Quantizing Hořava-Lifshitz Gravity

via

Causal Dynamical Triangulations

Joshua H. Cooperman
Department of Physics University of California, Davis

Talk at the Kavli Institute for Theoretical Physics
Work in collaboration with Christian Anderson, Steven Carlip,
Petr Hořava, Rajesh Kommu, and Patrick Zulkowski

Plan

(1) Causal Dynamical Triangulations Theory Results
(2) Hořava-Lifshitz Gravity
(3) Connections
(4) Quantizing Hořava-Lifshitz Gravity

Model
Results
(5) Continuing Research

Causal Dynamical Triangulations

Constructing a Quantum Theory of Gravity

Aim Evaluate the path integral for the gravitational action $S\left[g_{\mu \nu}\right]$ subject to relevant boundary conditions

$$
Z=\int \mathcal{D}\left[g_{\mu \nu}\right] e^{i S\left[g_{\mu \nu}\right]}
$$

Means Introduce an appropriate discretization of these geometries and restrict the set of geometries entering the path integral

- Approximate continuous spacetimes as piecewise Minkowski simplicial manifolds
- Restriction to spacetimes admitting a global foliation by spacelike hypersurfaces

Hope Well-defined continuum limit emerges at a second order phase transition having correct semiclassical properties on large scales

Discretization by Dynamical Triangulations

Construct triangulated spacetimes by appropriately gluing together Minkowskian $(d+1)$-simplices

Simplices in $2+1$ dimensions

$(3,1)$-simplex

(2, 2)-simplex

$(4,1)$-simplex

(3, 2)-simplex

Spacelike edge length $L_{S L}^{2}=a^{2}$
Timelike edge length $L_{T L}^{2}=-\eta a^{2}$
Dynamically move from one triangulated spacetime to another by appropriately removing or inserting Minkowskian $(d+1)$-simplices
[Ambjørn et al 2001]

Pachner Moves

$2+1$ dimensions

Pachner Moves

$2+1$ dimensions

$3+1$ dimensions

[Ambjørn et al 2001]

Restricting to Causal Spacetimes

Only spacetimes admitting a global foliation by spacelike hypersurfaces allowed to enter the path integral

- Interpreted as a sort of causality condition since spatial topology change is prevented
- Allows for Wick rotation to Euclidean signature required for numerical simulations while retaining Lorentzian structure of spacetimes

Restricting to Causal Spacetimes

Only spacetimes admitting a global foliation by spacelike hypersurfaces allowed to enter the path integral

- Interpreted as a sort of causality condition since spatial topology change is prevented
- Allows for Wick rotation to Euclidean signature required for numerical simulations while retaining Lorentzian structure of spacetimes

Implementation in dynamically triangulated spacetimes

- Triangulate each leaf of the foliation with regular spacelike d-simplices
- Connect adjacent leaves of the foliation with timelike edges so that only allowed $(d+1)$-simplices formed
- Pachner moves designed to respect foliation

Motivating the Causality Condition

(1) Monte Carlo simulations of the Euclidean path integral for gravity

- Quantum Regge calculus: Two phases of geometry present-smooth and rough-but uncorroborated evidence for a second order phase transition
- Dynamical triangulations: Two phases of geometry present-crumpled and polymeric-but convincing evidence for a first order phase transition

Motivating the Causality Condition

(1) Monte Carlo simulations of the Euclidean path integral for gravity

- Quantum Regge calculus: Two phases of geometry present-smooth and rough-but uncorroborated evidence for a second order phase transition
- Dynamical triangulations: Two phases of geometry present-crumpled and polymeric-but convincing evidence for a first order phase transition
(2) Relationship between Euclidean and Lorentzian dynamical triangulations in $1+1$ dimensions
- Euclidean and Lorentzian theories in different universality classes
- Continuum limit of Euclidean theory is Liouville gravity
- Continuum limit of Lorentzian theory is proper time gauge canonically quantized gravity
- Euclidean theory obtained from Lorentzian theory upon integrating in spatial topology change
- Lorentzian theory obtained from Euclidean theory upon integrating out spatial topology change

Motivating the Causality Condition

(1) Monte Carlo simulations of the Euclidean path integral for gravity

- Quantum Regge calculus: Two phases of geometry present-smooth and rough-but uncorroborated evidence for a second order phase transition
- Dynamical triangulations: Two phases of geometry present-crumpled and polymeric-but convincing evidence for a first order phase transition
(2) Relationship between Euclidean and Lorentzian dynamical triangulations in $1+1$ dimensions
- Euclidean and Lorentzian theories in different universality classes
- Continuum limit of Euclidean theory is Liouville gravity
- Continuum limit of Lorentzian theory is proper time gauge canonically quantized gravity
- Euclidean theory obtained from Lorentzian theory upon integrating in spatial topology change
- Lorentzian theory obtained from Euclidean theory upon integrating out spatial topology change
(3) Promising results from causal dynamical triangulations

