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Why and how.... New developments

Why lattice SUSY 7

» Non-perturbative definition of supersymmetric (gauge)
theories - like lattice QCD for QCD

» New tools e.g. strong coupling, Monte Carlo for uncovering
non-perturbative physics .. eg. dynamical SUSY breaking

» Exploring AdS/CFT and quantum gravity ?
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Why and how.... New developments

Lattice SUSY - the problem

» Lattice contains no infinitessimal translations .... SUSY
algebra {Q, (_?} = ~.p broken at classical level
Equivalently: Leibniz rule does not hold for difference
operators

» Consequence: generically quantum effects generate (many)
SUSY violating terms.

» Couplings to relevant SUSY breaking ops must be fine tuned
asa—0
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Why and how.... New developments

Potential solution: twisted SUSY

» Twisted theory has subalgebra Q% = 0.
» Action typically takes form S = QA(A,v)

» Discretization which preserves nilpotent @ will retain exact
SUSY.

» Careful choice of A can also preserve gauge invariance and
avoid fermion doubling ...

» Great deal of work in this direction: Kaplan, Unsal, Sugino,
Tsuchiya, Hanada, Damgaard, Matsuura, Kawamoto, d'Adda,
Giedt, Kanamori, Catterall,...

» Constructions discussed here can also be obtained using
orbifolding ...
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Examples of the lattice construction - N’ = 4 YM

Example

Example: 2D Yang-Mills with Q@ = 4 SUSY:
» Contains 2 fermions A/ transforming under
SOLorentz(z) X SOﬂavor(2)

i i (T Vi
)‘a — Ra/g)\'g(F )‘,
Under diagonal subgroup R = F )., transforms like matrix -
4
» Natural to decompose on products of v matrices
V =nl +joj + X120102

Integer spin p-form fields from spinors | Twisting!
Appearance of scalar fermion ... implies scalar SUSY Q
obeying Q> =0
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Examples of the lattice construction - N’ = 4 YM

What about the bosons 7

> Gauge field A, is singlet under flavor: remains vector under
twisted rotation group SO(2)" = diag(SO(2) x SO(2))

» Original theory had 2 scalars ¢!, $? which transformed in
vector rep of flavor — become components of vector B, under
twisted rotations!!

» In fact all bosons in twisted theory get repackaged as

gauge field A, = A, + iB,
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Examples of the lattice construction - N’ = 4 YM

Twisted action and SUSY

Twisted form of action (adjoint fields with AH generators)

1 — 1
S= ng/Tr <XW]:W +1[Du, Dy] — 2nd>

QA,u = %
QT/},u =0
QA, = 0
Oxw = —Fuw
Qn = d
Od =0

Note: D, =9, + A, D, =0, + A, Fuw = [Dy, D]
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Examples of the lattice construction - N’ = 4 YM

Untwisting

Q-variation, integrate d:

1 — 1 __ _
5 = ? /Tr (_-Fp,ufuy + §[DN7DM]2 — X'UJ/D[MwV] — nDMw“>
Rewrite as
1
S = g2/Tr (~F2,+2B,D,D,B, — [By, B + LF)

where

_D2 — [B2 Dl + IBl 1/}1
_ n
LF—(X12 2)( Di — iB; D2—’.B2)<¢2>
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Examples of the lattice construction -

Side comment(s)

» Appearance of Q reminiscent of BRST gauge fixing. Indeed ...

» vevs of Q invariant operators independent of coupling and
metric. Topological in nature. Useful - sector of lattice theory
which can be computed exactly

» However, we do not restrict ourselves to Q-invariant states
(vacuum) - just treat twisting as change of variables - more
suitable for discretization ...
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Examples of the lattice construction - N’ = 4 YM

Discretization

Twisted fields assigned to links of lattice. Under GTs transform like

fo(x) — G(X)fp(X)GT(X + pp)

Fuzin
Ln /

eghi]

|'.J,'ul ,/\_'u

[ Hiinl, ¢l
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Examples of the lattice construction - N’ = 4 YM

More lattice construction

» Lattice SUSY transformations same as continuum
> Precise dictionary exists to translate D,, to difference ops. Eg

DEYY, (%) = Uiy (x4 1) = (x4 v)
Letting U, (x) = | + A, (x) yields:
DE, = v (x + 1) = () + [Au(x), 0 ()] + O(a)
Derivative of lattice 1 form yields lattice 2 form !
Fuv = D:Z/{,,(X)
» Fermion doubling evaded if
D, 4 D

div _
D, — Du
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Examples of the lattice construction - N’ = 4 YM

