, and similarly for the second one, with n2

eigenvalues, will be divided into n2 patches.

Now we can consider what happens when we displace the spheres. It is clear

that the density of endpoints of strings in each fuzzy sphere is not going to change.

This is because this is roughly the density of eigenvalues per unit area. So we can

argue that the endpoint location of the string on each fuzzy sphere will not change,

nor how we think about its angular momentum in the z direction (the one that is

preserved buy the configuration). However, the length of the string will change.

Figure 2: The length of the strings change as we displace the fuzzy spheres.

If we use the same labels for the ends of the string as before, by the angular

momentum, we find that the length is given by

L2 � (∆L1
)
2
+ (∆L2

)
2
+ (∆L3 − b)2 , (2.3)

where b is the displacement. This is, the masses should be roughly given by

M2 � (∆�L)2 − 2b∆L3
+ b2 . (2.4)

The mass formula will attain the minimum value on a sphere for fixed (∆�L)2 when

L3
takes either the maximum or the minimum value, depending on the sign of b.
Clearly, this value will be minimized when the spheres touch. The states with

minimum energy have their spin aligned along the z axis shown in the figure (the

strings of length zero do not have an horizontal component of �L). There will be

corrections to this simple geometric formula. This can be seen from comparing the

values of the energy when the spheres are concentric to those that are obtained from

– 8 –

Length of  strings change
as we displace fuzzy spheres

Where spheres intersect we get classical
tachyon (great for simulations): these 

also carry angular momentum
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Expand in fluctuations:
linearized analysis

Notice that these are all positive, because � ≥ m. The minimum possible value,

fixing � and m but varying b, is given by b = m, in which case the frequency squared

is

ω2
�m =

�
�+

1

2

�2

−m2
(4.13)

and the minimum value this can acquire is given by m = ±�, so that the mass is

ω2
�� = �+

1

4
. (4.14)

So, as we go to higher and higher �, we find that the mode is more and more massive

at the place where it is lightest (namely for b = m). However this only grows as
√
�,

which is subleading to the typical value of the frequency which is of order �. If we

compare with our geometric result in equation (3.5) we find that it matches it very

closely and it is exactly the same if we interpret (∆�L)2 with the usual quantum value

�(�+ 1) plus the 1/4 from the background curvature of the plane wave.

4.2 Longitudinal fluctuations

Now we analyze the fluctuations of the X i
fields. This is trickier than for the Y a

fluctuations. First, the X i
have vevs, so that expanding the action in fluctuations

is more involved. Secondly, the system is a gauged quantum mechanical system.

This means that there are zero modes that should be projected out of the dynamics.

Finally, for the displaced fuzzy spheres we are not at an extremum of the potential,

so the gradient of the potential does not vanish. This means that the Hessian that

determines quadratic fluctuations is not invariant under non-linear field redefinitions,

unlike in the case of an extremum of the potential where the Hessian is a symmetric

tensor on the tangent space of the corresponding configuration point. This is poten-

tially problematic for the removal of the zero modes, as the group of U(N) rotations

of the configuration gives us a non-linear geometric space.

All of these problems are solvable in practice. What we need to do is to argue that

our fluctuations are orthogonal to linearized gauge transformations on a particular

configuration defined by a background. Since we have a metric on the configuration

space defined by the kinetic term, this is a well defined procedure.

We expand the fluctuations of the off-diagonal blocks as follows
6

X3 � L3
+ b

�
0 0

0 1

�
+

�

�,m

δx3
�mY�m + (δx3

�m)
∗Y †

�m ,

X+ � L+
+

�

�,m

δx+
�m−1Y�m + (δx−

�m+1)
∗Y †

�m ,

6An equivalent way of doing this computation is to expand the fluctuations in the basis of
eigenstates of the b = 0 problem, which was originally solved in [21]. We outline this alternative
derivation in the appendix.

