
Quantizing Hořava-Lifshitz Gravity
via

Causal Dynamical Triangulations

Joshua H. Cooperman

Department of Physics
University of California, Davis

Talk at the Kavli Institute for Theoretical Physics

Work in collaboration with Christian Anderson, Steven Carlip,
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Causal Dynamical Triangulations



Constructing a Quantum Theory of Gravity

Aim Evaluate the path integral for the gravitational action S[gµν ]
subject to relevant boundary conditions

Z =

∫
D[gµν ] eiS[gµν ]

Means Introduce an appropriate discretization of these geometries
and restrict the set of geometries entering the path integral

• Approximate continuous spacetimes as piecewise Minkowski
simplicial manifolds

• Restriction to spacetimes admitting a global foliation by
spacelike hypersurfaces

Hope Well-defined continuum limit emerges at a second order phase
transition having correct semiclassical properties on large scales



Discretization by Dynamical Triangulations

Construct triangulated spacetimes by appropriately gluing together
Minkowskian (d+ 1)-simplices

Simplices in 2 + 1 dimensions

(3, 1)-simplex (2, 2)-simplex

Simplices in 3 + 1 dimensions

(4, 1)-simplex (3, 2)-simplex

Spacelike edge length L2
SL = a2

Timelike edge length L2
TL = −ηa2

Dynamically move from one triangulated spacetime to another by
appropriately removing or inserting Minkowskian (d+ 1)-simplices

[Ambjørn et al 2001]



Pachner Moves

2 + 1 dimensions

3 + 1 dimensions

[Ambjørn et al 2001]



Pachner Moves

2 + 1 dimensions 3 + 1 dimensions

[Ambjørn et al 2001]



Restricting to Causal Spacetimes

Only spacetimes admitting a global foliation by spacelike
hypersurfaces allowed to enter the path integral

• Interpreted as a sort of causality condition since spatial
topology change is prevented

• Allows for Wick rotation to Euclidean signature required
for numerical simulations while retaining Lorentzian
structure of spacetimes

Implementation in dynamically triangulated spacetimes

• Triangulate each leaf of the foliation with regular
spacelike d-simplices

• Connect adjacent leaves of the foliation with timelike
edges so that only allowed (d+ 1)-simplices formed

• Pachner moves designed to respect foliation
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Motivating the Causality Condition

1 Monte Carlo simulations of the Euclidean path integral for
gravity

• Quantum Regge calculus: Two phases of geometry
present—smooth and rough—but uncorroborated evidence for a
second order phase transition

• Dynamical triangulations: Two phases of geometry
present—crumpled and polymeric—but convincing evidence for a
first order phase transition

2 Relationship between Euclidean and Lorentzian dynamical
triangulations in 1 + 1 dimensions

• Euclidean and Lorentzian theories in different universality classes
• Continuum limit of Euclidean theory is Liouville gravity
• Continuum limit of Lorentzian theory is proper time gauge

canonically quantized gravity

• Euclidean theory obtained from Lorentzian theory upon
integrating in spatial topology change

• Lorentzian theory obtained from Euclidean theory upon
integrating out spatial topology change

3 Promising results from causal dynamical triangulations
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Discrete Action for Path Integral

Aim to evaluate

Z =

∫
D[gµν ] eiS[gµν ] for S[gµν ] =

1

16πG

∫
M

dd+1x
√
−g (R− 2Λ)

Use Regge calculus

Prescription for R term∫
M

dd+1x
√
−gR −→ 2

∑
h∈T

Ahδh

• Local curvature carried by (d+ 1− 2)-dimensional simplices
(“hinges” or “bones” h) of the triangulation T

• Amount of local curvature proportional to deficit angle δh about
the hinge h and to area Ah of the hinge

Prescription for Λ term∫
M

dd+1x
√
−g 2Λ −→ 2Λ

∑
s∈T

Vs.

