Simulating lattice QCD at finite baryon density

Philippe de Forcrand
ETH Zürich \& CERN \& YITP \& KITP

Collaborators: Michael Fromm, Jens Langelage, Kohtaroh Miura, Owe Philipsen, Wolfgang Unger

Jan. 30, 2012

Lattice QCD

$$
Z=\int \mathcal{D} A \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left[d^{3} x d \tau\left(-\frac{1}{4} F_{\mu \nu} F_{\mu \nu}+\sum_{i=1}^{N_{f}} \bar{\psi}_{i}\left(D+m_{i}+\mu_{i} \gamma_{0}\right) \psi_{i}\right)\right]
$$

Ad hypercubic grid:

- Discretize action:
- $\bar{\psi} D \psi \rightarrow \bar{\psi}(x) \sum_{\mu} \frac{1}{2 a} \gamma_{\mu}\left[U_{+\mu}(x) \psi(x+\mu)-U_{-\mu}(x) \psi(x-\mu)\right]$
- $-\frac{1}{4} F_{\mu \nu} F_{\mu \nu} \rightarrow \beta \sum_{x, \mu \nu} \operatorname{Re} \operatorname{Tr} U_{P}, \quad U_{P}$ plaquette matrix \square
- Finite temperature:

Scope of lattice QCD simulations: Physics of color singlets

* "One-body" physics: confinement hadron masses form factors, etc..

Scope of lattice QCD simulations: Physics of color singlets

* "One-body" physics: confinement hadron masses form factors, etc..

** "Two-body" physics: nuclear interactions pioneers Hatsuda et al, Savage et al

$$
\begin{gathered}
\text { hard-core } \\
+ \\
\text { pion exchange? }
\end{gathered}
$$

Scope of lattice QCD simulations: Physics of color singlets

* "One-body" physics: confinement hadron masses form factors, etc..

** "Two-body" physics: nuclear interactions pioneers Hatsuda et al, Savage et al

hard-core pion exchange?
*** Many-body physics: nuclear matter phase diagram vs (temperature T, density $\leftrightarrow \mu_{B}$)

Finite μ : why is it important?

The phase diagram of QCD according to Wikipedia

Finite μ : why is it important?

The phase diagram of QCD according to Wikipedia

- crystal phase(s)
- quarkyonic phase
- strangelets
...

QCD conserves u, d, s charges separately $\rightarrow Z\left(T, \mu_{u}, \mu_{d}, \mu_{s}\right)$ A vast new world to discover!

Finite μ : what is known?

Equilibrium w.r.t. weak interactions (β-eq.) + electric neutrality \rightarrow single μ

Commonly believed "minimal" phase diagram

Finite μ : what is known?

Minimal, possible phase diagram

Finite μ : what is known?

Exploration hampered by sign problem

Analogy with water

Why are we stuck at $\mu=0$? The "sign problem"

- quarks anti-commute \rightarrow integrate analytically: $\operatorname{det}\left(D(U)+m+\mu \gamma_{0}\right)$ $\gamma_{5}\left(i p+m+\mu \gamma_{0}\right) \gamma_{5}=\left(-i p+m-\mu \gamma_{0}\right)=\left(i p+m-\mu^{*} \gamma_{0}\right)^{\dagger}$

$$
\operatorname{det} \not D(\mu)=\operatorname{det}^{*} \not D\left(-\mu^{*}\right)
$$

det real only if $\mu=0$ (or $i \mu_{i}$), otherwise can/will be complex

Why are we stuck at $\mu=0$? The "sign problem"

- quarks anti-commute \rightarrow integrate analytically: $\operatorname{det}\left(D(U)+m+\mu \gamma_{0}\right)$ $\gamma_{5}\left(i p+m+\mu \gamma_{0}\right) \gamma_{5}=\left(-i p+m-\mu \gamma_{0}\right)=\left(i p+m-\mu^{*} \gamma_{0}\right)^{\dagger}$

$$
\operatorname{det} D(\mu)=\operatorname{det}^{*} \not D\left(-\mu^{*}\right)
$$

det real only if $\mu=0$ (or $i \mu_{i}$), otherwise can/will be complex

- Unavoidable as soon as one integrates over fermions (hint?)