Discrete Action for Path Integral

Aim to evaluate

$$
Z=\int \mathcal{D}\left[g_{\mu \nu}\right] e^{i S\left[g_{\mu \nu}\right]} \quad \text { for } \quad S\left[g_{\mu \nu}\right]=\frac{1}{16 \pi G} \int_{\mathcal{M}} \mathrm{d}^{d+1} x \sqrt{-g}(R-2 \Lambda)
$$

Use Regge calculus
Prescription for R term

$$
\int_{\mathcal{M}} \mathrm{d}^{d+1} x \sqrt{-g} R \longrightarrow 2 \sum_{h \in \mathcal{T}} A_{h} \delta_{h}
$$

- Local curvature carried by $(d+1-2)$-dimensional simplices ("hinges" or "bones" h) of the triangulation \mathcal{T}
- Amount of local curvature proportional to deficit angle δ_{h} about the hinge h and to area A_{h} of the hinge
Prescription for Λ term

$$
\int_{\mathcal{M}} \mathrm{d}^{d+1} x \sqrt{-g} 2 \Lambda \longrightarrow 2 \Lambda \sum_{s \in \mathcal{T}} V_{s}
$$

- Total spacetime volume is simply the sum of the $(d+1)$-volumes V_{s} of all $(d+1)$-simplices s in the triangulation \mathcal{T}

Regge Calculus for Causal Dynamical Triangulations

$2+1$ dimensions

$$
\int_{\mathcal{M}} \mathrm{d}^{3} x \sqrt{-g}(R-2 \Lambda) \longrightarrow 2 \sum_{e \in \mathcal{T}} A_{e} \delta_{e}-\Lambda \sum_{s \in \mathcal{T}} V_{s}
$$

Sum $\sum_{e \in \mathcal{T}}$ ranges over all spacelike and timelike edges e in the triangulation \mathcal{T}
$3+1$ dimensions

$$
\int_{\mathcal{M}} \mathrm{d}^{4} x \sqrt{-g}(R-2 \Lambda) \longrightarrow 2 \sum_{f \in \mathcal{T}} A_{f} \delta_{f}-\Lambda \sum_{s \in \mathcal{T}} V_{s}
$$

Sum $\sum_{f \in \mathcal{T}}$ ranges over all spacelike and timelike faces e in the triangulation \mathcal{T}

Numerical Implementation

(1) Wick rotation consists in $\eta \rightarrow-\eta$ in the lower half complex plane

$$
Z_{C D T}=\sum_{\mathcal{T}} \frac{1}{C(\mathcal{T})} e^{i S_{C D T}[\mathcal{T}]} \quad \longrightarrow \quad Z_{C D T}^{(E)}=\sum_{\mathcal{T}} \frac{1}{C(\mathcal{T})} e^{-S_{C D T}^{(E)}[\mathcal{T}]}
$$

(2) Simplify discrete Euclidean action with Dehn-Somerville relations

- In $2+1$ dimensions

$$
S_{C D T}^{(E)}=-k_{0} N_{0}+k_{3} N_{3}
$$

- In $3+1$ dimensions

$$
S_{C D T}^{(E)}=-\left(\kappa_{0}+6 \Delta\right) N_{0}+2 \kappa_{4}\left(N_{4}^{(3,2)}+N_{4}^{(4,1)}\right)+2 \Delta\left(N_{4}^{(3,2)}+2 N_{4}^{(4,1)}\right)
$$

(3) Run Monte Carlo simulation of the partition function $Z_{C D T}^{(E)}$

- Updates with Pachner moves based on weighting by discrete Euclidean action
- Approximately fix total number N_{d+1} of $(d+1)$-simplices with damping term $\epsilon\left|N_{d+1}-N_{d+1}^{(\text {target })}\right|$ for $\epsilon \ll 1$
- Tune coupling constant k_{3} or κ_{4} to critical value
- Collect ensembles of representative spacetimes after simulation has thermalized

Phase Structure

$2+1$ dimensions

[Kommu 2011]
First order A-C phase transition

$$
3+1 \text { dimensions }
$$

[Ambjørn et al 2010]
First order A-C phase transition Second order B-C phase transition

Depictions of Representative Spacetimes

Discrete spatial volume as a function of discrete time

Phase A
Present in $2+1$ and $3+1$ dimensions

Phase B
Present in $3+1$ dimensions only

Phase C
Present in $2+1$ and $3+1$ dimensions

Classical Nature of Phase C: Spatiotemporal Scaling

Behavior of the discrete spatial 3 -volume-spatial 3 -volume correlator

$$
\mathcal{C}_{N_{4}}(x)=\left\langle N_{3}(t) N_{3}(t+x)\right\rangle
$$

under spatiotemporal scalings

$$
\tau=\frac{t}{N_{4}^{1 / D_{H}}} \quad \text { and } \quad n_{3}(\tau)=\frac{N_{3}(t)}{N_{4}^{1-1 / D_{H}}}
$$

