Volker Braun
Dublin Inst. for Adv. Studies

KITP Santa Barbara March 2, 201**2**

Geometry of the Compact Directions:
A Numerical Approach to Sasaki-Einstein
and Calabi-Yau metrics

- Calabi-Yau Cones
- 2 Kähler-Einstein Toric Varieties

Near Horizon Limit

Starting point: 10-d supergravity solution

$$ds^{2} = H^{-\frac{1}{2}} \left(-dt^{2} - d\vec{x}^{2} \right) + H^{\frac{1}{2}} \underbrace{\left(dr^{2} + r^{2} d\Omega_{5}^{2} \right)}_{\text{flat } \mathbb{C}^{3}}$$

with

$$H = 1 + \frac{1}{r^4} \quad \sim \quad \frac{1}{r^4}$$

Can replace flat \mathbb{C}^3 with any conical

$$dr^2 + r^2 g_{ij} dy^i dy^j$$

Calabi-Yau metric.

Calabi-Yau Cones

On $\mathbb{C}^3 \ni (x_1 + iy_1, x_2 + iy_2, x_3 + iy_3)$, we thus have:

The radial vector field

$$r\partial_r = \sum \left(x_i \partial_{x_i} + y_i \partial_{y_i} \right)$$

• The complex structure

$$J(\partial_{x_i}) = \partial_{y_i}, \qquad J(\partial_{y_i}) = -\partial_{x_i}$$

The Reeb vector field

$$J(r\partial_r) = \sum (x_i \partial_{y_i} - y_i \partial_{x_i})$$

in the r = const. plane.

Geometries

Example	Geometry	
\mathbb{C}^3	Calabi-Yau	6-dimensional space
S^5	Sasaki-Einstein	at $r = $ const.
\mathbb{P}^2	Kähler-Einstein	Quotient by Reeb $U(1)$

- In the following, we'll look at more general Kähler-Einstein surfaces.
- Reeb vector field doesn't always form compact orbits, will come back to this later.

[Martelli-Sparks-Yau, Abreu]

- Calabi-Yau Cones
- 2 Kähler-Einstein Toric Varieties

Toric Varieties

What is a toric variety? (in 2-d, say)

• Generalization of projective plane

$$[z_0:z_1:z_2]=[\lambda z_0:\lambda z_1:\lambda z_3],\quad \lambda\in\mathbb{C}^\times$$

to *n* homogeneous coordinates with $(\mathbb{C}^{\times})^{n-2}$ rescalings.

- Space with $(\mathbb{C}^{\times})^2$ action such that there is a single 2-dimensional orbit.
- Combinatorics of how lower-dimensional orbits $(\simeq \mathbb{C}^{\times}, \{pt.\})$ compactify $(\mathbb{C}^{\times})^2$. This information is equivalent to a *fan* (collection of cones in \mathbb{R}^2).

Andrey Novoseltsev and I implemented toric varieties in Sage (see http://www.sagemath.org).

Toric Geometry and Sage

Construct $(\mathbb{P}^1 \times \mathbb{P}^1)/\mathbb{Z}_2$ as a toric variety:

```
sage: square = polytopes.n_cube(2)
sage: fan = FaceFan(square.lattice_polytope())
sage: P1xP1_Z2.<s,u,v,t> = ToricVariety(fan)
sage: P1xP1_Z2
2-d toric variety covered by 4 affine patches
```

Various quantities that you might want to know:

```
sage: P1xP1_Z2.Mori_cone().rays()
((0, 1, 1, 0, -2), (1, 0, 0, 1, -2))
sage: P1xP1_Z2.cohomology_basis()
(([1],), ([t], [v]), ([v*t],))
sage: P1xP1_Z2.Chow_group().degree()
(Z, C2 x Z^2, Z)
sage: (-P1xP1_Z2.K()).sections_monomials()
(s^2*u^2, s^2*v^2, s*u*v*t, u^2*t^2, v^2*t^2)
```

Toric Resolution of Singularities

The Fan knows nothing about the size of the blown-up \mathbb{P}^1 .

Kähler Geometry

A Kähler metric is completely determined by the Kähler potential $K(z, \bar{z})$,

$$\begin{split} g_{i\bar{j}}(z,\bar{z}) &= \partial_i \bar{\partial}_{\bar{j}} K(z,\bar{z}) \\ \omega &= g_{i\bar{j}}(z,\bar{z}) \, \mathrm{d} z^i \wedge \mathrm{d} \bar{z}^{\bar{j}} = \partial \bar{\partial} K(z,\bar{z}). \end{split}$$

Example (The Fubini-Study metric on \mathbb{P}^2)

This is the metric defined by the Kähler potential

$$K(z, \bar{z}) = \ln(|z_1|^2 + |z_2|^2 + |z_3|^2)$$

Note: $K(\lambda z, \overline{\lambda z}) = K(z, \overline{z}) + \ln(|\lambda|^2)$, so the metric is independent of homogeneous rescalings.

