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Lattice QCD

Z =
∫
DADψ̄Dψ exp

[
d3xdτ

(
− 1

4 FµνFµν +
∑Nf

i=1 ψ̄i (D/ + mi + µiγ0)ψi

)]

4d hypercubic grid:

a

quark

gluon

• Discretize action:
• ψ̄D/ ψ → ψ̄(x)

∑
µ

1
2aγµ [U+µ(x)ψ(x + µ)− U−µ(x)ψ(x − µ)]

• − 1
4 FµνFµν → β

∑
x,µν ReTrUP , UP plaquette matrix

• Finite temperature:
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* “One-body” physics: confinement
hadron masses
form factors, etc..

** “Two-body” physics: nuclear interactions
pioneers Hatsuda et al, Savage et al

π
hard-core

+
pion exchange?

*** Many-body physics: nuclear matter
phase diagram vs (temperature T , density ↔ µB)
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Finite µ: why is it important?

The phase diagram of QCD according to Wikipedia

• crystal phase(s)
• quarkyonic phase
• strangelets
. . .

QCD conserves u, d , s charges separately → Z (T , µu, µd , µs)
A vast new world to discover!



Finite µ: what is known?

Equilibrium w.r.t. weak interactions (β-eq.) + electric neutrality → single µ

T

µ
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Color superconductor

Tc ♥QCD critical point

Commonly believed “minimal” phase diagram (“conventional fiction”)
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Exploration hampered by sign problem



Analogy with water



Why are we stuck at µ = 0? The “sign problem”

• quarks anti-commute → integrate analytically: det(D/ (U) + m+µγ0)
γ5(ip/ + m+µγ0)γ5 = (−ip/ + m−µγ0) = (ip/ + m−µ∗γ0)†

det D/ (µ) = det∗D/ (−µ∗)

det real only if µ = 0 (or iµi ), otherwise can/will be complex
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• quarks anti-commute → integrate analytically: det(D/ (U) + m+µγ0)
γ5(ip/ + m+µγ0)γ5 = (−ip/ + m−µγ0) = (ip/ + m−µ∗γ0)†

det D/ (µ) = det∗D/ (−µ∗)

det real only if µ = 0 (or iµi ), otherwise can/will be complex

• Unavoidable as soon as one integrates over fermions (hint?)

• Measure d$ ∼ det D/ must be complex to get correct physics:

〈Tr Polyakov 〉 = exp(− 1
T Fq) =

∫
Re Pol× Re d$−Im Pol× Im d$

〈Tr Polyakov∗〉 = exp(− 1
T Fq̄) =

∫
Re Pol× Re d$+Im Pol× Im d$

µ 6= 0⇒ Fq 6= Fq̄ ⇒ Imd$ 6= 0

• Origin: µ 6= 0 breaks charge conj. symm., ie. usually complex conj.



Sampling oscillatory integrands

• Example: Z (λ) =
∫

dx exp(−x2 + iλx)
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in
te

gr
an

d

x

lambda=  0
lambda=20

• Z (λ)/Z (0) = exp(−λ2/4): exponential cancellations
→ truncating deep in the tail at x ∼ λ gives O(100%) error

“Every x is important” ↔ How to sample?



Reweighting and optimal sampling of oscillatory integrand

• To “sample”: Zf ≡
∫

dx f (x), f (x) ∈ R, with f (x) sometimes negative

Sample w.r.t. auxiliary partition function Zg ≡
∫

dx g(x), g(x) ≥ 0 ∀x

〈W 〉f =
∫
dx W (x)f (x)∫

dx f (x)
=
∫
dx W (x) f (x)

g(x) g(x)∫
dx f (x)

g(x) g(x)
=
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g 〉g
〈 fg 〉g

Reweighting, a.k.a.
“put sign in observable”

f
g is the “reweighting factor”, 〈 fg 〉g = Zf

Zg
is the “average sign”
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• Statistical error on average sign 〈 fg 〉g propagates to any observable W
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〈(f /g)2〉g−〈f /g〉2g
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Solution when av. sign→0: g(x) = |f (x)| , ie. f /g = sign(f ) hep-lat/0209126
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• Statistical error on average sign 〈 fg 〉g propagates to any observable W

optimal sampling → minimize its relative variance
〈(f /g)2〉g−〈f /g〉2g

〈f /g〉2g

Solution when av. sign→0: g(x) = |f (x)| , ie. f /g = sign(f ) hep-lat/0209126

• Generically, average sign is exponentially small: 〈 fg 〉g = Zf

Zg
= exp(−V

T ∆f (µ2,T )︸ ︷︷ ︸
diff. free energy dens.