$\mathcal{C}_{N_{4}}(x)$ for several values of N_{4} scaled naively with $D_{H}=4$

Best estimate for D_{H} from overlap of scaled $\mathcal{C}_{N_{4}}(x)$ for several values of N_{4}
[Ambjørn et al 2005]

Classical Nature of Phase C: Minisuperspace Model

Effective action for discrete spatial 3-volume $N_{3}(t)$ determined primarily from measurements of phase C spacetimes

- Kinetic term determined from distributions of differences of adjacent spatial volumes
- Potential term deduced from expected scaling behavior of the spatial volume given this distribution

$$
S_{D}\left[N_{3}(t)\right]=k_{1} \sum_{t=1}^{N}\left\{\frac{\left[N_{3}(t+1)-N_{3}(t)\right]^{2}}{N_{3}(t)}+k_{2} N_{3}^{1 / 3}(t)\right\}
$$

Classical Nature of Phase C: Minisuperspace Model

Effective action for discrete spatial 3 -volume $N_{3}(t)$ determined primarily from measurements of phase C spacetimes

- Kinetic term determined from distributions of differences of adjacent spatial volumes
- Potential term deduced from expected scaling behavior of the spatial volume given this distribution

$$
S_{D}\left[N_{3}(t)\right]=k_{1} \sum_{t=1}^{N}\left\{\frac{\left[N_{3}(t+1)-N_{3}(t)\right]^{2}}{N_{3}(t)}+k_{2} N_{3}^{1 / 3}(t)\right\}
$$

Minisuperspace model

- Euclidean metric $\mathrm{d} s^{2}=g_{t t} \mathrm{~d} t^{2}+a^{2}(t) \mathrm{d} \Omega_{3}^{2}$
- Classical action in terms of the continuous spatial 3 -volume $V_{3}(t)=2 \pi^{2} a^{3}(t)$

$$
S_{C}\left[V_{3}(t)\right]=\frac{1}{24 \pi G} \int \mathrm{~d} t \sqrt{g_{t t}}\left[\frac{g^{t t} \dot{V}_{3}^{2}(t)}{V_{3}(t)}+9\left(2 \pi^{2}\right)^{2 / 3} V_{3}^{1 / 3}(t)\right]
$$

[Ambjørn et al 2005], [Ambjørn et al 2008]

Classical Nature of Phase C: Minisuperspace Solution

$2+1$ dimensions

Continuous de Sitter solution

$$
V_{2}(t)=\frac{2}{\pi} \frac{V_{3}}{l_{d S}} \cos ^{2}\left(\frac{t}{l_{d S}}\right)
$$

Discretized de Sitter solution

$$
N_{2}(\tau)=\frac{2}{\pi} \frac{N_{3}^{(1,3)}}{\tilde{s}_{0}\left(N_{3}^{(1,3)}\right)^{1 / 3}} \cos ^{2}\left[\frac{\tau}{\tilde{s}_{0}\left(N_{3}^{(1,3)}\right)^{1 / 3}}\right]
$$

[JHC, Anderson et al 2011]
$3+1$ dimensions
Continuous de Sitter solution

$$
V_{3}(t)=\frac{3}{4} \frac{V_{4}}{l_{d S}} \cos ^{3}\left(\frac{t}{l_{d S}}\right)
$$

Discretized de Sitter solution

$$
N_{3}(\tau)=\frac{3}{8} \frac{N_{4}^{(1,4)}}{\tilde{s}_{0}\left(N_{4}^{(1,4)}\right)^{1 / 4}} \cos ^{3}\left[\frac{\tau}{\tilde{s}_{0}\left(N_{4}^{(1,4)}\right)^{1 / 4}}\right]
$$

[Ambjørn et al 2005]

Classical Nature of Phase C: Spectral Dimension

Spectral dimension is the effective dimensionality of spacetime as measured by a random walker

$$
d_{s}(\sigma)=-2 \frac{\mathrm{~d} \ln P_{r}(\sigma)}{\mathrm{d} \ln \sigma}
$$

$P_{r}(\sigma)$ is the return probability as a function of diffusion time σ

- Black points: Measured scaled spectral dimension of phase C in $2+1$ dimensions
- Green curve: Fit of spectral dimension computed from $(2+1)$-dimensional minisuperspace model
[Benedetti and Henson 2009]

Semiclassical Nature of Phase C: Minisuperspace Model

Fluctuations in discrete spatial 3 -volume well fit by minisuperspace model at second order