Algebraic Kähler Metrics

For arbitrary toric variety, fix homogeneous (multi)-degree and enumerate all monomials $\{s_{\alpha}\}$ with this degree.

Theorem (Tian)

The "algebraic Kähler potentials"

$$K(z,\bar{z}) = \ln \sum h^{\alpha\bar{\beta}} s_{\alpha} \bar{s}_{\bar{\beta}}$$

are dense in the space of Kähler potentials.

- $(h^{\alpha\bar{\beta}})$ is a Hermitian matrix.
- $(h^{\alpha\bar{\beta}})$ is diagonal \Leftrightarrow the metric is $U(1)^2$ -invariant.
- Actually works for any algebraic variety.

The Moment Map

For $U(1)^2$ -invariant metrics, we can define the moment map

$$\mu(z,\bar{z}) = \frac{\sum_{\alpha} m_{\alpha} h^{\alpha\bar{\alpha}} |s_{\alpha}|^2}{\sum_{\alpha} h^{\alpha\bar{\alpha}} |s_{\alpha}|^2} \qquad \in \mathbb{R}^2$$

where m_{α} is the exponent vector (or $U(1)^2$ -weight) of the homogeneous monomial s_{α} .

Theorem (Moment Map)

- The domain of the moment map is a polygon and only depends on the Kähler class $[\omega]$.
- Lower-dimensional $(\mathbb{C}^{\times})^2$ -orbits map to the faces of the polygon.

The Moment Polytope

For example, $h^{\alpha\bar{\beta}} = \text{diag}(1, 1, \dots, 1)$:

- One coordinate patch for each vertex
- Quadrangles are images of constant-sized squares in inhomogeneous coordinates.

Different Moment Maps

Balanced $h^{\alpha\bar{\alpha}}$

- Different metrics in the same Kähler class $[\omega]$
- Toric variety = $U(1)^2$ -fibration over the moment polytope

Volume Form and Integration

- Moment map depends only on absolute value $\xi_i = \operatorname{Re} \ln z_i$ of homogeneous coordinates z_i
- In ξ_i coordinates, the moment map is $\mu(z) = \frac{\partial K}{\partial \xi_i} \stackrel{\text{def}}{=} x_i$
- Legrendre dual is the symplectic potential

$$u(x) = \sum x_i \xi_i - K(\xi)$$

- Metric is $d^2s = u_{,ij} dx^i dx^j + u^{,ij} d\varphi_i d\varphi_j$
- Integration is easy:

$$\int f(x) \, dVol_4 = \int d^2x \int d^2\varphi \, f(x) \sqrt{\det g} = \int f(x) \, d^2x$$

Metrics on Line Bundles

Homogeneous polynomials s_{α} \longleftrightarrow Sections of a line bundle \mathcal{L}

• The matrix $h^{\alphaar{eta}}$ defines an inner product on sections $\{s_{lpha}\}$ via

$$(\sigma,\tau)(z) = \frac{\sigma(z)\bar{\tau}(\bar{z})}{\sum h^{\alpha\bar{\beta}}s_{\alpha}(z)\bar{s}_{\bar{\beta}}(\bar{z})} \in C^{\infty}(X,\mathbb{C})$$

• Metric on the space of sections $H^0(X, \mathcal{L})$

$$\langle \sigma, \tau \rangle = \int_{\mathbf{Y}} (\sigma, \tau)(z, \bar{z}) \, dVol \in \mathbb{C}$$

Balanced Metrics

 $h^{\alpha\beta}$ is balanced if the matrices representing the metrics coincide, that is:

$$\left(\left\langle s_{\alpha},s_{\beta}\right
angle \right)_{1\leq\alpha,ar{eta}\leq N}=h^{-1}$$

Theorem (Donaldson, ...)

Assume that the balanced metric h_k exists for each \mathcal{L}^k , $k \geq k_0$. Then the sequence of metrics

$$\omega_k = \partial \bar{\partial} \ln \sum h_k^{\alpha \bar{\beta}} s_\alpha \bar{s}_{\bar{\beta}}$$

converges to an extremal metric as $k \to \infty$

T-Operator

Donaldson's T-operator:

$$T(h)_{\alpha\bar{\beta}} = \langle s_{\alpha}, s_{\beta} \rangle$$

$$= \int_{X} \frac{s_{\alpha}\bar{s}_{\bar{\beta}}}{\sum h^{\alpha\bar{\beta}}s_{\alpha}(x)\bar{s}_{\bar{\beta}}(\bar{x})} \, dVol$$

The balanced condition is then $h_{\text{bal}}^{-1} = T(h_{\text{bal}})$.