)

Each meas. of f
g gives value O(1) =⇒ error ≈ 1√

# meas.

Constant rel. accuracy =⇒ need statistics ∝ exp(+2 V
T ∆f )

Large V , low T inaccessible



Sampling for QCD at finite µ

• QCD: sample with |Re(det(µ)Nf )| optimal, but not equiv. to Gaussian integral
Can choose instead: | det(µ)|Nf , i.e. “phase quenched”

| det(µ)|Nf = det(+µ)
Nf
2 det(−µ)

Nf
2 , ie. isospin chemical potential µu = −µd

couples to charged pions ⇒ Bose condensation of π+ when |µ| > µcrit(T )
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| det(µ)| 〉Z|QCD| = 〈e iθ〉 evaluated in isospin-µ ensemble

ZQCD ↔ Z|QCD| by changing fermion b.c. ⇒ ratio UV-finite
For T , µ� mρ, analytic results via RMT/χPT Splittorff, Verbaarschot et al.
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• av. sign = ZQCD(µ)
Z|QCD|(µ) = 〈 det(µ)

| det(µ)| 〉Z|QCD| = 〈e iθ〉 evaluated in isospin-µ ensemble

ZQCD ↔ Z|QCD| by changing fermion b.c. ⇒ ratio UV-finite
For T , µ� mρ, analytic results via RMT/χPT Splittorff, Verbaarschot et al.

• Can improve by incorporating baryons via HRG → Prediction: 1005.0539

〈sign〉 & 0.1 ⇔ O(10) baryons max. at T . Tc (less as T ↘, hardly more as V↗)
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Reweighting strategies

• Sample isospin-µ ensemble + reweight with e iθ → only 0711.0023, 1111.6363

• Sample µ = 0 ensemble? worse, because reweighting factor fluctuates also in
magnitude → increased statistical errors

• Further danger: “overlap pb.” between sampled and reweighted ensembles
→ WRONG estimates in reweighted ensemble for finite statistics

• Example: sample exp(− x2

2 ), reweight to exp(− (x−x0)2

2 ) → 〈x〉 = x0 ?
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• Estimated 〈x〉 saturates
at largest sampled x-value
• Error estimate too small

Insufficient overlap (x0 =5)
Very non-Gaussian distribu-
tion of reweighting factor
Log-normal Kaplan et al.



Reweighting from µ = 0: Glasgow and multi-parameter

• “Glasgow”: β fixed, reweight with det(µ)
det(µ=0) → overlap pb.

• Fodor & Katz: sample (µ = 0, β = βc) and reweight with det(µ)
det(µ=0)×e−∆βSYM

along pseudo-critical line Tc(µ)
- less fluctuations in reweighting factor
- improved (ensured?) overlap: both phases sampled

•

−→ −→ −→
Glasgow

hep-lat/0402006 (physical quark masses, Nt =4) → (µq
E ,TE )=(120(13), 162(2))MeV

• Abrupt qualitative change near µE :
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• “Glasgow”: β fixed, reweight with det(µ)
det(µ=0) → overlap pb.

• Fodor & Katz: sample (µ = 0, β = βc) and reweight with det(µ)
det(µ=0)×e−∆βSYM

along pseudo-critical line Tc(µ)
- less fluctuations in reweighting factor
- improved (ensured?) overlap: both phases sampled

•

−→ −→ −→
Glasgow -0.001
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Im
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µ

courtesy Z. Fodor
the whole story

hep-lat/0402006 (physical quark masses, Nt =4) → (µq
E ,TE )=(120(13), 162(2))MeV

• Abrupt qualitative change near µE :
abrupt change of physics or breakdown of reweighting ?

• Revival (esp. Wilson fermions): Ukawa et al., Nakamura et al., Fodor & Katz ?