Why are we stuck at $\mu=0$? The "sign problem"

- quarks anti-commute \rightarrow integrate analytically: $\operatorname{det}\left(D(U)+m+\mu \gamma_{0}\right)$

$$
\begin{aligned}
\gamma_{5}\left(i p \phi+m+\mu \gamma_{0}\right) \gamma_{5}= & \left(-i p+m-\mu \gamma_{0}\right)=\left(i \phi p+m-\mu^{*} \gamma_{0}\right)^{\dagger} \\
& \operatorname{det} \mid \overrightarrow{ }(\mu)=\operatorname{det}^{*} \not D\left(-\mu^{*}\right)
\end{aligned}
$$

det real only if $\mu=0$ (or $i \mu_{i}$), otherwise can/will be complex

- Unavoidable as soon as one integrates over fermions (hint?)
- Measure $d \varpi \sim \operatorname{det} D$ must be complex to get correct physics:

$\langle\operatorname{Tr}$ Polyakov $\rangle=\exp \left(-\frac{1}{T} F_{\mathrm{q}}\right)=\int \operatorname{Re} \operatorname{Pol} \times \operatorname{Re} d \varpi-\operatorname{Im} \operatorname{Pol} \times \operatorname{Im} d \varpi$
$\left\langle\operatorname{Tr}\right.$ Polyakov* $\left.{ }^{*}\right\rangle=\exp \left(-\frac{1}{T} F_{\bar{q}}\right)=\int \operatorname{Re} \operatorname{Pol} \times \operatorname{Re} d \varpi+\operatorname{Im} \operatorname{Pol} \times \operatorname{Im} d \varpi$

$$
\mu \neq 0 \Rightarrow F_{q} \neq F_{\bar{q}} \Rightarrow \operatorname{Im} d \varpi \neq 0
$$

Why are we stuck at $\mu=0$? The "sign problem"

- quarks anti-commute \rightarrow integrate analytically: $\operatorname{det}\left(D(U)+m+\mu \gamma_{0}\right)$

$$
\begin{aligned}
\gamma_{5}\left(i \not p+m+\mu \gamma_{0}\right) \gamma_{5}= & \left(-i p+m-\mu \gamma_{0}\right)=\left(i \phi p+m-\mu^{*} \gamma_{0}\right)^{\dagger} \\
& \operatorname{det} \mid D(\mu)=\operatorname{det}^{*} \not D\left(-\mu^{*}\right)
\end{aligned}
$$

det real only if $\mu=0$ (or $i \mu_{i}$), otherwise can/will be complex

- Unavoidable as soon as one integrates over fermions (hint?)
- Measure $d \varpi \sim \operatorname{det} D$ must be complex to get correct physics:

\langle Tr Polyakov $\rangle=\exp \left(-\frac{1}{T} F_{\mathrm{q}}\right)=\int \operatorname{Re} \operatorname{Pol} \times \operatorname{Re} d \varpi-\mathrm{Im} \operatorname{Pol} \times \operatorname{Im} d \varpi$
$\left\langle\right.$ Tr Polyakov* $\left.{ }^{*}\right\rangle=\exp \left(-\frac{1}{T} F_{\bar{q}}\right)=\int \operatorname{Re} \operatorname{Pol} \times \operatorname{Re} d \varpi+\operatorname{Im} \operatorname{Pol} \times \operatorname{Im} d \varpi$

$$
\mu \neq 0 \Rightarrow F_{q} \neq F_{\bar{q}} \Rightarrow \operatorname{Im} d \varpi \neq 0
$$

- Origin: $\mu \neq 0$ breaks charge conj. symm., ie. usually complex conj.

Sampling oscillatory integrands

- Example: $Z(\lambda)=\int d x \exp \left(-x^{2}+\mathbf{i} \lambda \mathbf{x}\right)$

- $Z(\lambda) / Z(0)=\exp \left(-\lambda^{2} / 4\right)$: exponential cancellations
\rightarrow truncating deep in the tail at $x \sim \lambda$ gives $\mathcal{O}(100 \%)$ error
"Every x is important" $\leftrightarrow \quad$ How to sample?

Reweighting and optimal sampling of oscillatory integrand

- To "sample": $Z_{f} \equiv \int d x f(x), \quad f(x) \in \mathbf{R}$, with $f(x)$ sometimes negative Sample w.r.t. auxiliary partition function $Z_{g} \equiv \int d x g(x), \quad g(x) \geq 0 \forall x$

$$
\langle W\rangle_{f}=\frac{\int d x W(x) f(x)}{\int d x f(x)}=\frac{\int d x W(x) \frac{f(x)}{\xi(x)} g(x)}{\int d x \frac{f(x)}{g(x)} g(x)}=\frac{\left\langle W \frac{f}{\left.\frac{f}{g}\right\rangle_{g}}\right.}{\left\langle\frac{\frac{⿺}{g}}{g}\right\rangle_{g}}
$$

Reweighting, a.k.a. "put sign in observable"

$$
\frac{f}{g} \text { is the "reweighting factor", }\left\langle\frac{f}{g}\right\rangle_{g}=\frac{Z_{f}}{Z_{g}} \text { is the "average sign" }
$$

