Strongly-Coupled Signatures through WW Scattering

> Presented by Michael I. Buchoff

Lawrence Livermore National Lab

For the LSD Collaboration

Based on work from arXiv:1201.3977

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Lattice Strong Dynamics Collab. (as of Oct. 4, 2011)

Heechang Na, James Osborn Argonne Berkeley Sergey Syritsyn Boston Ron Babich, Richard Brower, Michael Cheng, Claudio Rebbi, Oliver Witzel **David Schaich** Colorado Fermilab Ethan Neil Harvard Mike Clark Livermore MIB, Pavlos Vranas, Joe Wasem UC Davis Joe Kiskis Saul Cohen Washington Tom Appelquist, George Fleming, Yale Meifeng Lin, Gennady Voronov

Classic Question

"So...if the lattice can answer BSM questions, can it make any phenomenological predictions?"

Goal: Address this question using pion scattering as probe

WW Scattering... Why?

It would be GREAT if LHC landscape looked like this:

...but what if it ends up looking like this:

Depending on models, techni-rho can be >2 TeV

Why WW Scattering?

 Central to perturbative unitarity question Longitudinal Modes:

$$\mathcal{A}(W_L^+ W_L^- \to W_L^+ W_L^-) \simeq \frac{g^2}{4m_W^2} (s+t) \sim E^2$$

Perturbative unitarity breaks down: $\sqrt{s} \lesssim 2.2 \text{ TeV}$

Two possibilities:

I) New particles emerge that protect perturbative unitarity

2) New strong dynamics emerge (ala QCD)
- Pion-pion scattering unitarized by excited states, resonances, etc.

Our approach to WW

Effective Field Theory

(other approaches include Equivalence Theorem, etc.)

Hadronic Chiral Lagrangian

EFT of Hadronic scale physics resulting from QCD

Include all terms that respect: $SU(2)_L \otimes SU(2)_R$

$$\mathcal{L}_{LO} = \frac{f^2}{4} \operatorname{tr} \left[(\partial_{\mu} U)^{\dagger} (\partial^{\mu} U) + \chi_+ \right]$$

$$\mathcal{L}_{NLO} = \frac{\ell_1}{4} [\operatorname{tr}(V_{\mu} V^{\mu})]^2 + \frac{\ell_2}{4} [\operatorname{tr}(V_{\mu} V_{\nu})]^2 + \frac{\ell_3}{16} \operatorname{tr}(\chi_+)^2 + \frac{\ell_4}{4} \operatorname{tr}(V_{\mu} V^{\mu} \chi_+)$$

$$U = \exp\left(\frac{i\vec{\tau} \cdot \vec{\pi}}{f}\right) \qquad V_{\mu} = (\partial_{\mu} U) U^{\dagger}$$

$$\chi_+ = U^{\dagger} \chi U^{\dagger} + U \chi^{\dagger} U \qquad \chi = 2Bm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Electroweak Chiral Lagrangian EFT of EW scale physics resulting from TeV scale physics Include all terms that respect: $SU(2)_L \otimes U(1)_Y$ At leading order: (Quite Simple) $\mathcal{L}_{LO} = \frac{f^2}{4} \operatorname{tr} \left[(D_{\mu}U)^{\dagger} (D^{\mu}U) \right] - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{2} \operatorname{tr} W_{\mu\nu} W^{\mu\nu}$ $+\frac{1}{4}\beta_1 g^2 f^2 [\operatorname{tr}(TV_{\mu})]^2$ $D_{\mu}U = \partial_{\mu}U + ig\frac{\vec{\tau}}{2} \cdot \vec{W}_{\mu}U - ig'U\frac{\tau_3}{2}B_{\mu}$ $T = U\tau_3 U^{\dagger} \qquad V_{\mu} = (D_{\mu}U)U^{\dagger}$

Electroweak Chiral Lagrangian EFT of EW scale physics resulting from TeV scale physics Include all terms that respect: $SU(2)_L \otimes U(1)_Y$ Higgs At leading order: (Quite Simple) **VEV** $\mathcal{L}_{LO} = \frac{f^2}{\Lambda} \operatorname{tr} \left[(D_{\mu}U)^{\dagger} (D^{\mu}U) \right] - \frac{1}{\Lambda} B_{\mu\nu} B^{\mu\nu} - \frac{1}{2} \operatorname{tr} W_{\mu\nu} W^{\mu\nu}$ $+\frac{1}{4}\beta_1 g^2 f^2 [\operatorname{tr}(TV_{\mu})]^2$ $D_{\mu}U = \partial_{\mu}U + ig\frac{\vec{\tau}}{2} \cdot \vec{W}_{\mu}U - ig'U\frac{\tau_3}{2}B_{\mu}$ $T = U\tau_3 U^{\dagger} \qquad V_{\mu} = (D_{\mu}U)U^{\dagger}$

