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Motivation I: fast thermalization at RHIC

~
 1

0 
fm

thermalized after < 1 fm/c

There are significant evidences that relativistic heavy ion collision program at RHIC 
(now also at the LHC) created strongly coupled quark-gluon plasma (sQGP).

2/17

Successful description of experimental data is based on hydrodynamic simulations 
of an almost perfect fluid of                      starting on very early (< 1 fm/c).

So far no QCD mechanism responsible for fast thermalization has been established.

Heinz  (2004)

�/s = O(1/4⇥)

Chesler & Yaffe (2008) and later studies

This suggests that strong coupling might be (partially) responsible for fast 
thermalization at RHIC (and LHC) and motivates further holographic investigations.

Recent holographic studies showed that in (certain) strongly coupled gauge 
theories thermalization time can be comparably short.



Motivation II: close-limit approximation
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Holographic thermalization is thus a process in which a part of spacetime, dual to a 
non-equilibrium state, evolves to become (a patch of) a bulk black hole.

Gravity dual to a thermal state in holographic gauge theory is a bulk black hole.

Existing studies of holographic thermalization are however based on solving 
numerically time-dependent Einstein’s equation in the nonlinear regime (hard).

Typically this process is more complicated as there are fast and slow (hydrodynamic) 
modes in the system. Thermalization time, as understood here, is time after which 
evolution of the boundary stress tensor is governed by hydrodynamics.

If the non-equilibrium state is described by a slightly perturbed black hole solution, 
then thermalization process is captured by linearized Einstein’s equations (easy).

In certain black hole mergers as soon as single horizon forms, linearized Einstein’s 
equations give a sensible approximation of full evolution (close-limit approximation)

Horowitz & Hubeny  (1999)

Chesler & Yaffe (2008, 2009, 2010), Heller, Janik & Witaszczyk (2011) and other studies

Price & Pullin (1994)



Question
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or more concretely, to which extend do solutions of linearized Einstein’s 
equations (easy) reproduce the full nonlinear result (hard)?

How complicated is holographic thermalization?



AdS/CFT correspondence and thermalization
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From applicational perspective AdS/CFT is a tool for computing correlation functions 
in certain strongly coupled gauge theories, such as          SYM at large      and N = 4

In its simplest instance, considered also here, AdS/CFT maps the dynamics of the 
stress tensor of a holographic CFT1+3 into (1+4)-dimensional asymptotically AdS 
geometry being a solution of

Nc �

Rab �
1

2
Rgab � 6 gab = 0

The stress tensor is read off from near-
boundary expansion of dual solution

Of interest are geometries which interpolate between far-from-equilibrium states at 
the boundary at initial time tini and thermalized ones at (some) larger time Tiso

Skenderis et al. (2000)0

Minkowski spacetime

bulk of AdS

x

0 = t

tini

The criterium for (local) thermalization 
is that the stress tensor is to a good 
accuracy described by hydrodynamics

z=1/r

x

1



Setup (field theory)
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Imposing conservation and tracelessness (CFT!) reduces it to

The field theory dynamics of interest is isotropization of stress tensor without any 
sources. The matter fills the whole spacetime and is translationally invariant.

The most general stress tensor retaining (for simplicity) SO(2) symmetry reads

Field theory state in this sector of dynamics is thus specified by the energy density 
(which does not change with time) and a single function of time measuring pressure 
anisotropy 

✏

There are two simplifying features intrinsic to this setup

2) Due to translational invariance no hydrodynamic modes are excited
1) The final configuration is known precisely from the start

Thermalization criterium is thus based on the smallness of pressure anisotropy 

hTµ⌫i = diag {✏(t), PL(t), PT (t), PT (t)}

hTµ⌫i = diag

⇢
✏,

1

3
✏� 2

3
�P (t),

1

3
✏+

1

3
�P (t),

1

3
✏+

1

3
�P (t)

�

�P (t)

�P (t)



Setup (gravity side)
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The symmetries of boundary stress tensor dictate the following metric ansatz

where there is a redundancy in the choice of ftr(t,r), ftt(t,r) and frr(t,r)

Following Chesler and Yaffe (2008) we choose ftr(t,r)=1 and frr(t,r)=0 being 
generalized ingoing Eddington-Finkelstein coordinates.