Reweighting and optimal sampling of oscillatory integrand

- To "sample": $Z_{f} \equiv \int d x f(x), \quad f(x) \in \mathbf{R}$, with $f(x)$ sometimes negative Sample w.r.t. auxiliary partition function $Z_{g} \equiv \int d x g(x), \quad g(x) \geq 0 \forall x$

$$
\langle W\rangle_{f}=\frac{\int d x W(x) f(x)}{\int d x f(x)}=\frac{\int d x W(x) \frac{f(x)}{\delta(x)} g(x)}{\int d x \frac{f(x)}{g(x)} g(x)}=\frac{\left\langle W \frac{f}{g}\right\rangle_{g}}{\left\langle\frac{f}{g}\right\rangle_{g}}
$$

Reweighting, a.k.a.
"put sign in observable"

$$
\frac{f}{g} \text { is the "reweighting factor" }, \quad\left\langle\frac{f}{g}\right\rangle_{g}=\frac{Z_{f}}{Z_{g}} \text { is the "average sign" }
$$

- Statistical error on average sign $\left\langle\frac{f}{g}\right\rangle_{g}$ propagates to any observable W optimal sampling \rightarrow minimize its relative variance $\frac{\left\langle(f / g)^{2}\right\rangle_{g}-\langle f / g\rangle_{g}^{2}}{\langle f / g\rangle_{g}^{2}}$
Solution when av. sign $\rightarrow 0: \quad g(x)=|f(x)|$, ie. $f / g=\operatorname{sign}(f)$ hep-lat/0209126

Reweighting and optimal sampling of oscillatory integrand

- To "sample": $Z_{f} \equiv \int d x f(x), \quad f(x) \in \mathbf{R}$, with $f(x)$ sometimes negative Sample w.r.t. auxiliary partition function $Z_{g} \equiv \int d x g(x), \quad g(x) \geq 0 \forall x$

$$
\langle W\rangle_{f}=\frac{\int d x W(x) f(x)}{\int d x f(x)}=\frac{\int d x W(x) \frac{f(x)}{(x)} g(x)}{\int d x \frac{f(x)}{g(x)} g(x)}=\frac{\left\langle W \frac{f}{g}\right\rangle_{g}}{\left\langle\frac{f}{g}\right\rangle_{g}}
$$

Reweighting, a.k.a.
"put sign in observable"
$\frac{f}{g}$ is the "reweighting factor", $\left\langle\frac{f}{g}\right\rangle_{g}=\frac{Z_{f}}{Z_{g}} \quad$ is the "average sign"

- Statistical error on average sign $\left\langle\frac{f}{g}\right\rangle_{g}$ propagates to any observable W
optimal sampling \rightarrow minimize its relative variance $\frac{\left\langle(f / g)^{2}\right\rangle_{g}-\langle f / g\rangle_{g}^{2}}{\langle f / g\rangle_{g}^{2}}$
Solution when av. sign $\rightarrow 0: \quad g(x)=|f(x)|$, ie. $f / g=\operatorname{sign}(f)$ hep-lat/0209126
- Generically, average sign is exponentially small: $\left\langle\frac{f}{g}\right\rangle_{g}=\frac{Z_{f}}{Z_{g}}=\exp (-\frac{V}{T} \underbrace{\Delta f\left(\mu^{2}, T\right)})$

Each meas. of $\frac{f}{g}$ gives value $\mathcal{O}(1) \Longrightarrow$ error $\approx \frac{1}{\sqrt{\# \text { meas }}}$
Constant rel. accuracy \Longrightarrow need statistics $\propto \exp \left(+2 \frac{\mathrm{~V}}{\mathrm{~T}} \Delta f\right)$
Large V, low T inaccessible

Sampling for QCD at finite μ

- QCD: sample with $\left|\operatorname{Re}\left(\operatorname{det}(\mu)^{N_{f}}\right)\right|$ optimal, but not equiv. to Gaussian integral Can choose instead: $|\operatorname{det}(\mu)|^{N_{f}}$, i.e. "phase quenched" $|\operatorname{det}(\mu)|^{N_{f}}=\operatorname{det}(+\mu)^{\frac{N_{f}}{2}} \operatorname{det}(-\mu)^{\frac{N_{f}}{2}}$, ie. isospin chemical potential $\mu_{u}=-\mu_{d}$ couples to charged pions \Rightarrow Bose condensation of π^{+}when $|\mu|>\mu_{\text {crit }}(T)$

Sampling for QCD at finite μ

- QCD: sample with $\left|\operatorname{Re}\left(\operatorname{det}(\mu)^{N_{f}}\right)\right|$ optimal, but not equiv. to Gaussian integral Can choose instead: $|\operatorname{det}(\mu)|^{N_{f}}$, i.e. "phase quenched" $|\operatorname{det}(\mu)|^{N_{f}}=\operatorname{det}(+\mu)^{\frac{N_{f}}{2}} \operatorname{det}(-\mu)^{\frac{N_{f}}{2}}$, ie. isospin chemical potential $\mu_{u}=-\mu_{d}$ couples to charged pions \Rightarrow Bose condensation of π^{+}when $|\mu|>\mu_{\text {crit }}(T)$
- av. sign $=\frac{Z_{\text {Qcd }}(\mu)}{Z_{\text {IQCD }}(\mu)}=e^{-\frac{\vee}{T}\left(f\left(\mu_{\omega} F+\mu, \mu_{\sigma} F+\mu\right)-f\left(\mu_{\omega} F+\mu, \mu_{\sigma} \leftharpoondown-\mu\right)\right)} \quad$ (for $\left.N_{f}=2\right)$

$\Delta f\left(\mu^{2}, T\right)$ large in the Bose phase \rightarrow "severe" sign pb.

