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Calabi-Yau Cones

Near Horizon Limit

Starting point: 10-d supergravity solution

ds* = H 3 ( — df* — d@®) + H7 (dr® + 2d03)
—_——
flat C3

with |
H=14+— ~ —
= i
Can replace flat C* with any conical
dr* + r*g;dy'dy

Calabi-Yau metric.
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On C? > (x; + iy, X2 + iy2, X3 + iy3), we thus have:
@ The radial vector field
ro, = Z (x;0x, + yi0y,)
@ The complex structure
J(axi) = Oy, J(ayi) = —0y

@ The Reeb vector field

J(ro,) = Z (xi0y, — ¥i0y)
in the r = const. plane.



Calabi-Yau Cones

Geometries

Example Geometry
C? Calabi-Yau 6-dimensional space
§3 Sasaki-Einstein at r = const.

P2 Kihler-Einstein  Quotient by Reeb U(1)

@ In the following, we’ll look at more general Kéhler-Einstein
surfaces.

@ Reeb vector field doesn’t always form compact orbits, will
come back to this later.

[Martelli-Sparks-Yau, Abreu]
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Kihler-Einstein Toric Varieties

© Kiihler-Einstein Toric Varieties
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Kihler-Einstein Toric Varieties

Toric Varieties

What is a toric variety? (in 2-d, say)
@ Generalization of projective plane
[Zo VAT Zz] = [)\Z() : /\Z] : )\23], e Cx

to n homogeneous coordinates with (C*)"~2 rescalings.

@ Space with (C*)? action such that there is a single
2-dimensional orbit.

@ Combinatorics of how lower-dimensional orbits
(~ C*, {pt.}) compactify (C*)2. This information is
equivalent to a fan (collection of cones in R?).

Andrey Novoseltsev and I implemented toric varieties in Sage
(see http://www.sagemath.org).
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http://www.sagemath.org

Kihler-Einstein Toric Varieties

Toric Geometry and Sage

Construct (P' x P')/Z, as a toric variety:

sage: square = polytopes.n_cube (2)

sage: fan = FaceFan(square.lattice_polytope())
sage: P1lxPl_Z2.<s,u,v,t> = ToricVariety (fan)
sage: P1lxP1l_2Z2

2-d toric variety covered by 4 affine patches

Various quantities that you might want to know:

sage: P1lxP1l_Z2 .Mori_cone () .rays ()
((Or 1! 1/ OI _2)1 (11 OI OI 1/ -
sage: P1lxPl_Z2.cohomology_basis ()
(Cr11,), ([tl, [vl), ([vxt],))
sage: P1lxP1l_Z2.Chow_group () .degree ()

(Zz, C2 x 272, Z)

sage: ( —-P1lxPl_Z2.K() ) .sections_monomials ()
(s™"2xu”2, s"2%xv"2, s*u*xvs*t, ut2xt"2, v 2xt"2)

2))
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Kihler-Einstein Toric Varieties

Toric Resolution of Singularities

(P' xPY)/Z, After blowing up the 4 singular
points.

The Fan knows nothing about the size of the blown-up P"'.
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Kihler-Einstein Toric Varieties

Kiahler Geometry

A Kihler metric is completely determined by the Kéhler potential
K(z,2), )
8i(z,2) = 0,0K(z,2)

w = gi(z,z) dz' A d7 = 99K (z,7).

This is the metric defined by the Kihler potential

K(z,2) =In (| + |2 + |z]?)

Note: K(\z, \z) = K(z,Z) + In(|A|?), so the metric is independent
of homogeneous rescalings.

’
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Kihler-Einstein Toric Varieties

Algebraic Kihler Metrics

For arbitrary toric variety, fix homogeneous (multi)-degree and
enumerate all monomials {s, } with this degree.

Theorem (Tian)
The “algebraic Kdhler potentials”

K(z,zZ) =In Z h“Bsaig
are dense in the space of Kdhler potentials.

o (h°?) is a Hermitian matrix.
e (h*P) is diagonal < the metric is U(1)>-invariant.

@ Actually works for any algebraic variety.
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Kihler-Einstein Toric Varieties

The Moment Map

For U(1)?-invariant metrics, we can define the moment map

o Za maha&|sa|2

7)) = . € R?

where m,, is the exponent vector (or U(1)*-weight) of the
homogeneous monomial s,.

Theorem (Moment Map)

@ The domain of the moment map is a polygon and only
depends on the Kdhler class [w).

e Lower-dimensional (C*)?-orbits map to the faces of the
polygon.

Volker Braun (DIAS) Geometry of the Compact Directions KITP, Santa Barbara

12/27



Kihler-Einstein Toric Varieties

The Moment Polytope

For example, h*® = diag(1,1, ...