Twisted N = 4 SYM

» Decompose fields under twisted rotation group
SO(4) = SOg(4) x SO,0t(4)
Compactly expressed as dimensional reduction of 5D theory

» 16 fermions: V = (0, Y m, Xmn),m,n=1...5
» 10 bosons as 5 complex gauge fields A,,,m=1...5

Twisted scalar SUSY acts as for 2d YM
Action S = Qf (XabFab + n[ﬁaapa] - 1/277d) + 5Closed

1 —
Sclosed = 8 f€abcdeXabDCXde

v

v

v

v

‘ (Almost) same as 2D example ! ‘
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Examples of the lattice construction - N’ = 4 YM

Lattice NV = 4 theory

>

Five complex gauge fields require a lattice with 5 (linearly
dep) basis vectors - lattice (vectors from center of
hypertetrahedron to vertices)

> U, X — x4+ U,
n X — X

a X = X+ pa
Xab X+Na+ﬂb_>x

v vy

v

All fields transform as link objects eg:

Ya = G(x) Y, GT(X + 1a)
Single exact lattice SUSY Q% =0
Prescription for derivatives same as for 2d YM

v

v
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Examples of the lattice construction - A/

Lattice Bianchi

» Supersymmetry of Q-exact piece trivially true (as for 2d)

» Remarkably discretization of Q-closed piece also invariant
since
_l’_
6abcde,lp‘(a )Fbc =0
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Examples of the lattice construction - N’ = 4 YM

Bottom line

» Twisting process exposes nilpotent supersymmetry and
induces change of variables (A, ¢i, \") = (A, 1, Yu, Xuw)

» Some SUSY can be preserved in lattice theory e.g. N =4
YM.

» Twisted lattice theories perserve gauge invariance, @ and are
free of doublers (twisted fermions=staggered fermions)

» Completely local. Bosonic action real positive semidefinite.
Fermions can be integrated out - Pf(M(1/)). Simulate using
standard algs from lattice QCD

» (Hope is) exact SUSY strongly constrains possible fine
tunings.

Simon Catterall Twisted Lattice Supersymmetry: A Status Report



Remaining concerns

Remaining problems

» Crucial for continuum interpretation that U, = I+ A, + ... as
lattice spacing a — O.
» Interpret / as arising as vev of imaginary part of trace mode of
gauge link (need U(N) gauge group).
» To ensure this add gauge invariant potential (for scalars in
untwisted theory) ... Breaks SUSY ...
» Does the model have a sign problem 7 If so Monte Carlo
ineffective ...

» Fine tuning 7 We maintain 1 out 16 supersymmetries; are the
others restored automatically as a — 0 7
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Remaining concerns

Fixing the vev

v

2
Add AS = 125, [%Tr (uj (X)L{a(x)> - 1]
Writing Ua(x) = Ha(x)ua(x) and expanding H, = | + h, find

AS ~ 12 (2h3(x) + h3 (x)h5 (x))?

v

v

Thus if u? = 12a° held fixed as a — 0 fluctuations in (scalar)
trace mode h° frozen while traceless modes feel quartic
potential

v

Send p? — 0 after continuum limit to restore SUSY
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Remaining concerns

Restoration of Q-symmetry

Q = 4 model. U(2) gauge group. Dimensionless 't Hooft coupling
A% =1.0

7
U2 Q=4 v p=01
=10 A p=1
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Remaining concerns

Sign problem ...

> After integration over twisted fermions - Pf(M(Uf)). In
general Pf = |Pf(U)|e/*™)

» Monte Carlo requires positive definite measure. Can reweight:

< oU)e ™) >

<o) > .
) < efel) >

» But if fluctuations in « large statistical error in such
measurement grows exponentially with volume - impossible
sign problem !

» Thus, crucial for practical purposes to know if twisted susy
lattices suffer from this ...
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Remaining concerns

Pfaffian phase @ = 4 model in 2d

U(2), \3?> =1.0

025
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Remaining concerns

Pfaffian phase @ = 16 model in 2d

U(2), \g2=1.0
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Remaining concerns

Theoretical understanding ..

» Surprising. Certainly Pf is complex on generic backgrounds ...