Sampling for QCD at finite μ

- QCD: sample with $\left|\operatorname{Re}\left(\operatorname{det}(\mu)^{N_{f}}\right)\right|$ optimal, but not equiv. to Gaussian integral Can choose instead: $|\operatorname{det}(\mu)|^{N_{f}}$, i.e. "phase quenched" $|\operatorname{det}(\mu)|^{N_{f}}=\operatorname{det}(+\mu)^{\frac{N_{f}}{2}} \operatorname{det}(-\mu)^{\frac{N_{f}}{2}}$, ie. isospin chemical potential $\mu_{u}=-\mu_{d}$ couples to charged pions \Rightarrow Bose condensation of π^{+}when $|\mu|>\mu_{\text {crit }}(T)$
- av. sign $=\frac{Z_{\text {QcD }}(\mu)}{Z_{\text {ICDD }}(\mu)}=e^{-\frac{v}{T}\left(f\left(\mu_{\omega} F+\mu, \mu_{\sigma} F+\mu\right)-f\left(\mu_{\omega} F+\mu, \mu_{\sigma} \sigma-\mu\right)\right)} \quad\left(\right.$ for $\left.N_{f}=2\right)$

$\Delta f\left(\mu^{2}, T\right)$ large in the Bose phase \rightarrow "severe" sign pb.
- av. sign $=\frac{Z_{\text {Qco }}(\mu)}{Z_{\mid \text {QcD }}(\mu)}=\left\langle\frac{\operatorname{det}(\mu)}{|\operatorname{det}(\mu)|}\right\rangle_{Z_{|Q C D|}}=\left\langle e^{i \theta}\right\rangle$ evaluated in isospin- μ ensemble $Z_{\mathrm{QCD}} \leftrightarrow Z_{\mid \mathrm{QCD}}$ by changing fermion b.c. \Rightarrow ratio UV-finite For $T, \mu \ll m_{\rho}$, analytic results via RMT $/ \chi$ PT

Sampling for QCD at finite μ

- QCD: sample with $\left|\operatorname{Re}\left(\operatorname{det}(\mu)^{N_{f}}\right)\right|$ optimal, but not equiv. to Gaussian integral Can choose instead: $|\operatorname{det}(\mu)|^{N_{f}}$, i.e. "phase quenched" $|\operatorname{det}(\mu)|^{N_{f}}=\operatorname{det}(+\mu)^{\frac{N_{f}}{2}} \operatorname{det}(-\mu)^{\frac{N_{f}}{2}}$, ie. isospin chemical potential $\mu_{u}=-\mu_{d}$ couples to charged pions \Rightarrow Bose condensation of π^{+}when $|\mu|>\mu_{\text {crit }}(T)$
- av. sign $=\frac{Z_{\text {Qcd }}(\mu)}{Z_{\text {lecD }}(\mu)}=e^{-\frac{\vee}{T}\left(f\left(\mu_{\omega}=+\mu, \mu_{\sigma} F+\mu\right)-f\left(\mu_{\omega}=+\mu, \mu_{\sigma} F-\mu\right)\right)} \quad$ (for $\left.N_{f}=2\right)$

$\Delta f\left(\mu^{2}, T\right)$ large in the Bose phase \rightarrow "severe" sign pb.
- av. sign $=\frac{Z_{\text {QcD }}(\mu)}{Z_{\mid \text {QCD } \mid}(\mu)}=\left\langle\frac{\operatorname{det}(\mu)}{|\operatorname{det}(\mu)|}\right\rangle_{Z_{\text {|CCD } \mid}}=\left\langle e^{i \theta}\right\rangle$ evaluated in isospin- μ ensemble $Z_{\mathrm{QCD}} \leftrightarrow Z_{\mid \mathrm{QCD}}$ by changing fermion b.c. \Rightarrow ratio UV-finite For $T, \mu \ll m_{\rho}$, analytic results via RMT/ χ PT Splittorff, Verbaarschot et al.
- Can improve by incorporating baryons via HRG \rightarrow Prediction: 1005.0539 \langle sign $\rangle \gtrsim 0.1 \Leftrightarrow \mathcal{O}(10)$ baryons max. at $T \lesssim T_{c}$ (less as $T \searrow$, hardly more as $V \nearrow$)