• Total spacetime volume is simply the sum of the (d+ 1)-volumes
Vs of all (d+ 1)-simplices s in the triangulation T



Regge Calculus for Causal Dynamical Triangulations

2 + 1 dimensions∫
M

d3x
√
−g (R− 2Λ) −→ 2

∑
e∈T

Aeδe − Λ
∑
s∈T

Vs

Sum
∑
e∈T ranges over all spacelike and timelike edges e in

the triangulation T

3 + 1 dimensions∫
M

d4x
√
−g (R− 2Λ) −→ 2

∑
f∈T

Afδf − Λ
∑
s∈T

Vs

Sum
∑
f∈T ranges over all spacelike and timelike faces e in

the triangulation T



Numerical Implementation

1 Wick rotation consists in η → −η in the lower half complex plane

ZCDT =
∑
T

1

C(T )
eiSCDT [T ] −→ Z

(E)
CDT =

∑
T

1

C(T )
e−S

(E)
CDT [T ]

2 Simplify discrete Euclidean action with Dehn-Somerville relations

• In 2 + 1 dimensions

S
(E)
CDT = −k0N0 + k3N3

• In 3 + 1 dimensions

S
(E)
CDT = −(κ0+6∆)N0+2κ4(N

(3,2)
4 +N

(4,1)
4 )+2∆(N

(3,2)
4 +2N

(4,1)
4 )

3 Run Monte Carlo simulation of the partition function Z
(E)
CDT

• Updates with Pachner moves based on weighting by discrete
Euclidean action

• Approximately fix total number Nd+1 of (d+ 1)-simplices with

damping term ε|Nd+1 −N (target)
d+1 | for ε� 1

• Tune coupling constant k3 or κ4 to critical value
• Collect ensembles of representative spacetimes after simulation

has thermalized



Phase Structure

2 + 1 dimensions

[Ambjørn et al 2001]

[Kommu 2011]

First order A-C phase transition

3 + 1 dimensions

[Ambjørn et al 2010]

[Ambjørn et al 2010]

First order A-C phase transition
Second order B-C phase transition



Depictions of Representative Spacetimes

Discrete spatial volume as a function of discrete time
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Classical Nature of Phase C: Spatiotemporal Scaling

Behavior of the discrete spatial 3-volume–spatial 3-volume correlator

CN4
(x) = 〈N3(t)N3(t+ x)〉

under spatiotemporal scalings

τ =
t

N
1/DH
4

and n3(τ) =
N3(t)

N
1−1/DH
4

CN4(x) for several values of N4 scaled
naively with DH = 4

Best estimate for DH from overlap of
scaled CN4

(x) for several values of N4

[Ambjørn et al 2005]



Classical Nature of Phase C: Minisuperspace Model

Effective action for discrete spatial 3-volume N3(t) determined
primarily from measurements of phase C spacetimes

• Kinetic term determined from distributions of differences of
adjacent spatial volumes

• Potential term deduced from expected scaling behavior of the
spatial volume given this distribution

SD[N3(t)] = k1

N∑
t=1

{
[N3(t+ 1)−N3(t)]

2

N3(t)
+ k2N

1/3
3 (t)

}

Minisuperspace model

• Euclidean metric ds2 = gttdt
2 + a2(t)dΩ2

3

• Classical action in terms of the continuous spatial 3-volume
V3(t) = 2π2a3(t)

SC [V3(t)] =
1

24πG

∫
dt
√
gtt

[
gttV̇ 2

3 (t)

V3(t)
+ 9

(
2π2
)2/3

V
1/3
3 (t)

]
[Ambjørn et al 2005], [Ambjørn et al 2008]
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Classical Nature of Phase C: Minisuperspace Solution

2 + 1 dimensions

Continuous de Sitter solution

V2(t) =
2

π

V3

ldS
cos

2

(
t

ldS

)
Discretized de Sitter solution

N2(τ) =
2

π

N
(1,3)
3

s̃0
(
N

(1,3)
3

)1/3
cos

2

 τ

s̃0
(
N

(1,3)
3

)1/3



[JHC, Anderson et al 2011]

3 + 1 dimensions

Continuous de Sitter solution

V3(t) =
3

4

V4

ldS
cos

3

(
t

ldS

)
Discretized de Sitter solution

N3(τ) =
3

8

N
(1,4)
4

s̃0
(
N

(1,4)
4

)1/4
cos

3

 τ

s̃0
(
N

(1,4)
4

)1/4



[Ambjørn et al 2005]



Classical Nature of Phase C: Spectral Dimension

Spectral dimension is the effective dimensionality of spacetime as
measured by a random walker

ds(σ) = −2
d lnPr(σ)

d lnσ

Pr(σ) is the return probability as a function of diffusion time σ

• Black points: Measured scaled
spectral dimension of phase C in
2 + 1 dimensions