Electroweak Chiral Lagrangian EFT of EW scale physics resulting from TeV scale physics Include all terms that respect: $SU(2)_L \otimes U(1)_Y$ At leading order: f β_1 At NLO: $\alpha_1 - \alpha_5 \qquad \alpha_6 - \alpha_{11}$ $\frac{1}{2}\alpha_1 gg' B_{\mu\nu} \text{tr}(TW^{\mu\nu}) \qquad \frac{1}{4}\beta_1 g^2 f^2 [\text{tr}(TV_{\mu})) \qquad \frac{1}{4}\alpha_8 g^2 [\text{tr}(TW_{\mu\nu})]^2$ $S \sim \alpha_1 \qquad \qquad T \sim \beta_1$ $U \sim lpha_8$ Dominant terms in WW: (other coefficients experimentally bound/small) $\alpha_4 [\operatorname{tr}(V_{\mu}V_{\nu})]^2 \qquad \alpha_5 [\operatorname{tr}(V_{\mu}V^{\mu})]^2$

Hadron-EW Connection

Previous Literature

Two flavor picture is not new:

Distler, Grinstein, Porto, Rothstein 2006 Vecchi 2007

Finds bounds using the Equivalence Theorem with unitarity

$$\begin{array}{l} \alpha_4^r + \alpha_5^r \geq 1.14 \times 10^{-3} & \mu \sim 246 \ {\rm GeV} \\ \alpha_4^r \geq 0.65 \times 10^{-3} & \end{array}$$

What is new is generalizing to general number of flavors

Technicolor

 EW dynamically broken via strongly coupled BSM physics (ala QCD)

Technicolor

 EW dynamically broken via strongly coupled BSM physics (ala QCD)

$$\begin{array}{ccc} Z_L^0 & & & & & \\ W_L^+ & W_L^- & & & \\ \end{array} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\$$

Complications:

Producing quark masses difficult

Tight EW constraints (scaled up QCD disfavored)

Strongly coupled physics is difficult to calculate (poorly understood theoretically)

EW Constraints

 S,T, U parameters Theoretically - Derivatives of Current-Current Correlators Experimentally - Relations of EW parameters (m_W, m_Z, θ_W, G_F)
 Peskin, Takeuchi (1992):

 $\begin{array}{ll} \mbox{Scaled up} & S \approx 0.25 \\ \mbox{QCD} & \end{array}$

 $S = -0.10 \pm 0.10(-0.08)$ $T = -0.08 \pm 0.11(+0.09)$ $U = 0.15 \pm 0.11(+0.01)$

 $S = 0.01 \pm 0.10(-0.08)$ $T = 0.03 \pm 0.11(+0.09)$ $U = 0.06 \pm 0.10(+0.01)$

Flavor Problem

Build in Extended TC Sector

Also have:

 $\sim \frac{g_{ETC}^2}{M_{ETC}^2} (\overline{q}q)(\overline{q}q)$

Must be smallLarge(experimental) M_{ETC}

To reproduce SM quark masses, large TC chiral condensate needed

 $\Lambda_{IR} \ll \Lambda_{UV}$

 $\Lambda_{IR} = 0$

Confining: Chiral Condensate (stochastic, eigenvalues) IR Conformal: Mass anomalous dimension (size scaling, density scaling)

 $\Lambda_{IB} \sim \Lambda_{UV}$

Confining: Chiral Condensate (stochastic, eigenvalues) IR Conformal: Mass anomalous dimension (size scaling, density scaling)

Confining: Chiral Condensate (stochastic, eigenvalues) IR Conformal: Mass anomalous dimension (size scaling, density scaling)

Confining: Chiral Condensate (stochastic, eigenvalues) IR Conformal: Mass anomalous dimension (size scaling, density scaling)

VERY hard, VERY expensive to answer!!!

Confining: Chiral Condensate (stochastic, eigenvalues) IR Conformal: Mass anomalous dimension (size scaling, density scaling)

VERY hard, VERY expensive to answer!!!