Alternative at T ≈ 0: µ = 0 + baryonic sources/sinks

Signal-to-noise ratio of N-baryon correlator ∝ exp(−N(mB − 3
2 mπ)t)

Lepage 1989

CB(t) = ∼ e−mBt

|CB(t)|2 = X ∼ ∼ e−3mπt

• Mitigated with variational baryon ops. → meff plateau for 3 or 4 baryons ?
Savage et al., 1004.2935

At least 2 baryons → nuclear potential Aoki, Hatsuda et al., eg. 1007.3559

• Beautiful results with up to 12→72 pions or kaons Detmold et al., eg. 0803.2728

(cf. isospin-µ: no sign pb.)



Change of strategy

Reweighting gives exact answer in small volumes (work ∼ exp(V ))

Try instead: approximate answer in large volume ?

Improvement: reliability hard to assess → full confidence?

Consider expansion parameter µ
T . 1:

• Taylor expansion about µ = 0

• Imaginary µ + polynomial fit + analytic continuation



Taylor expansion

P(T , µ) = P(T , µ = 0)︸ ︷︷ ︸
indep. calc.

+∆P(T , µ), ∆P(T ,µ)
T 4 =

∑
k=1 c2k(T )

(
µ
T

)2k

c2k = 〈Tr( degree 2k polynomial in D/ −1, ∂D/∂µ )〉µ=0 → vanilla HMC

• From {c2k}, obtain all thermodynamic info: EOS and Tc(µ) and crit. pt. and ...

• As µ
T increases, need higher-order c2k ’s to control truncation error
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Taylor expansion: nitty-gritty

hep-lat/0501030, Appendix A for generic observable O:

〈O〉 =
1

Z

∫
DUO(detM)nf/4e−Sg ,

∂〈O〉
∂µ

=

〈
∂O
∂µ

〉
+

nf

4

(〈
O ∂(ln detM)

∂µ

〉
− 〈O〉

〈
∂(ln detM)

∂µ

〉)

∂ ln detM

∂µ
= tr

(
M−1 ∂M

∂µ

)
,

∂2 ln detM

∂µ2
= tr

(
M−1 ∂

2M

∂µ2

)
− tr

(
M−1 ∂M

∂µ
M−1 ∂M

∂µ

)
,

∂3 ln detM

∂µ3
= tr

(
M−1 ∂

3M

∂µ3

)
− 3tr

(
M−1 ∂M

∂µ
M−1 ∂

2M

∂µ2

)
+2tr

(
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ

)
, etc...



Taylor expansion: nitty-gritty

∂6 ln det M

∂µ6
= tr

M−1 ∂
6M

∂µ6

 − 6tr

M−1 ∂M

∂µ
M−1 ∂

5M

∂µ5


−15tr

M−1 ∂
2M

∂µ2
M−1 ∂

4M

∂µ4

 − 10tr

M−1 ∂
3M

∂µ3
M−1 ∂

3M

∂µ3


+30tr

M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂

4M

∂µ4

 + 60tr

M−1 ∂M

∂µ
M−1 ∂

2M

∂µ2
M−1 ∂

3M

∂µ3


+60tr

M−1 ∂
2M

∂µ2
M−1 ∂M

∂µ
M−1 ∂

3M

∂µ3

 + 30tr

M−1 ∂
2M

∂µ2
M−1 ∂

2M

∂µ2
M−1 ∂

2M

∂µ2


−120tr

M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂

3M

∂µ3


−180tr

M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂

2M

∂µ2
M−1 ∂

2M

∂µ2


−90tr

M−1 ∂M

∂µ
M−1 ∂

2M

∂µ2
M−1 ∂M

∂µ
M−1 ∂

2M

∂µ2


+360tr

M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂

2M

∂µ2


−120tr

(
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ

)
.

Now estimate all Traces by sandwiching between noise vectors... GPUs



Complexity of Taylor expansion approach?

Effects of increasing Taylor order k :

• c2k = 〈Tr( degree 2k polynomial in D/ −1, ∂D/∂µ )〉µ=0 → nb. terms ∼ 62k

• Cancellations: c2k finite as V →∞, but sum of terms possibly ∼ V 2k

ie. the sign problem fights back!

• c2k obtained as average over less and less Gaussian dist. → stat. error?