)

» Notice, however that e’(Y) is related to a topological object -

Z — Witten index.
< ela(U) >= Z/thase quenched

» Furthermore Q-invariance means that Z can be computed
exactly at 1-loop.
» Find Z = thase quenched

» This implies < €’ >=1 and hence o ~ 0 as observed. Of
course our simulations use a SUSY breaking potential so this
argument is only formal ...
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Remaining concerns

Fine tuning ...

To tackle this question must understand renormalization lattice
Lattice symmetries strongly constrain possible counterterms

» Gauge invariance

> OQ-symmetry.

» Point group symmetry - eg. S° for A} - subgroup of SO(4)’

» Exact fermionic shift symmetry n — n + €l
Conclusion:

» S5 PGS guarantees twisted SO(4)’ restored as a — 0

» Power counting: only relevant ops correspond to 4 Q-invariant

terms already present in classical lattice action!

— o
S= QZ o1XabFab + 04277[Daa D] + 7377d + a4 Llciosed

» Q-symmetry ensures that [eg(A92514) = 0 to all orders in p.
theor
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Remaining concerns

Ingredients for perturbation theory

Lattice rules for Aj lattice (Feynman gauge):
» Boson propagator < Xac(k)AE(—k) >= ééabéw with
k2 =4y, sin? (ka/2)
» Fermion propagator Myt (k) = %MKD(k) with M(k) a
16 x 16 block matrix acting on (1, %2, Xab)
» Vertices: ¥n, ¥x and xx.

» Four one loop Feymann graphs needed to renormalize three
fermion propagators. Yields 3 a's.

» One additional bosonic propagator for remaining «.
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Remaining concerns

Example: chi-chi propagator

la § lq
> AL c . >
%W Xk g = Xab

x4 (P) X5(—k) vF (k) X7 (—p)

» ¥;(0) =0; %ﬁ" = Ag?In pa + finite + O(a)

> Implies Ja; = Z; = 1—|—§gzlnua+...
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Remaining concerns

Why so simple ?

» One loop lattice diagrams in 1-1 correspondence with
continuum diagrams and have only log divergences.

» Divergences come from region near pa ~ 0 where lattice
propagators and vertices approach continuum expressions

» Thus (divergent part of) 1-loop lattice diagram - same as
continuum !

> In continuum twisted theory equivalent to usual - has full
supersymmetry. Requires common wavefunction
renormalization all fermions/bosons — log divergences must be
same for all «; ..

» Similar args indicate that | Bjattice(g) = 0| at 1-loop
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Remaining concerns

Sketch of Ieg = 0

» Classical (boson) vacua correspond to ‘ constant commuting
complex matrices

» Expand to quadratic order about generic vacuum
Up(x) = | + Aglassical 4 5,(x). Integrate

» Bosons: det™> (5&7)1)‘(?”)
» Ghosts+Fermions:

det (DY D)+ (Pr(ME) M2 det (B D(H) )

» Thus Zy,. = 1 at 1-loop. Q-exact structure — result good to

all orders! ‘Exact quantum moduli space‘

» Witten index: all states cancel except vacua. Counting indep
of g.
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Applications to holography

Applications: holography

Eg black string in type Il SUGRA — dual to large N AV = 4 YM on
2D torus (sizes ry and r;)
» Depending on ry, r; black string solution may become less
stable than black hole. Supergravity analysis predicts
rr < cr?, re, rr — oo (c unknown)
Gregory-LaFlamme transition

> In dual gauge theory see phase transition associated
with breaking of center symmetry - order parameter

Polyakov line.
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Applications to holography

Black hole-black string phase transition

Boundary between confined/deconfined phases corresponds to
5P| =0.5
Good agreement with supergravity - blue curve - r, = cr? with

fitted | c ~ 3.5

Good agreement with high T dim reduction - red curve
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Applications to holography

Conclusions

» Lattice theories with exact SUSY possible. In particular
N =4 SYM.

» Key is to discretize topologically twisted form of continuum
theory.

» Exact SUSY enough to ensure moduli space survives to all
orders and no fine tuning at 1-loop

> Subtleties remain: necessary to add gauge invariant potential
to freeze trace mode and regularize flat directions.

» Possible sign problem in A/ = 4. Numerically seems safe ...
» Exploration of phase diagram underway...
» Explore theory at strong coupling, AdS/CFT etc
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Applications to holography

Lattice action

S = B(Sexact + Sclosed)

Sexact = ZTI"( Fab+ = <D( )Z/{>2

— XaDL vy — DS 5,)

-)

1 _
Sclosed = _5 Z TreabcdeXde(x + pa + pp + MC)D((: X(X + MC)
X
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