- Covariance of deviations of discrete spatial 3 -volume from the mean

$$
C(\tau, \zeta)=\left\langle\delta N_{3}(\tau) \delta N_{3}(\zeta)\right\rangle \quad \text { with } \quad \delta N_{3}(\tau)=N_{3}(\tau)-\left\langle N_{3}(\tau)\right\rangle
$$

- Expansion of the discrete minisuperspace action to second order

$$
S_{D}\left[\left\langle N_{3}(\tau)\right\rangle+\delta N_{3}(\tau)\right]=S_{D}\left[\left\langle N_{3}(\tau)\right\rangle\right]+\frac{1}{2} \sum_{\tau=1}^{T} \sum_{\zeta=1}^{T} P(\tau, \zeta) \delta N_{3}(\tau) \delta N_{3}(\zeta) \cdots
$$

- To a good degree of accuracy

$$
C(\tau, \zeta)=P^{-1}(\tau, \zeta)
$$

Quantum Nature of Phase C: Spectral Dimension

[Benedetti and Henson 2009]

[Kommu 2011]
$3+1$ dimensions

[Ambjørn et al 2005]

[Kommu 2011]

Hořava-Lifshitz Gravity

Methodology of Hořava-Lifshitz Gravity

Aim Construct a power-counting renormalizable unitary classical theory of gravity

- Power-counting renormalizability requires higher derivative terms
- Unitarity requires that terms contain no more than two time derivatives

Means Abandon manifest spacetime covariance and permit violation of Lorentz invariance

- Metric characterizes geometry of spacetime manifolds carrying a global foliation by spacelike hypersurfaces
- Action only required to be invariant under foliation preserving diffeomorphisms

$$
t \longrightarrow \tilde{t}=f(t) \quad \mathbf{x} \longrightarrow \tilde{\mathbf{x}}=\zeta(t, \mathbf{x})
$$

Hope Well-defined quantum theory with renormalization group flow to general relativity in the infrared

Defining Hořava-Lifshitz Gravity

ADM decomposition of the metric adapted to a foliation of spacetime by spacelike hypersurfaces

$$
\mathrm{d} s^{2}=-N^{2} \mathrm{~d} t^{2}+\gamma_{i j}\left(\mathrm{~d} x^{i}+N^{i} \mathrm{~d} t\right)\left(\mathrm{d} x^{j}+N^{j} \mathrm{~d} t\right)
$$

- N is the lapse function
- N^{i} is the shift vector
- $\gamma_{i j}$ is the spatial metric tensor

Defining Hořava-Lifshitz Gravity

ADM decomposition of the metric adapted to a foliation of spacetime by spacelike hypersurfaces

$$
\mathrm{d} s^{2}=-N^{2} \mathrm{~d} t^{2}+\gamma_{i j}\left(\mathrm{~d} x^{i}+N^{i} \mathrm{~d} t\right)\left(\mathrm{d} x^{j}+N^{j} \mathrm{~d} t\right)
$$

- N is the lapse function
- N^{i} is the shift vector
- $\gamma_{i j}$ is the spatial metric tensor

Most general action

$$
S_{H L}=\frac{1}{16 \pi G} \int_{\mathcal{M}} \mathrm{d} t \mathrm{~d}^{d} x \sqrt{\gamma} N\left\{K_{i j} K^{i j}-\lambda K^{2}-V\left[\gamma_{i j}, N\right]\right\}
$$

- $K_{i j}=\frac{1}{N}\left(\partial_{t} \gamma_{i j}-D_{i} N_{j}-D_{j} N_{i}\right)$ is the extrinsic curvature tensor
- $K=\gamma^{i j} K_{i j}$ is the trace of the extrinsic curvature tensor
- $V\left[\gamma_{i j}, N\right]$ is a scalar functional of $\gamma_{i j}, N$, and their space derivatives up to order $2 z=2 d$
- z is the dynamical critical exponent

Phenomenological Viability of Hořava-Lifshitz Gravity

Projectable version of Hořava-Lifshitz gravity

- Defined by restriction on lapse function $N=N(t)$
- Extra propagating scalar degree of freedom
- Constraints
- Experimental validity of Newton's law on small scales generically requires λ very close to 1
- Constraints on Cherenkov radiation from scalar mode essentially render theory unviable
- Strong dynamics could render theory viable but the scale of such dynamics is uncomfortably low

Phenomenological Viability of Hořava-Lifshitz Gravity

Projectable version of Hořava-Lifshitz gravity

- Defined by restriction on lapse function $N=N(t)$
- Extra propagating scalar degree of freedom
- Constraints
- Experimental validity of Newton's law on small scales generically requires λ very close to 1
- Constraints on Cherenkov radiation from scalar mode essentially render theory unviable
- Strong dynamics could render theory viable but the scale of such dynamics is uncomfortably low
Nonprojectable version of Hořava-Lifshitz gravity
- Defined by lack of restriction on lapse function $N=N(t, \mathbf{x})$
- Extra propagating scalar degree of freedom
- Constraints
- Reasonable range of coupling values in which theory is viable
- Strong coupling scale is sufficiently high for perturbative regime to elude limits on violations of Lorentz invariance