Reweighting strategies

- Sample isospin $-\mu$ ensemble + reweight with $e^{i \theta} \rightarrow$ only $0711.0023,1111.6363$

Reweighting strategies

- Sample isospin $-\mu$ ensemble + reweight with $e^{i \theta} \rightarrow$ only $0711.0023,1111.6363$
- Sample $\mu=0$ ensemble? worse, because reweighting factor fluctuates also in magnitude \rightarrow increased statistical errors

Reweighting strategies

- Sample isospin $-\mu$ ensemble + reweight with $e^{i \theta} \rightarrow$ only 0711.0023, 1111.6363
- Sample $\mu=0$ ensemble? worse, because reweighting factor fluctuates also in magnitude \rightarrow increased statistical errors
- Further danger: "overlap pb." between sampled and reweighted ensembles
\rightarrow WRONG estimates in reweighted ensemble for finite statistics
- Example: sample $\exp \left(-\frac{x^{2}}{2}\right)$, reweight to $\exp \left(-\frac{\left(x-x_{0}\right)^{2}}{2}\right) \rightarrow\langle x\rangle=x_{0}$?

- Estimated $\langle x\rangle$ saturates at largest sampled x-value
- Error estimate too small

Insufficient overlap $\left(x_{0}=5\right)$

Very non-Gaussian distribution of reweighting factor Log-normal Kaplan et al.

Reweighting from $\mu=0$: Glasgow and multi-parameter

- "Glasgow": β fixed, reweight with $\frac{\operatorname{det}(\mu)}{\operatorname{det}(\mu=0)} \quad \rightarrow$ overlap pb.
- Fodor \& Katz: sample ($\mu=0, \beta=\beta_{c}$) and reweight with $\frac{\operatorname{det}(\mu)}{\operatorname{det}(\mu=0)} \times e^{-\Delta \beta S_{Y M}}$ along pseudo-critical line $T_{c}(\mu)$
- less fluctuations in reweighting factor
- improved (ensured?) overlap: both phases sampled

hep-lat/0402006 (physical quark masses, $\left.N_{t}=4\right) \rightarrow\left(\mu_{E}^{q}, T_{E}\right)=(120(13), 162(2)) \mathrm{MeV}$
- Abrupt qualitative change near μ_{E} :

Reweighting from $\mu=0$: Glasgow and multi-parameter

- "Glasgow": β fixed, reweight with $\frac{\operatorname{det}(\mu)}{\operatorname{det}(\mu=0)} \quad \rightarrow$ overlap pb.
- Fodor \& Katz: sample ($\mu=0, \beta=\beta_{c}$) and reweight with $\frac{\operatorname{det}(\mu)}{\operatorname{det}(\mu=0)} \times e^{-\Delta \beta S_{Y M}}$ along pseudo-critical line $T_{c}(\mu)$
- less fluctuations in reweighting factor
- improved (ensured?) overlap: both phases sampled

hep-lat/0402006 (physical quark masses, $\left.N_{t}=4\right) \rightarrow\left(\mu_{E}^{q}, T_{E}\right)=(120(13), 162(2)) \mathrm{MeV}$
- Abrupt qualitative change near μ_{E} : abrupt change of physics or breakdown of reweighting ?
- Revival (esp. Wilson fermions): Ukawa et al., Nakamura et al., Fodor \& Katz

Alternative at $T \approx 0: \mu=0+$ baryonic sources/sinks

Signal-to-noise ratio of N-baryon correlator $\propto \exp \left(-N\left(m_{B}-\frac{3}{2} m_{\pi}\right) t\right)$

- Mitigated with variational baryon ops. $\rightarrow m_{\text {eff }}$ plateau for 3 or 4 baryons ? Savage et al., 1004.2935
At least 2 baryons \rightarrow nuclear potential Aoki, Hatsuda et al., eg. 1007.3559
- Beautiful results with up to $12 \rightarrow 72$ pions or kaons Detmold et al., eg. 0803.2728 (cf. isospin- μ : no sign pb.)

Change of strategy

Reweighting gives exact answer in small volumes (work $\sim \exp (V)$)

Try instead: approximate answer in large volume ?

Improvement: reliability hard to assess \rightarrow full confidence?