(BI(P' x P")/Z3, —3K — }_E;)

@ One coordinate patch for each vertex

@ Quadrangles are images of constant-sized squares in
inhomogeneous coordinates.
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Kihler-Einstein Toric Varieties

Different Moment Maps

hee = (1,1,...,1) Balanced h*®

@ Different metrics in the same Kihler class [w]

@ Toric variety = U(1)-fibration over the moment polytope
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Kihler-Einstein Toric Varieties

Volume Form and Integration

@ Moment map depends only on absolute value &; = ReIn z; of
homogeneous coordinates z;
OK ger

@ In ¢ coordinates, the moment map is p(z) = % X;

@ Legrendre dual is the symplectic potential
u(x) = infi — K(¢)

@ Metricis d*s = uy; dxid¥ + w' dydyp;
@ Integration is easy:

/f(x) dVoly = /dzx/dchf(x)\/@: /f(x) dx
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Kihler-Einstein Toric Varieties

Metrics on Line Bundles

Homogeneous
polynomials s,

— ’ Sections of a line bundle £ ‘

@ The matrix 47 defines an inner product on sections {s, } via

0(2)7(2)

(0,7)(z) = D hO‘BSa(Z)EB(Z)

€ C*(X,C)

@ Metric on the space of sections H° (X , L)

<‘7>T>:/(U,T)(Z,Z)dVol eC
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Kihler-Einstein Toric Varieties

Balanced Metrics

h? is balanced if the matrices representing the metrics coincide,

that is:
<<sa,s5>> =h!

1<a,f<N

Theorem (Donaldson, ...)

Assume that the balanced metric hy exists for each £F, k > k.
Then the sequence of metrics

W = 00 lnz h,f’ésaig

converges to an extremal metric as k — oo
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Donaldson’s T-operator:

T(h),s = <sa, Sﬁ>

The sequence converges h,,1 = T(h,)™" — hyy if the balanced
metric exists.




Kihler-Einstein Toric Varieties

Metrics Overview

Definition (Extremal Metric)

An extremal metric as a Kdhler metric whose scalar curvature has
a holomorphic gradient vector field. Critical points of [ R?.

k—00

Balanced Extremal

l Gradient=0

—_———
Kihler-Einstein Constant scalar curvature Kihler
S ———

C1 (L)NCI (X)

@ Problems with existence only for ¢;(X) > 0 (e.g. toric Fano)
@ On a Calabi-Yau manifold, the sequence of balanced metrics
e always exists, and
e converges towards the Calabi-Yau metric
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Kihler-Einstein Toric Varieties

Kaihler Einstein Metric on dPg

Volker Braun (DIAS)

dPs = IP? blown up at 3
points

C1 (L) ~ Cl(X) < all 6
rigid P! are of same size

Numerically
well-studied:

Ricci flow
Doran-Kantor-Headrick-
Herzog-Wiseman
T-iteration
Bunch-Donaldson

Improved T-iterations
Keller

Geometry of the Compact Directions

Click for animation

KITP, Santa Barbara

on (d P, —10K)
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http://www.stp.dias.ie/~vbraun/t/talk-KITP/images/dP6.gif

o ((P'xP")/Z, with 4
orbifold points blown
up.

@ L =—10K— > 2E;not |
proportional to
canonical class.

Y e e ~71001-th iteration

L3TT92251

Click for animation

L I e e e e


http://www.stp.dias.ie/~vbraun/t/talk-KITP/images/P1xP1_Z2.gif

Kihler-Einstein Toric Varieties

Extremal Metrics that are not cscK

[ N

Scalar Curvature on (dPs, —5HK)

@ Scalar curvature is affine
function on moment
polytope.

@ For example: P? blown
up at a point = dPg

@ Analytic solution Calabi

@ Naive T-iteration drives
gauge mode
Bunch-Donaldson
1001-th iteration

Click for animation
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Kihler-Einstein Toric Varieties
Monge-Ampere Equation

Pick a reference Kéhler metric gy with Kéhler form w,. Kéhler
forms w in the same Kéhler class can be parametrized as

w = wy + i00p

If w is Kédhler-Einstein, Ric(g) = w, then
[Ric(g)] = [w] = [wg] <& i00hy =Ric(g) —wo (1)

for some function /.

Monge-Ampere equation for Kéhler-Einstein
The PDE for the Kihler-Einstein metric g(¢) is

(wo + i00p)* = e"wi
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Kihler-Einstein Toric Varieties

Kaihler-Ricci Solitons

Definition (KRS)
A Kihler-Ricci soliton is a Kihler metric and holomorphic vector
field satisfying

Ric(g) = w + Lyw

@ The vector field X defines a function 0y by i0fy = ix(w)
@ The Monge-Ampere equation is modified to

(wo + i00¢p)* = eh’ex’x(*?)wg

@ Expect that the modified T-operator

- SAS87
T(h). = = i —0x=X(¥) qVol
Wi = S s ()55

converges to KRS Keller
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e Extremal metrics can fail to exist
& T-iteration does not converge

e For example, this blowup of P* at
6 points. Donaldson

@ Technical issue: Need to deal with
singular toric variety [TODO]

e-to-boundary volume ratio.

> 3 not proven.

e T e



Kihler-Einstein Toric Varieties

Calabi-Yau Cones and Sasaki-Einstein

For example, Calabi-Yau cone over dPg: no KE metric on
base.

Radial direction / Reeb vector not the naive guess.

In fact: Reeb vector irregular (orbits not compact)

°
°

@ Analog: P' x P! with irrational ratio of volumes

@ Solution: Use rational approximation for Reeb vector
°

Toric variety will be singular, need to deal with this.

Volker Braun (DIAS) Geometry of the Compact Directions KITP, Santa Barbara 26/27



Todo:
@ More metrics on toric varieties.
@ Solve Laplacian for bundle-valued differential forms
@ Develop program that works for “generic” manifolds
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