– 16 –

We use a basis of  ‘fuzzy monopole spherical harmonics’

IMPORTANT: l, m labels don’t mix.
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of �,m appear in all of the coefficients of these linear terms: this is, the mixing of
modes only mixes the same values of �,m. This simplification makes the problem
very tractable for these modes as well. In the end, we need to understand how three
modes mix, but one such mode is projected out because of the gauge constraint. The
general mass reduces to diagonalizing a 2× 2 matrix for each value of �,m

This can be combined to give a block diagonal term in 1
2 [X

−, X+] +X3 propor-
tional to
�
0 0
0 b

�
+

1

2

�
δx−(δx−)∗Y Y † − δx+(δx+)∗Y Y † 0

0 δx+(δx+)∗Y †Y − δx−(δx−)∗Y †Y

�
.

(4.24)
When we square and take traces, expanding to quadratic order in fluctuations, this
gives us a contribution to the mass matrix equal to

1

2
b(δx+(δx+)∗ − δx−(δx−)∗) . (4.25)

Notice that the contribution from this term is negative or positive for different modes
depending on the sign of b.

The kinetic term (4.16) suggest that we normalize the fields slightly differently,
δx± =

√
2 δX±, to have canonical normalizations for every mode. The terms in the

expansion can be rewritten as

δx3
�m +

1

2

�
(�−m)(�+m+ 1)δx+

�m − 1

2

�
(�+m)(�−m+ 1)δx−

�m

=
�
1 ,

�
(�−m)(�+m+1)

2 , −
�

(�+m)(�+1−m)
2

�



δx3

�m

δX+
�m

δX−
�m



 ≡ V 3 δX . (4.26)

Similarly we find a V + and V − given by

V + =
��

(�−m)(�+m+ 1) ,
√
2(b−m) , 0

�
,

V − =
�
−
�
(�+m)(�−m+ 1) , 0 ,

√
2(m− b)

�
. (4.27)

We have shifted m → m ± 1 in the equations above so that we are comparing the
same coefficients of �,m.

The mass matrix is given by squaring these vectors and adding them together
including also the contribution of (4.25)

ω2
�m = (V 3)†V 3 +

1

2
(V +)†V + +

1

2
(V −)†V − +




0 0 0
0 b 0
0 0 −b



 . (4.28)

The end result is given by

ω2
�m =




1 + �+ �2 −m2 (b−m+ 1)Λ− (b−m− 1)Λ+

(b−m+ 1)Λ− b+ (b−m)2 + Λ2
− −Λ+Λ−

(b−m− 1)Λ+ −Λ+Λ− −b+ (b−m)2 + Λ2
+



 , (4.29)

– 19 –

where we have defined the shorthands

Λ± ≡
�

(�±m)(�∓m+ 1)

2
. (4.30)

Of particular interest to us is when m = � + 1 for δX−
�,m (i.e. Λ+ = 0), and when

m = −� − 1 for δX+
�,m (i.e. Λ− = 0). For these cases there is no mixing with any

other mode and these fields have maximum spin in the 3-direction for fixed �. We
have already argued why these modes are important. Their masses are given by

(ω−
�,�+1)

2 = −b+ (b− �− 1)2 ,
(ω+

�,−�−1)
2 = b+ (b+ �+ 1)2 . (4.31)

These modes are tachyonic for b = ±(�+ 1) on an interval for b of order
√
�. Notice

that there is a tower of tachyonic modes for each b labeled by � with a quadratic
dispersion relation. This can be interpreted as a tower of tachyonic modes on a
circle in the presence of some holonomy for a gauge field under which these fields
are charged. Other modes for which m is not maximal in the sense above are not
tachyonic.

From the equation for the masses above we still need to project out the gauge
variations. This is straightforward, but tedious. If we call the projection matrix that
projects onto the gauge degrees of freedom as Σ�m, then 1−Σ�m is the projection in
the orthogonal components. The mass matrix we need is then given by

ω2
�m, phys = (1− Σ�m)ω

2
�m(1− Σ�m) (4.32)

The precise expressions are not very illuminating. However, none of the modes that
appear this way are tachyonic, except the ones that we have already discussed.