• Green curve: Fit of spectral
dimension computed from
(2 + 1)-dimensional minisuperspace
model

[Benedetti and Henson 2009]



Semiclassical Nature of Phase C: Minisuperspace Model

Fluctuations in discrete spatial 3-volume well fit by minisuperspace
model at second order

• Covariance of deviations of discrete spatial 3-volume from the
mean

C(τ, ζ) = 〈δN3(τ)δN3(ζ)〉 with δN3(τ) = N3(τ)− 〈N3(τ)〉

• Expansion of the discrete minisuperspace action to second order

SD [〈N3(τ)〉+ δN3(τ)] = SD [〈N3(τ)〉]+1

2

T∑
τ=1

T∑
ζ=1

P (τ, ζ)δN3(τ)δN3(ζ) · · ·

• To a good degree of accuracy

C(τ, ζ) = P−1(τ, ζ)



Quantum Nature of Phase C: Spectral Dimension

2 + 1 dimensions

[Benedetti and Henson 2009]

[Kommu 2011]

3 + 1 dimensions

[Ambjørn et al 2005]

[Kommu 2011]



Hořava-Lifshitz Gravity



Methodology of Hořava-Lifshitz Gravity

Aim Construct a power-counting renormalizable unitary classical
theory of gravity

• Power-counting renormalizability requires higher derivative terms

• Unitarity requires that terms contain no more than two time
derivatives

Means Abandon manifest spacetime covariance and permit
violation of Lorentz invariance

• Metric characterizes geometry of spacetime manifolds carrying a
global foliation by spacelike hypersurfaces

• Action only required to be invariant under foliation preserving
diffeomorphisms

t −→ t̃ = f(t) x −→ x̃ = ζ(t,x)

Hope Well-defined quantum theory with renormalization group flow
to general relativity in the infrared



Defining Hořava-Lifshitz Gravity

ADM decomposition of the metric adapted to a foliation of spacetime
by spacelike hypersurfaces

ds2 = −N2dt2 + γij
(
dxi +N idt

) (
dxj +N jdt

)
• N is the lapse function

• N i is the shift vector

• γij is the spatial metric tensor

Most general action

SHL =
1

16πG

∫
M

dtddx
√
γN

{
KijK

ij − λK2 − V [γij , N ]
}

• Kij = 1
N (∂tγij −DiNj −DjNi) is the extrinsic curvature tensor

• K = γijKij is the trace of the extrinsic curvature tensor

• V [γij , N ] is a scalar functional of γij , N , and their space
derivatives up to order 2z = 2d

• z is the dynamical critical exponent
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Phenomenological Viability of Hořava-Lifshitz Gravity

Projectable version of Hořava-Lifshitz gravity

• Defined by restriction on lapse function N = N(t)

• Extra propagating scalar degree of freedom

• Constraints

• Experimental validity of Newton’s law on small scales generically
requires λ very close to 1

• Constraints on Cherenkov radiation from scalar mode essentially
render theory unviable

• Strong dynamics could render theory viable but the scale of such
dynamics is uncomfortably low

Nonprojectable version of Hořava-Lifshitz gravity

• Defined by lack of restriction on lapse function N = N(t,x)

• Extra propagating scalar degree of freedom

• Constraints

• Reasonable range of coupling values in which theory is viable
• Strong coupling scale is sufficiently high for perturbative regime

to elude limits on violations of Lorentz invariance
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Connections



Connections: Phase Structure

Resemblance of the phase diagram of causal dynamical triangulations
to the phase diagram of the Lifshitz scalar field

[Ambjørn et al 2010] [Hořava 2011]

SL =
1

2

∫
dtddx

[
(∂tφ)2 −

(
∇2φ

)2
−µ2∂iφ ∂

iφ−m4φ2 − λφ4
]

Identification of respective phases

• Phase A corresponds to the spatially modulated phase
• Phase B corresponds to the disordered phase
• Phase C corresponds to the uniformly ordered

Matching of phase transition structure

• A-C and modulated-ordered phase transitions are first order
• B-C and disordered-ordered phase transitions are second order



Connections: Spectral Dimension

Consistency of the spectral dimension computed in Hořava-Lifshitz
gravity with the spectral dimension measured in causal dynamical
triangulations
• Generic prediction from Hořava-Lifshitz gravity

ds = 1 +
d

z

• Expected that z flows from d in the ultraviolet to 1 in the infrared
[Hořava 2009]