Consider expansion parameter $\frac{\mu}{T} \lesssim 1$:

- Taylor expansion about $\mu=0$
- Imaginary $\mu+$ polynomial fit + analytic continuation

Taylor expansion

$$
\begin{gathered}
P(T, \mu)=\underbrace{P(T, \mu=0)}_{\text {indep. calc. }}+\Delta P(T, \mu), \quad \frac{\Delta P(T, \mu)}{T^{4}}=\sum_{k=1} c_{2 k}(T)\left(\frac{\mu}{T}\right. \\
c_{2 k}=\left\langle\operatorname{Tr}\left(\text { degree } 2 k \text { polynomial in } D^{-1}, \frac{\partial D}{\partial \mu}\right)\right\rangle_{\mu=0} \rightarrow \text { vanilla HMC }
\end{gathered}
$$

- From $\left\{c_{2 k}\right\}$, obtain all thermodynamic info: EOS and $T_{c}(\mu)$ and crit. pt. and ...
- As $\frac{\mu}{T}$ increases, need higher-order $c_{2 k}$'s to control truncation error

C. Schmidt, hep-lat/0610116

Taylor expansion: nitty-gritty

hep-lat/0501030, Appendix A for generic observable \mathcal{O} :

$$
\begin{gathered}
\langle\mathcal{O}\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} \cup \mathcal{O}(\operatorname{det} M)^{n_{f} / 4} e^{-S_{g}}, \\
\frac{\partial\langle\mathcal{O}\rangle}{\partial \mu}=\left\langle\frac{\partial \mathcal{O}}{\partial \mu}\right\rangle+\frac{n_{f}}{4}\left(\left\langle\mathcal{O} \frac{\partial(\ln \operatorname{det} M)}{\partial \mu}\right\rangle-\langle\mathcal{O}\rangle\left\langle\frac{\partial(\ln \operatorname{det} M)}{\partial \mu}\right\rangle\right) \\
\frac{\partial \ln \operatorname{det} M}{\partial \mu}=\operatorname{tr}\left(M^{-1} \frac{\partial M}{\partial \mu}\right), \\
\frac{\partial^{2} \ln \operatorname{det} M}{\partial \mu^{2}}=\operatorname{tr}\left(M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}}\right)-\operatorname{tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu}\right) \\
\frac{\partial^{3} \ln \operatorname{det} M}{\partial \mu^{3}}= \\
\operatorname{tr}\left(M^{-1} \frac{\partial^{3} M}{\partial \mu^{3}}\right)-3 \operatorname{tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}}\right) \\
+2 \operatorname{tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu}\right), \text { etc } \ldots
\end{gathered}
$$

Taylor expansion: nitty-gritty

$$
\begin{aligned}
& \frac{\partial^{6} \ln \operatorname{det} M}{\partial \mu^{6}}=\operatorname{tr}\left(M^{-1} \frac{\partial^{6} M}{\partial \mu^{6}}\right)-6 \operatorname{tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^{5} M}{\partial \mu^{5}}\right) \\
& -15 \operatorname{tr}\left(M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}} M^{-1} \frac{\partial^{4} M}{\partial \mu^{4}}\right)-10 \operatorname{tr}\left(M^{-1} \frac{\partial^{3} M}{\partial \mu^{3}} M^{-1} \frac{\partial^{3} M}{\partial \mu^{3}}\right) \\
& +30 \operatorname{tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^{4} M}{\partial \mu^{4}}\right)+60 \operatorname{tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}} M^{-1} \frac{\partial^{3} M}{\partial \mu^{3}}\right) \\
& +60 \operatorname{tr}\left(M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^{3} M}{\partial \mu^{3}}\right)+30 \operatorname{tr}\left(M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}} M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}} M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}}\right) \\
& -120 \operatorname{tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^{3} M}{\partial \mu^{3}}\right) \\
& -180 \operatorname{tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}} M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}}\right) \\
& -90 \operatorname{tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}}\right) \\
& +360 \operatorname{tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^{2} M}{\partial \mu^{2}}\right) \\
& -120 \operatorname{tr}\left(M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu}\right) .
\end{aligned}
$$

Now estimate all Traces by sandwiching between noise vectors... GPUs

Complexity of Taylor expansion approach?

Effects of increasing Taylor order k :

- $c_{2 k}=\left\langle\operatorname{Tr}\left(\text { degree } 2 k \text { polynomial in } ధ^{-1}, \frac{\partial \mathscr{D}}{\partial \mu}\right)\right\rangle_{\mu=0} \quad \rightarrow$ nb. terms $\sim 6^{2 k}$
- Cancellations: $c_{2 k}$ finite as $V \rightarrow \infty$, but sum of terms possibly $\sim V^{2 k}$ ie. the sign problem fights back!
- $c_{2 k}$ obtained as average over less and less Gaussian dist. \rightarrow stat. error?
- $c_{2 k} \sim 2 k$-point function \rightarrow need larger volumes

$$
\text { Current best: } N_{t}=6,8 \text { th order Gavai \& Gupta, } 0806.2233
$$

Need much higher order to estimate convergence radius \rightarrow critical point

Imaginary μ : same, but simpler

- Simulate at several values of $\mu=i \mu_{l}$: no sign pb.

$$
\left(\left|\mu_{I}\right|<\frac{\pi T}{3}, \text { Roberge-Weiss singularity }\right)
$$