We can also check that the eigenvalues of the above matrix are �2, (� + 1)2, 0
when we set b = 0 (as originally found in [21]) as a consistency check. For b = 0 the
modes with zero eigenvalue are the gauge zero modes. For b �= 0 these modes seem
to become massive (the determinant is not zero), but as we have argued already, this
is an artifact of the linearization. After all, expanding to second order in these gauge
variations we find that

V (X)
BMN(b, δθ) � V (X)

BMN(b) + ∂bV
(X)
BMN(b)(δθ

2) + . . . , (4.33)

and the second term only vanishes for b = 0. However, the potential is invariant,
so b must be corrected to second order in gauge fluctuations. This is a non-linear
change of variables. This is why it is better to project on directions orthogonal to
the gauge transformations than trying to sort this second order variation and how it
affects the metric of the other modes.

It is clear that when we consider the above result, we should organize the modes
according to the following criteria. If the two fuzzy spheres intersect for some b > 0,

– 20 –

End result

+gauge projection.
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Special case of  no mixing:

where we have defined the shorthands
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�
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2
. (4.30)
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�,m (i.e. Λ+ = 0), and when

m = −� − 1 for δX+
�,m (i.e. Λ− = 0). For these cases there is no mixing with any

other mode and these fields have maximum spin in the 3-direction for fixed �. We
have already argued why these modes are important. Their masses are given by

(ω−
�,�+1)

2 = −b+ (b− �− 1)2 ,
(ω+

�,−�−1)
2 = b+ (b+ �+ 1)2 . (4.31)

These modes are tachyonic for b = ±(�+ 1) on an interval for b of order
√
�. Notice

that there is a tower of tachyonic modes for each b labeled by � with a quadratic
dispersion relation. This can be interpreted as a tower of tachyonic modes on a
circle in the presence of some holonomy for a gauge field under which these fields
are charged. Other modes for which m is not maximal in the sense above are not
tachyonic.

From the equation for the masses above we still need to project out the gauge
variations. This is straightforward, but tedious. If we call the projection matrix that
projects onto the gauge degrees of freedom as Σ�m, then 1−Σ�m is the projection in
the orthogonal components. The mass matrix we need is then given by

ω2
�m, phys = (1− Σ�m)ω

2
�m(1− Σ�m) (4.32)

The precise expressions are not very illuminating. However, none of the modes that
appear this way are tachyonic, except the ones that we have already discussed.

We can also check that the eigenvalues of the above matrix are �2, (� + 1)2, 0
when we set b = 0 (as originally found in [21]) as a consistency check. For b = 0 the
modes with zero eigenvalue are the gauge zero modes. For b �= 0 these modes seem
to become massive (the determinant is not zero), but as we have argued already, this
is an artifact of the linearization. After all, expanding to second order in these gauge
variations we find that

V (X)
BMN(b, δθ) � V (X)

BMN(b) + ∂bV
(X)
BMN(b)(δθ

2) + . . . , (4.33)

and the second term only vanishes for b = 0. However, the potential is invariant,
so b must be corrected to second order in gauge fluctuations. This is a non-linear
change of variables. This is why it is better to project on directions orthogonal to
the gauge transformations than trying to sort this second order variation and how it
affects the metric of the other modes.

It is clear that when we consider the above result, we should organize the modes
according to the following criteria. If the two fuzzy spheres intersect for some b > 0,

– 20 –

These are modes of  maximum angular momentum.

Tachyonic for some values of  b.