• c2k ∼ 2k-point function → need larger volumes

Current best: Nt =6, 8th order Gavai & Gupta, 0806.2233

Need much higher order to estimate convergence radius → critical point

Karsch, Schaefer et al, 1009.5211



Imaginary µ: same, but simpler

• Simulate at several values of µ = iµI : no sign pb.
(|µI | < πT

3 , Roberge-Weiss singularity)

• Fit 〈O〉(µI ) =
∑

k
dk
k!µ

k
I → dk is estimator of ∂kO

∂µk
I

Analytic continuation trivial: iµI → µ

• For pressure, take eg. O = nB = ∂P
∂µB

and integrate fitted polynomial

• Error analysis simple: data at different µI ’s uncorrelated

• No free lunch: k th derivative damped by k!

• Data fitted by truncated Taylor series or Pade → systematic error?
Conformal mapping to unit disk Morita et al., 1008.4549
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the series in (iµI )
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D’Elia et al., 0905.1292



New hope with imaginary µ: tricritical scaling

• Rich phase diagram as a function of (µ = iµI ,mu,d ,ms):

- Roberge-Weiss transition at µI

T = 2π
3 (2k + 1)

- Two tricritical lines in Columbia plot (mu,d ,ms) for µI

T = 2π
3

- Associated tricritical scaling window may be broad 1004.3144
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Crosschecks

All methods agree for µ/T . O(1)
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<sign> ~ 0.1(1)

D’Elia, Lombardo 16
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Azcoiti et al., 8
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Fodor, Katz, 6
3

Our reweighting, 6
3

deForcrand, Kratochvila, 6
3

imaginary µ

2 param. imag. µ

dble reweighting, LY zeros

Same, susceptibilities

canonical

Nf = 4 staggered,

amq = 0.05,Nt = 4

PdF & Kratochvila

LAT05

More recent crosschecks (Wilson fermions):
- Reweighting ↔ Taylor expansion Nagata & Nakamura
- Reweighting ↔ canonical Takeda, Kuramashi & Ukawa



State of the art I

• Curvature of Tc(µ) in continuum limit (5 deriv. of P) Fodor, Katz et al.

• Tc(µ) very flat → critical point far from freeze-out curve
• continuum curvature ≈ same as Nt = 4 → small discretization error ?
• No evidence of critical point for µq/T . O(1)



State of the art II
• Curvature of critical surface on coarse lattices (Nt = 4) to O(µ/T )4

(8 deriv. of P) PdF & Philipsen

Region (mu,d ,ms) of first-order transition shrinks as µ is turned on

  QCD critical point DISAPPEARED

crossover 1rst
0

∞

Real world

X

mu,d
ms

µ

Results I and II use same numerical method (small imag. µ) 0711.0262



Tame the sign problem at strong coupling

Avoid complex determinant by reversing order of integration: links, then fermions

No conservation law for sign pb.! Chandrasekharan, Wenger, PdF, ...

Z =
∫
DADψ̄Dψ exp

[
d3xdτ

(
− 1

4 FµνFµν +
∑Nf

i=1 ψ̄i (D/ + mi + µiγ0)ψi

)]
• Problem: − 1

4 FµνFµν → 1
g2

0
TrUPlaquette, ie. 4-link interaction

• Solution: set g0 =∞, strong coupling limit (↔ continuum limit)

• Then integral over gauge links factorizes: ∼
∫ ∏

dU exp(ψ̄xUx,µ̂ψx+µ̂)

- analytic 1-link integral → only color singlets survive

- perform Grassmann integration last → hopping of color singlets

→ hadron (baryon, meson) worldlines (staggered quarks so far)

- sample gas of worldlines by Monte Carlo

- baryons make self-avoiding loops:

Point-like, hard-core baryons in pion bath

No πNN vertex: just hard-core repulsion?