- Fit $\langle\mathcal{O}\rangle\left(\mu_{l}\right)=\sum_{k} \frac{d_{k}}{k!} \mu_{l}^{k} \quad \rightarrow \quad d_{k}$ is estimator of $\frac{\partial^{k} \mathcal{O}}{\partial \mu_{l}^{k}}$ Analytic continuation trivial: $i \mu_{I} \rightarrow \mu$
- For pressure, take eg. $\mathcal{O}=n_{B}=\frac{\partial P}{\partial \mu_{B}}$ and integrate fitted polynomial
- Error analysis simple: data at different μ I's uncorrelated
- No free lunch: $k^{\text {th }}$ derivative damped by k !
- Data fitted by truncated Taylor series or Pade \rightarrow systematic error? Conformal mapping to unit disk

Frequent problem (here for $T_{c}(\mu)$): the series in $\left(i \mu_{l}\right)^{2}$ is alternating

D'Elia et al., 0905.1292

New hope with imaginary μ : tricritical scaling

- Rich phase diagram as a function of $\left(\mu=i \mu_{I}, m_{u, d}, m_{s}\right)$:
- Roberge-Weiss transition at $\frac{\mu_{I}}{T}=\frac{2 \pi}{3}(2 k+1)$
- Two tricritical lines in Columbia plot ($m_{u, d}, m_{s}$) for $\frac{\mu_{I}}{T}=\frac{2 \pi}{3}$
- Associated tricritical scaling window may be broad
1004.3144

Phase diagram $\left(m_{u, d}, m_{s},\left(\frac{\mu}{T}\right)^{2}\right)$ 1201.2769

Tricritical scaling for heavy quarks (Potts)
1004.3144

Crosschecks

All methods agree for $\mu / T \lesssim \mathcal{O}(1)$

State of the art I

- Curvature of $T_{c}(\mu)$ in continuum limit (5 deriv. of P) Fodor, Katz et al.

- $T_{c}(\mu)$ very flat \rightarrow critical point far from freeze-out curve
- continuum curvature \approx same as $N_{t}=4 \rightarrow$ small discretization error ?
- No evidence of critical point for $\mu_{q} / T \lesssim \mathcal{O}(1)$

State of the art II

- Curvature of critical surface on coarse lattices $\left(N_{t}=4\right)$ to $\mathcal{O}(\mu / T)^{4}$ (8 deriv. of P)

Region ($m_{u, d}, m_{s}$) of first-order transition shrinks as μ is turned on

Results I and II use same numerical method (small imag. μ) 0711.0262

Tame the sign problem at strong coupling

Avoid complex determinant by reversing order of integration: links, then fermions
No conservation law for sign pb.!
Chandrasekharan, Wenger, PdF, ...
$Z=\int \mathcal{D} A \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left[d^{3} x d \tau\left(-\frac{1}{4} F_{\mu \nu} F_{\mu \nu}+\sum_{i=1}^{N_{f}} \bar{\psi}_{i}\left(D+m_{i}+\mu_{i} \gamma_{0}\right) \psi_{i}\right)\right]$

- Problem: $-\frac{1}{4} F_{\mu \nu} F_{\mu \nu} \rightarrow \frac{1}{g_{0}^{2}} \operatorname{Tr} U_{\text {Plaquette }}$, ie. 4-link interaction \square
- Solution: set $g_{0}=\infty$, strong coupling limit (\leftrightarrow continuum limit)
- Then integral over gauge links factorizes: $\sim \int \prod d U \exp \left(\bar{\psi}_{x} U_{x, \hat{\mu}} \psi_{x+\hat{\mu}}\right)$
- analytic 1 -link integral \rightarrow only color singlets survive
- perform Grassmann integration last \rightarrow hopping of color singlets
\rightarrow hadron (baryon, meson) worldlines
(staggered quarks so far)
- sample gas of worldlines by Monte Carlo
- baryons make self-avoiding loops:

Point-like, hard-core baryons in pion bath
No $\pi N N$ vertex: just hard-core repulsion?

Worldline configurations in $(1+1) d$

Constraint at every site:
3 blue symbols ($\bullet \bar{\psi} \psi$, meson hop)
or a baryon loop
Sign problem mild at all densities \rightarrow complete numerical solution

Worldline configurations in $(1+1) d$

Constraint at every site: 3 blue symbols ($\bullet \bar{\psi} \psi$, meson hop) or a baryon loop

The dense (crystalline) phase:
1 baryon per site; no space left $\rightarrow\langle\bar{\psi} \psi\rangle=0$

Sign problem mild at all densities \rightarrow complete numerical solution

Sign problem? Monitor $-\frac{1}{V} \log \langle$ sign \rangle

- $\langle\operatorname{sign}\rangle=\frac{Z}{Z_{\|}} \sim \exp \left(-\frac{V}{T} \Delta f\left(\mu^{2}\right)\right)$ as expected; $\quad \Delta f \sim \mu^{2}+\mathcal{O}\left(\mu^{4}\right)$
- Determinant method $\rightarrow \Delta f \sim \mathcal{O}(1)$. Why is worldline so much better??
- no conservation law for sign pb. (eg. use eigenbasis of H)
- negative sign caused by spatial baryon hopping: no baryon \rightarrow no sign pb no silver blaze pb .