Connections

Connections: Phase Structure

Resemblance of the phase diagram of causal dynamical triangulations to the phase diagram of the Lifshitz scalar field

[Ambjørn et al 2010]

[Hor̆ava 2011]

Identification of respective phases

- Phase A corresponds to the spatially modulated phase
- Phase B corresponds to the disordered phase
- Phase C corresponds to the uniformly ordered

Matching of phase transition structure

- A-C and modulated-ordered phase transitions are first order
- B-C and disordered-ordered phase transitions are second order

Connections: Spectral Dimension

Consistency of the spectral dimension computed in Hořava-Lifshitz gravity with the spectral dimension measured in causal dynamical triangulations

- Generic prediction from Hořava-Lifshitz gravity

$$
d_{s}=1+\frac{d}{z}
$$

- Expected that z flows from d in the ultraviolet to 1 in the infrared [Hořava 2009]

Connections: Spectral Dimension

Consistency of the spectral dimension computed in Hořava-Lifshitz gravity with the spectral dimension measured in causal dynamical triangulations

- Generic prediction from Hořava-Lifshitz gravity

$$
d_{s}=1+\frac{d}{z}
$$

- Expected that z flows from d in the ultraviolet to 1 in the infrared [Hořava 2009]

Fit of the spectral dimension of causal dynamical triangulations on small scales to a dispersion relation for scalar mode of nonprojectable $(2+1)$-dimensional Hořava-Lifshitz gravity

$$
\omega^{2}(k)=\frac{A k^{2}\left(1+B k^{2}+C k^{4}\right)}{1+D k^{2}}
$$

[Sotiriou et al 2011]

Connections: Semiclassical Effective Action

Compatibility of solutions of Hořava-Lifshitz gravity with the minisuperspace model fit to the expectation value of geometry in phase C of causal dynamical triangulations

- de Sitter spacetime is a solution of Hořava-Lifshitz gravity [Benedetti and Henson 2009]
- Low energy limit of generic Hořava-Lifshitz minisuperspace model compatible with semiclassical effective action for phase C of causal dynamical triangulations [Ambjørn et al 2010]

Connections: Semiclassical Effective Action

Compatibility of solutions of Hořava-Lifshitz gravity with the minisuperspace model fit to the expectation value of geometry in phase C of causal dynamical triangulations

- de Sitter spacetime is a solution of Hořava-Lifshitz gravity [Benedetti and Henson 2009]
- Low energy limit of generic Hořava-Lifshitz minisuperspace model compatible with semiclassical effective action for phase C of causal dynamical triangulations [Ambjørn et al 2010]

Higher curvature terms resolved in semiclassical effective action for phase C of causal dynamical triangulations [Ambjørn et al 2011]

Connections: Semiclassical Effective Action

Compatibility of solutions of Hořava-Lifshitz gravity with the minisuperspace model fit to the expectation value of geometry in phase C of causal dynamical triangulations

- de Sitter spacetime is a solution of Hořava-Lifshitz gravity [Benedetti and Henson 2009]
- Low energy limit of generic Hořava-Lifshitz minisuperspace model compatible with semiclassical effective action for phase C of causal dynamical triangulations [Ambjørn et al 2010]

Higher curvature terms resolved in semiclassical effective action for phase C of causal dynamical triangulations [Ambjørn et al 2011]

Evidence that the semiclassical effective action of causal dynamical triangulations for topology $\mathrm{T}^{2} \times \mathcal{S}^{1}$ has Hořava-Lifshitz-like form [Budd 2011]

Quantizing Hořava-Lifshitz Gravity

Model

$(2+1)$-dimensional projectable Hořava-Lifshitz gravity
Continuum action

$$
\begin{array}{rl}
S_{H L}[\mathbf{g}(t, \mathbf{x})]=\frac{1}{16 \pi G} \int_{\mathcal{M}} & \mathrm{d} t \mathrm{~d}^{2} x \sqrt{\gamma(t, \mathbf{x})} N(t)\left[K_{i j}(t, \mathbf{x}) K^{i j}(t, \mathbf{x})\right. \\
& \left.-\lambda K^{2}(t, \mathbf{x})-\alpha R_{2}^{2}(t, \mathbf{x})+\beta R_{2}(t, \mathbf{x})-2 \Lambda\right]
\end{array}
$$