Worldline configurations in (1 + 1)d

Constraint at every site:
3 blue symbols (• ψ̄ψ, meson hop)
or a baryon loop

Sign problem mild at all densities → complete numerical solution



Worldline configurations in (1 + 1)d

Constraint at every site:
3 blue symbols (• ψ̄ψ, meson hop)
or a baryon loop

The dense (crystalline) phase:
1 baryon per site; no space left

→ 〈ψ̄ψ〉 = 0

Sign problem mild at all densities → complete numerical solution



Sign problem? Monitor − 1
V log〈sign〉
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• 〈sign〉 = Z
Z||
∼ exp(−V

T ∆f (µ2)) as expected; ∆f ∼ µ2 +O(µ4)

• Determinant method → ∆f ∼ O(1). Why is worldline so much better??
- no conservation law for sign pb. (eg. use eigenbasis of H)
- negative sign caused by spatial baryon hopping: no baryon → no sign pb

no silver blaze pb.



Results I – Crude nuclear matter: spectroscopy
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• Can compare masses of differently shaped “isotopes”

• am(A) ∼ aµcrit
B A + (36π)1/3σa2A2/3, ie. (bulk + surface tension)

Bethe-Weizsäcker parameter-free (µcrit
B and σ measured separately)

• “Magic numbers” with increased stability: A = 4, 8, 12 (reduced area)



Results II – Nuclear interactions and Phase diagram

• Baryon:point-like core (self-avoiding loop) disturbs pion bath

⇒ macroscopic pion cloud ∆Eπ(R)∝ exp(−mρ/ωR)

R ×(−1)x+y+z
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• Nuclear interaction from nucleon’s core disturbing other nucleon’s pion cloud
Linear response ⇒ VNN(R) ≈ −2×∆Eπ(R), ie. Yukawa!

• Phase diagram for mq = 0: chiral transition line, with tricritical point
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Discretization error, esp. at low T → continuous Euclidean time Unger



Going beyond strong coupling limit

• At β = 0: measure gauge observables (plaquette, Polyakov loop)
w/Fromm, Langelage, Miura,..

Polyakov loop vs T
across chiral transition
mq = 0, µ = 0
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• Simulate O(β) action: in progress

• Beyond O(β): decouple the 4 links in each plaquette by auxiliary fields?

Hubbard-Stratonovich:
∫

dφ∗dφ exp(−|φ− φ0|2) = const. indep. of φ0

Variant: exp(αAB) ∝
∫

dφ∗dφ exp[−α(|φ|2 − φ∗A− Bφ)] ∀α ∈ R+

Take A = U1U2,B = U3U4,
φ along diagonal φ

U

U

U

U

1

2

3

4

Further decoupling to “1-link” action → link integration possible ∀β



Conclusions (from LAT09 Beijing plenary)

• Finite density QCD is important enough to keep trying

• Analytic understanding of severity of sign problem

• Crosschecks among LQCD methods and with effective models

• Slow but steady progress for small µ: Tc(µ) OK, crit. pt. ??
Try to control a→ 0 extrapolation

• Confucius: Real knowledge is to know the extent of one’s ignorance

• Future: -Start with link integration still vague beyond β = 0
-Complex Langevin do miracles really happen?

• Not covered: - canonical ensemble
- density of states method



Backup: complex Langevin 80’s revival Aarts, Seiler, Stamatescu, Berges,..

• Real action S : Langevin evolution in Monte-Carlo time τ Parisi-Wu
∂φ
∂τ = − δS[φ]

δφ + η, ie. drift force + noise

Can prove: 〈W [φ]〉τ = 1
Z

∫
Dφ exp(−S [φ])W [φ]

• Complex action S ? Parisi, Klauder, Karsch, Ambjorn,..

Drift force complex→ complexify field (φR + iφI ) and simulate as before
With luck: 〈W

[
φR + iφI

]
〉τ = 1

Z

∫
Dφ exp(−S [φ])W [φ]

• Only change since 1980’s: adaptive stepsize → runaway sols disappear

• Gaussian example:

Z (λ) =
∫

dx exp(−x2 + iλx)

Complexify:
d
dτ (x + iy) = −2(x + iy) + iλ+ η

For any observable W ,
〈W (x + iy)〉τ = 〈W (x)〉Z

Oscillatory weight(x)
Positive weight(x,y)

• saddle pt: x = 0, y = λ
2

• Classical stationary points
unstable directions going to ∞? (SU(N)→SL(N,C)): stabilized by stochastic noise

• Towards solving F-P eq.: eff. pot., loop (noise) expansion Guralnik & Pehlevan

• Cf. PT -symmetric quantum mechanics, complexified class. mech. C. Bender
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