Fit of the spectral dimension of causal dynamical triangulations on
small scales to a dispersion relation for scalar mode of nonprojectable
(2 + 1)-dimensional Hořava-Lifshitz gravity

ω2(k) =
Ak2(1 +Bk2 + Ck4)

1 +Dk2

[Sotiriou et al 2011]
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ω2(k) =
Ak2(1 +Bk2 + Ck4)

1 +Dk2

[Sotiriou et al 2011]



Connections: Semiclassical Effective Action

Compatibility of solutions of Hořava-Lifshitz gravity with the
minisuperspace model fit to the expectation value of geometry in
phase C of causal dynamical triangulations

• de Sitter spacetime is a solution of Hořava-Lifshitz gravity
[Benedetti and Henson 2009]

• Low energy limit of generic Hořava-Lifshitz minisuperspace
model compatible with semiclassical effective action for phase C
of causal dynamical triangulations [Ambjørn et al 2010]

Higher curvature terms resolved in semiclassical effective action for
phase C of causal dynamical triangulations [Ambjørn et al 2011]

Evidence that the semiclassical effective action of causal dynamical
triangulations for topology T2 × S1 has Hořava-Lifshitz-like form
[Budd 2011]
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Quantizing Hořava-Lifshitz Gravity



Model

(2 + 1)-dimensional projectable Hořava-Lifshitz gravity

Continuum action

SHL[g(t,x)] =
1

16πG

∫
M

dtd2x
√
γ(t,x)N(t)

[
Kij(t,x)Kij(t,x)

−λK2(t,x)− αR2
2(t,x) + βR2(t,x)− 2Λ

]
Hamiltonian constraint

H⊥ =

∫
Σ

d2x
√
γ(t,x)

[
Kij(t,x)Kij(t,x)− λK2(t,x) + αR2

2(t,x)

−βR2(t,x) + 2Λ]

Hamiltonian constraint not necessarily enforced

• Lapse function is fixed for any given causal triangulation since all
timelike edges have fixed length

• Path integration may or may not dynamically impose the
Hamiltonian constraint
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Discretization Procedure: Guidelines

1 Use the formalism of causal dynamical triangulations

2 Discrete Hořava-Lifshitz action should reduce to discrete
Einstein-Hilbert action when λ = 1 and α = 0

• Use Gauss-Codazzi equation and discard boundary terms

SHL[g(t,x)] =
1

16πG

∫
M

dt d2x
√
−g(t,x) [R(t,x)− 2Λ]

+
1− λ
16πG

∫
M

dt d2x
√
γ(t,x)N(t)K2(t,x)

− α

16πG

∫
M

dt d2x
√
γ(t,x)N(t)R2

2(t,x)

3 Transfer matrix corresponding to the discrete Hořava-Lifshitz
action defined on the space of boundary geometries should yield a
well-defined Hamiltonian

• Ensure that the discrete Hořava-Lifshitz action is time-reversal
invariant



Discretization Procedure: Volume Sharing

Volume sharing prescription for a squared curvature scalar R2(t,x)∫
Σ

ddx
√
γ(t,x)R2(t,x) −→

∑
o∈Oτ (T )

V (s)
o

(
Aoδo

V
(s)
o

)2

• o is the object assigned the curvature
• Oτ (T ) is the set of all objects o on the spacelike hypersurface Σ

labelled by discrete time coordinate τ in the triangulation T
• Ao is the appropriate area of the object o
• δo is the appropriate deficit angle about the object o

• V (s)
o is the share-volume of the object o, namely the volume of all

top-dimensional objects containing o

Intuition for volume sharing prescription
• Squares of curvature prescriptions are ill-defined as triangulation

is refined toward continuum limit
• View curvatures as densities assigned to local volumes

For example

∫
M

dd+1x
√
−gR −→ 2

∑
h∈T

Ahδh = 2
∑
h∈T

VC⊃h

(
Ahδh
VC⊃h

)
[Hamber and Williams 1984], [Ambjørn et al 1993]
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Discretization Procedure: R2
2 Term

Vertices v carry the Ricci curvature R2 of a 2-dimensional spacelike
hypersurface Σ

Volume sharing prescription∫
Σ

d2x
√
γ(t,x)R2

2(t,x) −→
∑

v∈Vτ (T )