Hamiltonian constraint

$$
\begin{gathered}
\mathcal{H}_{\perp}=\int_{\Sigma} \mathrm{d}^{2} x \sqrt{\gamma(t, \mathbf{x})}\left[K_{i j}(t, \mathbf{x}) K^{i j}(t, \mathbf{x})-\lambda K^{2}(t, \mathbf{x})+\alpha R_{2}^{2}(t, \mathbf{x})\right. \\
\left.-\beta R_{2}(t, \mathbf{x})+2 \Lambda\right]
\end{gathered}
$$

Model

$(2+1)$-dimensional projectable Hořava-Lifshitz gravity
Continuum action

$$
\begin{array}{rl}
S_{H L}[\mathbf{g}(t, \mathbf{x})]=\frac{1}{16 \pi G} \int_{\mathcal{M}} & \mathrm{d} t \mathrm{~d}^{2} x \sqrt{\gamma(t, \mathbf{x})} N(t)\left[K_{i j}(t, \mathbf{x}) K^{i j}(t, \mathbf{x})\right. \\
& \left.-\lambda K^{2}(t, \mathbf{x})-\alpha R_{2}^{2}(t, \mathbf{x})+\beta R_{2}(t, \mathbf{x})-2 \Lambda\right]
\end{array}
$$

Hamiltonian constraint

$$
\begin{gathered}
\mathcal{H}_{\perp}=\int_{\Sigma} \mathrm{d}^{2} x \sqrt{\gamma(t, \mathbf{x})}\left[K_{i j}(t, \mathbf{x}) K^{i j}(t, \mathbf{x})-\lambda K^{2}(t, \mathbf{x})+\alpha R_{2}^{2}(t, \mathbf{x})\right. \\
\left.-\beta R_{2}(t, \mathbf{x})+2 \Lambda\right]
\end{gathered}
$$

Hamiltonian constraint not necessarily enforced

- Lapse function is fixed for any given causal triangulation since all timelike edges have fixed length
- Path integration may or may not dynamically impose the Hamiltonian constraint

Discretization Procedure: Guidelines

(1) Use the formalism of causal dynamical triangulations
(2) Discrete Hořava-Lifshitz action should reduce to discrete Einstein-Hilbert action when $\lambda=1$ and $\alpha=0$

- Use Gauss-Codazzi equation and discard boundary terms

$$
\begin{aligned}
S_{H L}[\mathbf{g}(t, \mathbf{x})]= & \frac{1}{16 \pi G} \int_{\mathcal{M}} \mathrm{d} t \mathrm{~d}^{2} x \sqrt{-g(t, \mathbf{x})}[R(t, \mathbf{x})-2 \Lambda] \\
& +\frac{1-\lambda}{16 \pi G} \int_{\mathcal{M}} \mathrm{d} t \mathrm{~d}^{2} x \sqrt{\gamma(t, \mathbf{x})} N(t) K^{2}(t, \mathbf{x}) \\
& -\frac{\alpha}{16 \pi G} \int_{\mathcal{M}} \mathrm{d} t \mathrm{~d}^{2} x \sqrt{\gamma(t, \mathbf{x})} N(t) R_{2}^{2}(t, \mathbf{x})
\end{aligned}
$$

(3) Transfer matrix corresponding to the discrete Horrava-Lifshitz action defined on the space of boundary geometries should yield a well-defined Hamiltonian

- Ensure that the discrete Hořava-Lifshitz action is time-reversal invariant

Discretization Procedure: Volume Sharing

Volume sharing prescription for a squared curvature scalar $\mathscr{R}^{2}(t, \mathbf{x})$

$$
\int_{\Sigma} \mathrm{d}^{d} x \sqrt{\gamma(t, \mathbf{x})} \mathscr{R}^{2}(t, \mathbf{x}) \longrightarrow \sum_{o \in O_{\tau}(\mathcal{T})} V_{o}^{(s)}\left(\frac{A_{o} \delta_{o}}{V_{o}^{(s)}}\right)^{2}
$$

- o is the object assigned the curvature
- $O_{\tau}(\mathcal{T})$ is the set of all objects o on the spacelike hypersurface Σ labelled by discrete time coordinate τ in the triangulation \mathcal{T}
- A_{o} is the appropriate area of the object o
- δ_{o} is the appropriate deficit angle about the object o
- $V_{o}^{(s)}$ is the share-volume of the object o, namely the volume of all top-dimensional objects containing o

Discretization Procedure: Volume Sharing

Volume sharing prescription for a squared curvature scalar $\mathscr{R}^{2}(t, \mathbf{x})$

$$
\int_{\Sigma} \mathrm{d}^{d} x \sqrt{\gamma(t, \mathbf{x})} \mathscr{R}^{2}(t, \mathbf{x}) \longrightarrow \sum_{o \in O_{\tau}(\mathcal{T})} V_{o}^{(s)}\left(\frac{A_{o} \delta_{o}}{V_{o}^{(s)}}\right)^{2}
$$