Previous Findings

Number of flavors change dynamics!!!

- I. S-parameter
 - Phys. Rev. Lett. 106 (2011) 231601
- (update) arXiv: 1111.4993

2. Chiral condensate Phys. Rev. Lett. 104 (2010) 071601

Pion-Pion WW Connection?

• Three massless pions ARE longitudinal W, Z

 $\begin{array}{ll} 3 \mbox{ modes}: & M_{dd} = 0 \\ N_F^2 - 4 \mbox{ modes}: & M_{ds}, M_{ss} \neq 0 \end{array}$

WW scattering = pion-pion scattering (high energies) Goal: To extract info on "low" energy WW Scattering $\sqrt{s} \sim M_W \gtrsim 80 \text{ GeV}$ Lattice Calculations: Pion-pion scattering for degenerate pion masses M_P Need to make connection to EW theory

Hadron-EW Connection Hadronic EW EFT $g, g' \to 0$ $p^2 \ll M_{ds}^2, M_{ss}^2$ $m_d \to 0$ $p^2 \ll M_{ds}^2, M_{ss}^2$ $\frac{f^2}{2} \operatorname{tr}(\partial_{\mu} U^{\dagger} \partial^{\mu} U) + \alpha_5 \left[\operatorname{tr}(\partial_{\mu} U^{\dagger} \partial^{\mu} U) \right]^2 + \alpha_4 \left[\operatorname{tr}(\partial_{\mu} U^{\dagger} \partial_{\nu} U) \right]^2$ $\alpha_{4}, \alpha_{5} \qquad \alpha_{5} = \frac{\ell_{1}}{4} + \mathcal{O}(g) \quad \text{Int}$ $\alpha_{4} = \frac{\ell_{2}}{4} + \mathcal{O}(g)$ Interesting implication: Direct probe of strong dynamics!!!

Need to relate to two flavor LECs

2. **"Freeze" Massive Fermion dynamics Corrections**

Contained within two flavor LECs

$$\ell_1^r(\mu, M_{ds}) = -2L_0^r(\mu) + 4L_1^r(\mu) + 2L_3^r(\mu) + \frac{2 - N_f}{24(32\pi^2)} \log \frac{M_{ds}^2}{\mu^2}$$
$$\ell_2^r(\mu, M_{ds}) = 4L_0^r(\mu) + 4L_2^r(\mu) + \frac{2 - N_f}{12(32\pi^2)} \log \frac{M_{ds}^2}{\mu^2}$$

LEC Scale dependence

- $l_{\cdot} = \ell^r_i(\mu)$
- 2. $\tilde{\ell}_i(M_{dd})$
- **3**. $\tilde{\ell}_i(M_H)$

- + Finite in chiral limit
- Not physical observable alone
- + Defined at physical mass
- Divergent in chiral limit
- + Defined at reference (fake Higgs) mass+ Finite in chiral limit
- Need to remove "reference Higgs" effects

LEC Scale Scorecard

 $\widetilde{\alpha}_{4,5}(M_H, M_{ds})$:

LEC Scale Final Score

$$\widetilde{\alpha}_{5}(M_{H}, M_{ds}) = \frac{l_{1}^{r}(\mu, M_{ds})}{4} - \frac{\left[\log\frac{M_{H}^{2}}{\mu^{2}} + O(1)\right]}{384\pi^{2}} + \mathcal{O}(g)$$
$$\widetilde{\alpha}_{4}(M_{H}, M_{ds}) = \frac{l_{2}^{r}(\mu, M_{ds})}{4} - \frac{\left[\log\frac{M_{H}^{2}}{\mu^{2}} + O(1)\right]}{192\pi^{2}} + \mathcal{O}(g)$$

Form most favorable to experimental tests

Pi-Pi Scattering

 Cleanest and most understood hadronic scattering process: theoretically, experimentally, and numerically

Weinberg 1966:

LO Prediction

$$m_{\pi}a_{\pi\pi}^{I=2} = -\frac{m_{\pi}^2}{8\pi f_{\pi}^2}$$

Gasser and Leutwyler 1985:

NLO Prediction

$$m_{\pi}a_{\pi\pi}^{I=2} = -\frac{m_{\pi}^2}{8\pi f_{\pi}^2} \left\{ 1 + \frac{m_{\pi}^2}{16\pi^2 f_{\pi}^2} \left[3\log\left(\frac{m_{\pi}^2}{\mu^2}\right) - 1 - \ell_{\pi\pi}^{I=2}(\mu) \right] \right\}$$