V (s)
v

(
Avδv

V
(s)
v

)2

[Budd 2011]

• Deficit angle about the vertex v with N4(v) incident spacelike
triangles

δv = 2π − π

3
N4(v)

• Vertex area Av = 1

• Vertex share volume V
(s)
v =

√
3

4 a
2N4(v)



Discretization Procedure: K2 Term

Spacelike triangles 4 carry the trace K of the extrinsic curvature of a
2-dimensional spacelike hypersurface Σ

Volume sharing prescription

∫
Σ

d2x
√
γ(t,x)K2(t,x) −→

∑
4∈TSLτ (T )

V
(s)
4

(
A4δ4

V
(s)
4

)2

[Budd 2011]

• Past- (Future-) directed deficit angle about the spacelike triangle

4 with N
↓(↑)
(2,2)(4) (2, 2)-simplices in its immediate past (future)

δ4 = δe1 + δe2 + δe3 = 3π − 6θ
(3,1)
L − θ(2,2)

L N
↓(↑)
(2,2)(4)

• Spacelike triangle area A4 =
√

3
4 a

2

• Spacelike triangle share volume V
(s)
4 = 4V

(3,1)
L + V

(2,2)
L N

↓(↑)
(2,2)(4)

[Hartle and Sorkin 1981]



Causal Dynamical Triangulated Hořava-Lifshitz Gravity

Wick rotated path integral for spacetime topology S2 × S1

Z
(E)
HL =

∑
T

1

C(T )
e−S

(E)
HL

S
(E)
HL = −k0N0 + k3N3

+
1− λ
16πG

∑
τ

∑
4∈TSLτ (T )

a4


(

3π − 6θ
(3,1)
E − θ(2,2)

E N↑(2,2)(4)
)2

4V
(3,1)
E + V

(2,2)
E N↑(2,2)(4)

+

(
3π − 6θ

(3,1)
E − θ(2,2)

E N↓(2,2)(4)
)2

4V
(3,1)
E + V

(2,2)
E N↓(2,2)(4)


+

α

16πG

∑
τ

∑
v∈Vτ (T )

√
η

a

(6−N4(v))
2

N4(v)

Run Monte Carlo simulations of the partition function Z
(E)
HL



Phase Structure

Critical surface for k0 = 1 projected onto the λ− α plane

Phase C: blue circles
Phase D: magenta squares
Phase E: orange diamonds

[JHC, Anderson et al 2011]



Depictions of Representative Spacetimes

Discrete 2-volume as a function of discrete time
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Preliminary Evidence for Semiclassicality

Spectral dimension
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Minisuperspace model fit to phase C ensemble for λ 6= 1, α 6= 0

[JHC, Anderson et al 2011]
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Preliminary Evidence for Static Nature of Phase E

Fourier transform of discrete 2-volume as a function of discrete time

Normalized variance of the discrete 2-volume

〈∆
NSL2
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√
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[JHC, Anderson et al 2011]
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Fourier transform of discrete 2-volume as a function of discrete time
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C-E Phase Transition

Conjecture The C-E phase transition is a confinement-deconfinement
transition of the global gravitational charge H⊥

Hamiltonian constraint

H⊥ =

∫
Σ

d2x
√
γ(t,x)

[
Kij(t,x)Kij(t,x)− λK2(t,x) + αR2

2(t,x)

−βR2(t,x) + 2Λ]

Interpretation of transition in terms of FLRW spacetimes

• Confined phase C: Hamiltonian constraint equation becomes the
Friedmann equation for the scale factor, which precludes the
ground state geometry from being time-independent

• Deconfined phase E: Hamiltonian constraint measures the energy
levels with the ground state identified as the lowest energy,
typically static configuration



Continuing Research



Current and Future Research

Regarding causal dynamically triangulated Einstein gravity

• Quantum scalar field theory on curved spacetime

• Better determination of spectral dimension
• Dynamical determination of light cone structure

• Renormalization group flow of the cosmological constant

• Fixed metric boundary conditions

• Testing Newton’s law of gravitation

• Introduce bundles of quasilocal mass

Regarding causal dynamically triangulated Hořava-Lifshitz gravity

• Testing the confinement-deconfinement conjecture

• Continuing exploration of the phase diagram

• Better distinguish phases D and E
• Ascertain relationships to phase A
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