- o is the object assigned the curvature
- $O_{\tau}(\mathcal{T})$ is the set of all objects o on the spacelike hypersurface Σ labelled by discrete time coordinate τ in the triangulation \mathcal{T}
- A_{o} is the appropriate area of the object o
- δ_{o} is the appropriate deficit angle about the object o
- $V_{o}^{(s)}$ is the share-volume of the object o, namely the volume of all top-dimensional objects containing o

Intuition for volume sharing prescription

- Squares of curvature prescriptions are ill-defined as triangulation is refined toward continuum limit
- View curvatures as densities assigned to local volumes

$$
\text { For example } \int_{\mathcal{M}} \mathrm{d}^{d+1} x \sqrt{-g} R \longrightarrow 2 \sum_{h \in \mathcal{T}} A_{h} \delta_{h}=2 \sum_{h \in \mathcal{T}} V_{\mathcal{C} \supset h}\left(\frac{A_{h} \delta_{h}}{V_{\mathcal{C} \supset h}}\right)
$$

[Hamber and Williams 1984], [Ambjørn et al 1993]

Discretization Procedure: R_{2}^{2} Term

Vertices v carry the Ricci curvature R_{2} of a 2-dimensional spacelike hypersurface Σ

Volume sharing prescription

$$
\int_{\Sigma} \mathrm{d}^{2} x \sqrt{\gamma(t, \mathbf{x})} R_{2}^{2}(t, \mathbf{x}) \longrightarrow \sum_{v \in V_{\tau}(\mathcal{T})} V_{v}^{(s)}\left(\frac{A_{v} \delta_{v}}{V_{v}^{(s)}}\right)^{2}
$$

[Budd 2011]

- Deficit angle about the vertex v with $N_{\triangle}(v)$ incident spacelike triangles

$$
\delta_{v}=2 \pi-\frac{\pi}{3} N_{\triangle}(v)
$$

- Vertex area $A_{v}=1$
- Vertex share volume $V_{v}^{(s)}=\frac{\sqrt{3}}{4} a^{2} N_{\triangle}(v)$

Discretization Procedure: K^{2} Term

Spacelike triangles \triangle carry the trace K of the extrinsic curvature of a 2-dimensional spacelike hypersurface Σ

Volume sharing prescription

$$
\int_{\Sigma} \mathrm{d}^{2} x \sqrt{\gamma(t, \mathbf{x})} K^{2}(t, \mathbf{x}) \longrightarrow \sum_{\Delta \in T_{\tau}^{S L}(\mathcal{T})} V_{\triangle}^{(s)}\left(\frac{A_{\triangle} \delta_{\Delta}}{V_{\triangle}^{(s)}}\right)^{2}
$$

[Budd 2011]

- Past- (Future-) directed deficit angle about the spacelike triangle \triangle with $N_{(2,2)}^{\downarrow(\uparrow)}(\triangle)(2,2)$-simplices in its immediate past (future)

$$
\delta_{\triangle}=\delta_{e_{1}}+\delta_{e_{2}}+\delta_{e_{3}}=3 \pi-6 \theta_{L}^{(3,1)}-\theta_{L}^{(2,2)} N_{(2,2)}^{\downarrow(\uparrow)}(\triangle)
$$

- Spacelike triangle area $A_{\triangle}=\frac{\sqrt{3}}{4} a^{2}$
- Spacelike triangle share volume $V_{\triangle}^{(s)}=4 V_{L}^{(3,1)}+V_{L}^{(2,2)} N_{(2,2)}^{\downarrow(\uparrow)}(\triangle)$

Causal Dynamical Triangulated Hořava-Lifshitz Gravity

Wick rotated path integral for spacetime topology $\mathcal{S}^{2} \times \mathcal{S}^{1}$

$$
Z_{H L}^{(E)}=\sum_{\mathcal{T}} \frac{1}{C(\mathcal{T})} e^{-S_{H L}^{(E)}}
$$

$$
\begin{aligned}
S_{H L}^{(E)}= & -k_{0} N_{0}+k_{3} N_{3} \\
& +\frac{1-\lambda}{16 \pi G} \sum_{\tau} \sum_{\Delta \in T_{\tau}^{S L}(\mathcal{T})} a^{4}\left[\frac{\left(3 \pi-6 \theta_{E}^{(3,1)}-\theta_{E}^{(2,2)} N_{(2,2)}^{\uparrow}(\triangle)\right)^{2}}{4 V_{E}^{(3,1)}+V_{E}^{(2,2)} N_{(2,2)}^{\uparrow}(\triangle)}\right. \\
& \left.+\frac{\left(3 \pi-6 \theta_{E}^{(3,1)}-\theta_{E}^{(2,2)} N_{(2,2)}^{\downarrow}(\triangle)\right)^{2}}{4 V_{E}^{(3,1)}+V_{E}^{(2,2)} N_{(2,2)}^{\downarrow}(\triangle)}\right] \\
& +\frac{\alpha}{16 \pi G} \sum_{\tau} \sum_{v \in V_{\tau}(\mathcal{T})} \frac{\sqrt{\eta}}{a} \frac{\left(6-N_{\triangle}(v)\right)^{2}}{N_{\triangle}(v)}
\end{aligned}
$$