Same instability as Nielsen-Olesen: 
charged gluons in constant chromomagnetic field become 

tachyonic due to large magnetic moment.
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`Floquet’ or ‘Bloch’ analysis of  time dependence.
in t is periodic with period 2π, so the full analysis can be restricted to the interval

t ∈ {0, 2π}. We need to solve the differential equation

q̈�(t) + (m±
� (t))

2q(t) = 0 . (5.2)

This is the equation for a harmonic oscillator with time dependent mass. It is

somewhat similar
7
to the Mathieu equation that describes parametric resonances and,

in cosmology, the fluctuations of the inflaton around the minimum of the potential

during preheating [18].

In general there are two linearly independent solutions to the equation (5.2),

which we call q1(t) and q2(t). We can relate the initial time problem (at time t) to
the problem at one period later (at time t+ 2π) using a periodicity matrix

�
q1(t+ 2π)
q2(t+ 2π)

�
=

�
A B
C D

��
q1(t)
q2(t)

�
. (5.3)

This equation can be diagonalized, so we can choose the solutions to be eigenvalues

of the matrix above. The Wronskian of the solution is constant, so the matrix

transforming between one and the other has determinant equal to one. Also, since

the differential equation has real coefficients, the solutions can be made real and in

that case the matrix above is real as well. Hence, the eigenvalues are either real or

unitary. These eigenvalues serve as Lyapunov exponents for the classical periodic

orbit. When the eigenvalues are unitary the system is stable, when the eigenvalues

are real the system is unstable.

The system can be interpreted also as a Schrödinger problem with fixed energy

in a periodic potential,
8
which is the negative of the (m±

� (t))
2
function. If the solu-

tions are quasi-periodic (the eigenvalues are in the unit circle), one of the functions

is identified with positive frequency and the other one is identified with negative

frequency modes. This is the case where the functions q�(t) belong to a band of the

periodic potential.

Generically, if there are regions where the mode is tachyonic, the corresponding

Schrödinger particle needs to tunnel through the barrier. This phenomenon generi-

cally leads to the property that the eigenvalues of the matrix above are non-unitary,

with the tunneling amplitude characterizing the growth of the signal. We can in

general estimate this using a WKB approximation.

The large eigenvalue tells us how the modes grow around these periodic solutions

and it describes the discrete time dependence of the instability under various oscilla-

tions. The two linearly independent solutions can also be thought of as coefficients of

raising/lowering operators. The matrix computed in this basis is a Bogolubov trans-

formation for each period and the amplitude growth correlates with the amount of

particle creation between oscillations.

7Albeit more complicated and not generically solvable in terms of elementary functions.
8For an elementary treatment see [37].
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b(t) = b̃ sin(t)

Like a Schrödinger problem in a 1-d periodic potential: 
leads to  energy band analysis.
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in t is periodic with period 2π, so the full analysis can be restricted to the interval

t ∈ {0, 2π}. We need to solve the differential equation

q̈�(t) + (m±
� (t))

2q(t) = 0 . (5.2)

This is the equation for a harmonic oscillator with time dependent mass. It is

somewhat similar
7
to the Mathieu equation that describes parametric resonances and,

in cosmology, the fluctuations of the inflaton around the minimum of the potential

during preheating [18].

In general there are two linearly independent solutions to the equation (5.2),

which we call q1(t) and q2(t). We can relate the initial time problem (at time t) to
the problem at one period later (at time t+ 2π) using a periodicity matrix

�
q1(t+ 2π)
q2(t+ 2π)

�
=

�
A B
C D

��
q1(t)
q2(t)

�
. (5.3)

This equation can be diagonalized, so we can choose the solutions to be eigenvalues

of the matrix above. The Wronskian of the solution is constant, so the matrix

transforming between one and the other has determinant equal to one. Also, since

the differential equation has real coefficients, the solutions can be made real and in

that case the matrix above is real as well. Hence, the eigenvalues are either real or

unitary. These eigenvalues serve as Lyapunov exponents for the classical periodic

orbit. When the eigenvalues are unitary the system is stable, when the eigenvalues

are real the system is unstable.