Pi-Pi Scattering

 Cleanest and most understood hadronic scattering process: theoretically, experimentally, and numerically

Weinberg 1966:

LO Prediction

$$m_{\pi}a_{\pi\pi}^{I=2} = -\frac{m_{\pi}^2}{8\pi f_{\pi}^2}$$

Gasser and Leutwyler 1985:

NLO Prediction

$$m_{\pi}a_{\pi\pi}^{I=2} = -\frac{m_{\pi}^2}{8\pi f_{\pi}^2} \left\{ 1 + \frac{m_{\pi}^2}{16\pi^2 f_{\pi}^2} \left[3\log\left(\frac{m_{\pi}^2}{\mu^2}\right) - 1 - \ell_{\pi\pi}^{I=2}(\mu) \right] \right\}$$

Many Flavor Scattering

Bijnens, Lu 2011: "1 = 2"

 $M_P a_{PP} = -\frac{M_P^2}{8\pi F_P^2} \left\{ 1 + \frac{M_P^2}{16\pi F_P^2} \left[\frac{4(1 - N_F + N_F^2)}{N_F^2} \ln \frac{M_P^2}{\mu^2} - \frac{4(N_F - 1)}{N_F^2} - L_{PP}(\mu) \right] \right\}$

 $L_{PP} = 512\pi^2 (L_0 + 2L_1 + 2L_2 + L_3 - 2L_4 - L_5 + 2L_6 + L_8)$

Key Points:

I) No explicit flavor dependence in L_{PP}

2) Reduces to two flavor result via matching conditions

Many Flavor Scattering

Bijnens, Lu 2011: "1 = 2"

 $M_P a_{PP} = -\frac{M_P^2}{8\pi F_P^2} \left\{ 1 + \frac{M_P^2}{16\pi F_P^2} \left[\frac{4(1 - N_F + N_F^2)}{N_F^2} \ln \frac{M_P^2}{\mu^2} - \frac{4(N_F - 1)}{N_F^2} - L_{PP}(\mu) \right] \right\}$

 $L_{PP} = 512\pi^2 (L_0 + 2L_1 + 2L_2 + L_3 - 2L_4 - L_5 + 2L_6 + L_8)$

Key Points:

I) No explicit flavor dependence in L_{PP}

- Can compare different flavor theories directly!!

2) Reduces to two flavor result via matching conditions

Scattering on Lattice

- Usual LSZ Formalism does not hold for Euclidean: Maiani, Testa, 1990
- Measure energy of interaction of multiple hadrons in finite volume
 - Luscher, 1986

 $\hat{\pi}(\mathbf{p},t) \equiv \sum e^{i\mathbf{p}\cdot\mathbf{x}} S^{\dagger}S$

Energy of interaction (two hadrons):

 $m_1 + m_2 + \Delta E$

$$C_{\pi}(t) = \operatorname{tr}\left(\hat{\pi}(\mathbf{0}, t)\right)$$
$$C_{\pi\pi}(t) = \operatorname{tr}\left(\hat{\pi}(\mathbf{0}, t)\right)^{2} - \operatorname{tr}\left(\hat{\pi}(\mathbf{0}, t)^{2}\right)$$

Scattering on Lattice

- Usual LSZ Formalism does not hold for Euclidean: Maiani, Testa, 1990
- Measure energy of interaction of multiple hadrons in finite volume
 - Luscher, 1986

Lattice Scattering Subtleties

I) Scattering on lattice inherently "low-energy"

- Invalid above inelastic threshold $\Delta E > 2M_P$

$$|\vec{k}| \cot \delta = \frac{1}{a} + \frac{M_P^2 r}{2} \left(\frac{|\vec{k}|^2}{M_P^2}\right) + \mathcal{O}\left(\frac{|\vec{k}|^4}{M_P^4}\right)$$

2) Only discrete scattering states at finite volume For a<<L:

$$\Delta E = -\frac{4\pi a}{mL^3} \left[1 + c_1 \frac{a}{L} + c_2 \left(\frac{a}{L}\right)^2 + \cdots \right]$$

3) Relates better to LECs than the limit $\frac{s}{M^2} \to \infty$ Too bad: $M(W^+W^+ \to W^+W^+) \to M(\pi^+\pi^+ \to \pi^+\pi^+)$

Lattice QCD Results

arXiv:0909.3255

LO Weinberg works well!