Run Monte Carlo simulations of the partition function $Z_{H L}^{(E)}$

Phase Structure

Critical surface for $k_{0}=1$ projected onto the $\lambda-\alpha$ plane

Phase C: blue circles
Phase D: magenta squares
Phase E: orange diamonds

Depictions of Representative Spacetimes

Discrete 2 -volume as a function of discrete time

Phase C
Phase D
Phase E
[JHC, Anderson et al 2011]

Preliminary Evidence for Semiclassicality

Spectral dimension

Phase A $(\lambda \stackrel{\sigma}{=} 1, \alpha=0)$

Phase C $(\lambda \stackrel{\sigma}{=} 1, \alpha=0)$

Phase C $(\lambda \neq 1, \alpha \neq 0)$

Preliminary Evidence for Semiclassicality

Spectral dimension

Phase A $(\lambda \stackrel{\sigma}{=} 1, \alpha=0)$

Phase C $(\lambda \stackrel{\sigma}{=} 1, \alpha=0)$

Phase C $(\lambda \neq 1, \alpha \neq 0)$

Minisuperspace model fit to phase C ensemble for $\lambda \neq 1, \alpha \neq 0$

Preliminary Evidence for Static Nature of Phase E

Fourier transform of discrete 2 -volume as a function of discrete time

Preliminary Evidence for Static Nature of Phase E

Fourier transform of discrete 2 -volume as a function of discrete time

Normalized variance of the discrete 2-volume

$$
\begin{gathered}
\left.\frac{\left\langle\Delta_{\left.N_{2}^{S L}\right\rangle_{\max }}\right.}{\left\langle N_{2}^{S L}\right\rangle_{\max }}\right|_{C}=0.20<\left.\frac{\left\langle\Delta_{N_{2}^{S L}}\right\rangle}{\left\langle N_{2}^{S L}\right\rangle}\right|_{E}=0.69<\left.\frac{\left\langle\Delta_{N_{2}^{S L}}\right\rangle_{\min }}{\left\langle N_{2}^{S L}\right\rangle_{\min }}\right|_{C}=0.78 \\
\left.\frac{\sqrt{\left\langle\Delta_{N_{2}^{S L}}\right\rangle_{\max }}}{\sqrt[3]{\left\langle N_{3}\right\rangle_{\max }}}\right|_{C}=0.35>\left.\frac{\sqrt{\left\langle\Delta_{N_{2}^{S L}}\right\rangle}}{\sqrt[3]{\left\langle N_{3}\right\rangle}}\right|_{E}=0.27>\left.\frac{\sqrt{\left\langle\Delta_{N_{2}^{S L}}\right\rangle_{\min }}}{\sqrt[3]{\left\langle N_{3}\right\rangle_{\min }}}\right|_{C}=0.22
\end{gathered}
$$

[JHC, Anderson et al 2011]

C-E Phase Transition

Conjecture The C-E phase transition is a confinement-deconfinement transition of the global gravitational charge \mathcal{H}_{\perp}

Hamiltonian constraint

$$
\begin{gathered}
\mathcal{H}_{\perp}=\int_{\Sigma} \mathrm{d}^{2} x \sqrt{\gamma(t, \mathbf{x})}\left[K_{i j}(t, \mathbf{x}) K^{i j}(t, \mathbf{x})-\lambda K^{2}(t, \mathbf{x})+\alpha R_{2}^{2}(t, \mathbf{x})\right. \\
\left.-\beta R_{2}(t, \mathbf{x})+2 \Lambda\right]
\end{gathered}
$$

Interpretation of transition in terms of FLRW spacetimes

- Confined phase C: Hamiltonian constraint equation becomes the Friedmann equation for the scale factor, which precludes the ground state geometry from being time-independent
- Deconfined phase E: Hamiltonian constraint measures the energy levels with the ground state identified as the lowest energy, typically static configuration

Continuing Research

Current and Future Research

Regarding causal dynamically triangulated Einstein gravity

- Quantum scalar field theory on curved spacetime
- Better determination of spectral dimension
- Dynamical determination of light cone structure
- Renormalization group flow of the cosmological constant
- Fixed metric boundary conditions
- Testing Newton's law of gravitation
- Introduce bundles of quasilocal mass

Regarding causal dynamically triangulated Hořava-Lifshitz gravity

- Testing the confinement-deconfinement conjecture
- Continuing exploration of the phase diagram
- Better distinguish phases D and E
- Ascertain relationships to phase A