The system can be interpreted also as a Schrödinger problem with fixed energy

in a periodic potential,
8
which is the negative of the (m±

� (t))
2
function. If the solu-

tions are quasi-periodic (the eigenvalues are in the unit circle), one of the functions

is identified with positive frequency and the other one is identified with negative

frequency modes. This is the case where the functions q�(t) belong to a band of the

periodic potential.

Generically, if there are regions where the mode is tachyonic, the corresponding

Schrödinger particle needs to tunnel through the barrier. This phenomenon generi-

cally leads to the property that the eigenvalues of the matrix above are non-unitary,

with the tunneling amplitude characterizing the growth of the signal. We can in

general estimate this using a WKB approximation.

The large eigenvalue tells us how the modes grow around these periodic solutions

and it describes the discrete time dependence of the instability under various oscilla-

tions. The two linearly independent solutions can also be thought of as coefficients of

raising/lowering operators. The matrix computed in this basis is a Bogolubov trans-

formation for each period and the amplitude growth correlates with the amount of

particle creation between oscillations.

7Albeit more complicated and not generically solvable in terms of elementary functions.
8For an elementary treatment see [37].
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Eigenvalues of  matrix determine if  stable 
(eigenvalue unitary =  in energy band), or

unstable (eigenvalues real = outside bands).
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Most unstable mode typically has highest l

Amplification after one oscillation
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Expectations

Off diagonal modes connecting two fuzzy spheres grow 
exponentially classically. Once they get large enough the 

rest of the system back-reacts.

Hopefully one ends up with an interesting evolution that 
thermalizes after that.
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NUMERICS

C. Asplund, D.B., D. Trancanelli arXiv:1104.5469 
C. Asplund, D.B., E. Dzienkowski, D. Trancanelli

work in progress
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Take same classical configurations as before.

Add quantum fluctuation seeds:
generate randomly from gaussian 

distribution normalized to harmonic 
oscillator wave functions.

X0 =
�

L0
n 0
0 0

�
, X1 =

�
L1

n δx1

δx†
1 0

�
, X2 =

�
L2

n δx2

δx†
2 0

�
,

P 0 =
�

0 0
0 v

�
, P 1,2 = 0 = Q1,...,6, Y a = δya.

δx, δy �
�

�/n
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Interepretation

We make a zero brane collide with an M2 brane in the
plane wave geometry.

The collisions are periodic in time until system back
reacts.
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Put it on a computer
Factory that  spits out

lists of matrices ordered 
in time.
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Analyze data
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Analyze data
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Take eigenvalues......

Analyze data
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We go from order

to chaos and random matrices
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We go from order

to chaos and random matrices
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How matrices fill
�e(X2)
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How matrices fill
�e(X2)
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Approximately Converges to 
Spherical configuration

2000 4000 6000 8000 10 000 12 000
t

0

1

2

3

4

5

6

std�Y2�
std�Y1�
std�X1�
std�X0�
Time

Trace of X,Y
decoupled: serves
as physical clock.

secondary shrinkage is from growth
of y matrices (parametric resonance)
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GEOMETRY?
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One can get a noncommutative embedding of 3 hermitian
random matrices into 

R3
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One can get a noncommutative embedding of 3 hermitian
random matrices into 

R3

How do we actually see it?
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One can get a noncommutative embedding of 3 hermitian
random matrices into 

R3

How do we actually see it?

What is its geometry?
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Typical idea of  matrix 
models: add eigenvalue.

One can always make the matrices bigger.
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Typical idea of  matrix 
models: add eigenvalue.

One can always make the matrices bigger.

By one.
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Typical idea of  matrix 
models: add eigenvalue.

One can always make the matrices bigger.

By one.

By direct sum. 
Ask about the degrees of freedom connecting the

 one to the rest.

39



Typical idea of  matrix 
models: add eigenvalue.

One can always make the matrices bigger.

By one.