Theorem (Donaldson)

The sequence converges $h_{n+1} = T(h_n)^{-1} \longrightarrow h_{bal}$ if the balanced metric exists.

Metrics Overview

Definition (Extremal Metric)

An extremal metric as a Kähler metric whose scalar curvature has a holomorphic gradient vector field. Critical points of $\int R^2$.

- Problems with existence only for $c_1(X) > 0$ (e.g. toric Fano)
- On a Calabi-Yau manifold, the sequence of balanced metrics
 - always exists, and
 - converges towards the Calabi-Yau metric

Kähler Einstein Metric on dP₆

- $dP_6 = \mathbb{P}^2$ blown up at 3 points
- $c_1(\mathcal{L}) \sim c_1(X) \Leftrightarrow \text{all } 6$ rigid \mathbb{P}^1 are of same size
- Numerically well-studied:
- Ricci flow Doran-Kantor-Headrick-Herzog-Wiseman
- T-iteration
 Bunch-Donaldson
- Improved T-iterations Keller

Click for animation

Constant Scalar Curvature Metrics

- $((\mathbb{P}^1 \times \mathbb{P}^1)/\mathbb{Z}_2 \text{ with } 4$ orbifold points blown up.
- $\mathcal{L} = -10K \sum 2E_i$ not proportional to canonical class.

Click for animation

Extremal Metrics that are not cscK

- Scalar curvature is affine function on moment polytope.
- For example: \mathbb{P}^2 blown up at a point = dP_8
- Analytic solution Calabi
- Naive T-iteration drives gauge mode

Bunch-Donaldson

Click for animation

Monge-Ampère Equation

Pick a reference Kähler metric g_0 with Kähler form ω_0 . Kähler forms ω in the same Kähler class can be parametrized as

$$\omega = \omega_0 + i\partial\bar{\partial}\varphi$$

If ω is Kähler-Einstein, $Ric(g) = \omega$, then

$$[\operatorname{Ric}(g)] = [\omega] = [\omega_0] \quad \Leftrightarrow \quad i\partial \bar{\partial} h_0 = \operatorname{Ric}(g) - \omega_0 \qquad (1)$$

for some function h_0 .

Monge-Ampère equation for Kähler-Einstein

The PDE for the Kähler-Einstein metric $g(\varphi)$ is

$$(\omega_0 + i\partial\bar{\partial}\varphi)^d = e^h\omega_0^d$$

Kähler-Ricci Solitons

Definition (KRS)

A Kähler-Ricci soliton is a Kähler metric and holomorphic vector field satisfying

$$Ric(g) = \omega + L_X \omega$$

- The vector field *X* defines a function θ_X by $i\bar{\partial}\theta_X = i_X(\omega)$
- The Monge-Ampère equation is modified to

$$(\omega_0 + i\partial\bar{\partial}\varphi)^d = e^{h-\theta_X - X(\varphi)}\omega_0^d$$

• Expect that the modified T-operator

$$ilde{T}(h)_{lphaar{eta}} = \int_X rac{s_lphaar{s}_{ar{eta}}}{\sum h^{lphaar{eta}}s_lpha(x)ar{s}_{ar{eta}}(ar{x})} e^{- heta_X - X(arphi)} \, \mathrm{dVol}$$

converges to KRS

Keller

K-Stablity and non-Stability

- Extremal metrics can fail to exist
 T-iteration does not converge
- For example, this blowup of \mathbb{P}^2 at 6 points. Donaldson
- Technical issue: Need to deal with singular toric variety [TODO]
- Destabilizing configuration ⇔ triangulation with particular volume-to-boundary volume ratio.
- In dim \geq 3 not proven.

Calabi-Yau Cones and Sasaki-Einstein

- For example, Calabi-Yau cone over *dP*₈: no KE metric on base.
- Radial direction / Reeb vector not the naive guess.
- In fact: Reeb vector irregular (orbits not compact)
- Analog: $\mathbb{P}^1 \times \mathbb{P}^1$ with irrational ratio of volumes
- Solution: Use rational approximation for Reeb vector
- Toric variety will be singular, need to deal with this.

Outlook

Todo:

- More metrics on toric varieties.
- Solve Laplacian for bundle-valued differential forms
- Develop program that works for "generic" manifolds