Results I - Crude nuclear matter: spectroscopy

- Can compare masses of differently shaped "isotopes"
- $\operatorname{am}(A) \sim a \mu_{B}^{\text {crit }} A+(36 \pi)^{1 / 3} \sigma a^{2} A^{2 / 3}$, ie. (bulk + surface tension)

Bethe-Weizsäcker parameter-free ($\mu_{B}^{\text {crit }}$ and σ measured separately)

- "Magic numbers" with increased stability: $A=4,8,12$ (reduced area)

Results II - Nuclear interactions and Phase diagram

- Baryon: point-like core (self-avoiding loop) disturbs pion bath \Rightarrow macroscopic pion cloud $\Delta E_{\pi}(R) \propto \frac{\exp \left(-\mathrm{m}_{\rho / \omega} R\right)}{R} \times(-1)^{x+y+z}$

- Nuclear interaction from nucleon's core disturbing other nucleon's pion cloud Linear response $\Rightarrow V_{N N}(R) \approx-2 \times \Delta E_{\pi}(R)$, ie. Yukawa!

- Phase diagram for $m_{q}=0$: chiral transition line, with tricritical point

Discretization error, esp. at low $T \rightarrow$ continuous Euclidean time Unger

Going beyond strong coupling limit

- At $\beta=0$: measure gauge observables (plaquette, Polyakov loop)
w/Fromm, Langelage, Miura,..

Polyakov loop vs T across chiral transition $m_{q}=0, \mu=0$

- Simulate $\mathcal{O}(\beta)$ action: in progress
- Beyond $\mathcal{O}(\beta)$: decouple the 4 links in each plaquette by auxiliary fields?

Hubbard-Stratonovich: $\int d \phi^{*} d \phi \exp \left(-\left|\phi-\phi_{0}\right|^{2}\right)=$ const. indep. of ϕ_{0}
Variant: $\exp (\alpha A B) \propto \int d \phi^{*} d \phi \exp \left[-\alpha\left(|\phi|^{2}-\phi^{*} A-\underset{U_{3}}{B} \phi\right)\right] \quad \forall \alpha \in R^{+}$
Take $A=U_{1} U_{2}, B=U_{3} U_{4}$, ϕ along diagonal

U_{1}
Further decoupling to "1-link" action \rightarrow link integration possible $\forall \beta$

Conclusions (from LAT09 Beijing plenary)

- Finite density QCD is important enough to keep trying
- Analytic understanding of severity of sign problem
- Crosschecks among LQCD methods and with effective models
- Slow but steady progress for small μ : $T_{c}(\mu)$ OK, crit. pt. ??

Try to control a $\rightarrow 0$ extrapolation

- Confucius: Real knowledge is to know the extent of one's ignorance
- Future: -Start with link integration still vague beyond $\beta=0$
-Complex Langevin do miracles really happen?
- Not covered: - canonical ensemble
- density of states method

Backup: complex Langevin 80's revival Aarts, Seiler, Stamatescu, Berges,..

- Real action S: Langevin evolution in Monte-Carlo time τ

Parisi-Wu $\frac{\partial \phi}{\partial \tau}=-\frac{\delta S[\phi]}{\delta \phi}+\eta$, ie. drift force + noise

Can prove: $\quad\langle W[\phi]\rangle_{\tau}=\frac{1}{Z} \int \mathcal{D} \phi \exp (-S[\phi]) W[\phi]$

- Complex action S ?

Parisi, Klauder, Karsch, Ambjorn,.. Drift force complex \rightarrow complexify field ($\phi^{R}+i \phi^{\prime}$) and simulate as before With luck: $\left\langle W\left[\phi^{R}+i \phi^{\prime}\right]\right\rangle_{\tau}=\frac{1}{Z} \int \mathcal{D} \phi \exp (-S[\phi]) W[\phi]$

- Only change since 1980's: adaptive stepsize \rightarrow runaway sols disappear
- Gaussian example:
$Z(\lambda)=\int d x \exp \left(-x^{2}+\mathbf{i} \lambda \mathbf{x}\right)$
Complexify:
$\frac{d}{d \tau}(x+i y)=-2(x+i y)+i \lambda+\eta$

For any observable W, $\langle W(x+i y)\rangle_{\tau}=\langle W(x)\rangle_{z}$