By direct sum. 
Ask about the degrees of freedom connecting the

 one to the rest.
�

X ∗
∗† x

�
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Fermion mass matrix

�

i

(Xi − xi)⊗ σi

What matters is the spectrum of this one matrix.

d(X,x) � (min(Abs( Eigenvalues)))

Distance:
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A 2D slice colored by distance (21x21 matrices)
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A 2D slice colored by distance (21x21 matrices)
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Same with 8x8 matrices.
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Same with 8x8 matrices.
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High- definition
graph shows a lot of zero 

distance: ridges
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The Onion

This is a slice of a  true onion: not computer generated.

This is the image we get of the “inside the black hole”
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Looking at full eigenvalue spectrum on line: 
we see crossings of zero.
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Looking at full eigenvalue spectrum on line: 
we see crossings of zero.
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Index

I(x) � dim(V +)− dim(V−)
2

Locally constant: counts how many layers one has
to cross to get out.

The locus where index changes are surfaces: the 
best notion of the geometric embedding of the matrices.
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Dynamical interpretation

The system describes (random) embedded surfaces
 and points in 3 dimensions.

The index counts the onion rings.
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The surfaces are oriented.

They can not be cut open. 

In string theory this has the interpretation of D-brane 
charge and that it is conserved.
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THERMALIZATION
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Tests of thermality

H � P
2

2
+ V (X)

Thermal implies time averaged distribution of  some 
quantities should match the Gibbs ensemble.

P(P ) � exp(−β
P 2

2
)

This is the standard gaussian matrix model ensemble.
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Semicircle tests

Semicircle distribution for 
momenta eigenvalues:

average over time.

� � �
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Temperature in X and Y match
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Fast thermalization?
test via Normalized Autocorrelation 

functions
�Oi(t)O†

i (t + a)�

O2 = tr[(X1 + iX2)2]

50 100 150 200 250 300
a

�0.2

0.2

0.4

0.6

0.8

1.
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Improving statistics

1000 2000 3000 4000
0

20

40
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More 

200 400 600 800 1000
t

�0.4
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1.

L � 6

L � 5

L � 4

L � 3

L � 2

OL = tr[(X1 + iX2)L]

Larger l decays faster:
similar to difussion on BH horizon.
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Autocorrelations

Better in Fourier space.

Autocorrelation function is fourier 
transform of power spectrum
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high quality L=2.

500 1000 1500 2000 2500 3000
0

50

100

150

Broadband noise indicates chaos: very broad indicates 
fast thermalization (no narrow resonance).

Integrability would show as delta function peaks

Frequency

Power
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Small Pert. on fuzzy Sphere: 
typical Delta Function peaks.

0 500 1000 1500
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Log of power spectra
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Interesting IR

Power spectrum seems almost singular at zero.

The log of power spectrum seems to have an absolute 
value singularity. Such singularity would imply 
polynomial decay of autocorrelation functions for 
asymptotically long times.

Still looking for interpretation: hydrodynamics?
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EPILOGUE
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These very chaotic dynamical matrices should be black holes.
We’re trying to figure out how they work and exactly

how they lose information. In particular to test the fast 
scrambler conjecture (Sugino, Susskind). Basically, one has to 

check that there is a log(N) dependence somewhere on 
information loss. 
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There is a nice effect:
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There is a nice effect:

When one crosses surfaces fermionic ‘strings’ are created. 
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There is a nice effect:

When one crosses surfaces fermionic ‘strings’ are created. 

These stop the stuff that is falling in black hole
 like a spiderweb. 
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Sometimes one gets to dance
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Conclusion

Interesting classical dynamics on matrix models

They are thermodynamic: they thermalize and becomes 
spherical.

There is geometric data that can be extracted

Interesting features in autocorrelation functions 
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Open questions

Include quantum effects better.

What are horizons?

Add dynamical probes to test geometry.

Easy to add angular momenta.

Expect interesting Phase diagram.

66