Lattice QCD Results

arXiv:0909.3255

LO Weinberg works well!

...TOO WELL!

Lattice Details

10 DWF Ensembles:

- $32^3 \times 64 \times 16$ lattices

 $am_{
ho} \sim rac{1}{5}$

- 2 flavor: $m_q = 0.010 0.030$
- 6 flavor: $m_q = 0.010 0.030$

Table 1: 2 Flavor			Table 1: 6 Flavor		
m_q	# Configs	# Meas	m_q	# Configs	# Meas
0.010	564	564	0.010	221	882
0.015	148	444	0.015	112	414
0.020	131	131	0.020	81	324
0.025	67	268	0.025	89	267
0.030	39	154	0.030	72	259

Analysis Snippet

$$C_{\pi\pi}(t) = A + B\cosh(E_{\pi\pi}t)$$

$$E_{\pi\pi} = \frac{C(t+2) - C(t-2)}{2(C(t+1) - C(t-1))}$$
$$E_{\pi\pi} = 0.621 \pm 0.001$$

_

$$C_{\pi}(t) = B \cosh(m_{\pi} t)$$

$$m_{\pi} = \frac{C(t+1) + C(t-1)}{2C(t)}$$

 $m_{\pi} = 0.3075 \pm 0.0005$

Results

Results

Two Flavor WWW LECs

NLO calculations of M_P F_P $M_P a_{PP}$ **Three EQs, four unknowns**

$\alpha_4^r + \alpha_5^r = (3.43 \pm 0.31) \times 10^{-3} \quad \mu \sim 246 \text{ GeV}$

How robust is this result?

How Robust?

• Different Chiral expansion

Subpar Fit Implies:

Need smaller masses Need larger volume Need bigger computer

Even Still:

 $\alpha_4^r + \alpha_5^r = (3.34 \pm 0.71) \times 10^{-3}$ vs. $\alpha_4^r + \alpha_5^r = (3.43 \pm 0.31) \times 10^{-3}$ (previous fit)

Two vs. Six (analysis 2)

Two and Six flavor difference persists!

Complications for more flavors

Results directly useful for techni-pion scattering...
 ...but not for W-W

- Cannot disentangle L_0 - L_4 from L_5 - L_8

•Use LECs from pion mass, pion decay const., chiral cond. - Works for two flavor!

...not so for general flavor...

 $b_M = 8N_F(2L_6 - L_4) + 8(2L_8 - L_5)$

 $b_F = 4N_F L_4 + 4L_5$

Complications for more flavors

- Results directly useful for techni-pion scattering...
 ...but not for W-W
 - Cannot disentangle L_0 - L_4 from L_5 - L_8
- •Use LECs from pion mass, pion decay const., chiral cond. - Works for two flavor!
 - ...not so for general flavor...

Where we Stand

Estimates for 99% CL bounds for 100 inverse fb:

 $-7.7 \times 10^{-3} < \tilde{\alpha} < 15 \times 10^{-3}$ Eboli et. al. $-12 \times 10^{-3} < \tilde{\alpha} < 10 \times 10^{-3}$ 2006

Two Flavor results:

 $\tilde{\alpha}_4(M_H) + \tilde{\alpha}_5(M_H) = (3.34 \pm 0.17^{+0.08}_{-0.71}) \times 10^{-3} - \frac{\left[\log\frac{M_H^2}{F^2} + \mathcal{O}(1)\right]}{128\pi^2}$

Six flavor shows early signs for enhanced values, but is currently inconclusive

Future Directions

- I) Ultimately need:
 - Different volume(s)
 - More statistics & 0.0075 mass point
- 2) Get W-W parameters in other ways!
 - I=2 pi-pi D-wave scattering (more stats, operators)
 - Pion form factors (more stats, mass points)
 - Eff. Range & Shape Param. (more stats, volumes)
 - NNLO analysis (more stats, mass points)
 - PQ analysis (more inversions, volumes)

⁻ Inverter

DWF GPU

This research was supported by the LLNL LDRD "Unlocking the Universe with High Performance Computing" 10-ERD-033 and by the LLNL Multiprogrammatic and Institutional Computing program through the Tier 1 Grand Challenge award that has provided us with the large

amounts of necessary computing power.