The coordinates are regular at the horizon and extend also behind it. Ingoing radial 
light rays propagate along curves of constant t, x1, x2, x3. 

The unique regular time-independent solution of Einstein’s equations with negative 
cc is isotropic and is just the usual AdS-Schwarzschild black brane reading

A patch of this solution will be the end point of studied isotropization process.

Janik & Witaszczyk (2008)

A = r2(1� ⇡4T 4

r4
) ⌃ = r B = 0                   ,               and  

ds

2 = �fttdt
2 + 2ftrdtdr + frrdr

2 + ⌃2
e

�2B
dx

2
1 + ⌃2

e

B(dx2
2 + dx

2
3)

ds

2 = 2dtdr �Adt

2 + ⌃2
e

�2B
dx

2
1 + ⌃2

e

B(dx2
2 + dx

2
3)



Solving Einstein’s equations in time
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Let’s look closer at Einstein’s equations

2

as an absorber of gravitational radiation — any radiation
which passes through the horizon cannot escape back to
the boundary. At late times when the boundary geom-
etry is no longer changing, the bulk geometry outside
the horizon will relax and asymptotically become static.
This is the gravitational description of thermalization in
SYM.

Di↵eomorphism and translation invariance allows one
to chose the metric ansatz

ds2 =�A dv2 + ⌃2

⇥
eBdx

2

? + e�2Bdx2

||
⇤
+ 2dr dv , (3)

where A, B, and ⌃ are all functions of the radial coor-
dinate r and time v only. Infalling radial null geodesics
have constant values of v (as well as x? and x||). Out-
going radial null geodesics satisfy dr/dv = 1

2

A. At the
boundary, located at r = 1, the coordinate v coincides
with the boundary time t. The geometry in the bulk at
v > 0 corresponds to the causal future of t > 0 on the
boundary. The form of the metric (3) is invariant under
the residual di↵eomorphism r ! r + f(v), where f(v) is
an arbitrary function.

With a metric of the form (3), Einstein’s equations may
be reduced to the following set of di↵erential equations:

0 = ⌃ (⌃̇)0 + 2⌃0 ⌃̇� 2⌃2 , (4a)
0 = ⌃ (Ḃ)0 + 3

2

�
⌃0Ḃ + B0 ⌃̇

�
, (4b)

0 = A00 + 3B0Ḃ � 12⌃0 ⌃̇/⌃2 + 4 , (4c)
0 = ⌃̈ + 1

2

�
Ḃ2 ⌃�A0 ⌃̇

�
, (4d)

0 = ⌃00 + 1

2

B02 ⌃ , (4e)

where, for any function h(r, v),

h0 ⌘ @rh, ḣ ⌘ @vh + 1

2

A @rh . (5)

Eqs. (4d) and (4e) are constraint equations; the radial
derivative of Eq. (4d) and the time derivative of Eq. (4e)
are implied by Eqs. (4a)–(4c).

The above set of di↵erential equations must be solved
subject to boundary conditions imposed at r = 1. The
requisite condition is simply that the boundary metric
gB

µ⌫(x) coincide with our choice (1) of the 4d geometry.
In particular, we must have

lim
r!1

⌃(r, v)/r ⌘ 1 , lim
r!1

B(r, v) ⌘ B
0

(v) . (6)

One may fix the residual di↵eomorphism invariance by
demanding that

lim
r!1

⇥
A(r, v)� r2

⇤
/r = 0 . (7)

These boundary conditions, plus initial data satisfying
the constraint (4e) on some v = const. slice, uniquely
specify the subsequent evolution of the geometry.

Given a solution to Einstein’s equations, the SYM
stress tensor is determined by the near-boundary be-
havior of the 5d metric [5] . If S

G

denotes the gravi-
tational action, then the SYM stress tensor is given by
Tµ⌫(x) = (2/

p�gB(x)) �S
G

/�gB

µ⌫(x) .

Near the boundary one may solve Einstein’s equations
with a power series expansion in r. Specifically, A, B and
⌃ have asymptotic expansions of the form

A(r, v) =
X

n=0

[ an(v) + ↵n(v) log r] r2�n , (8a)

B(r, v) =
X

n=0

[ bn(v) + �n(v) log r] r�n , (8b)

⌃(r, v) =
X

n=0

[ sn(v) + �n(v) log r] r1�n . (8c)

The boundary conditions (6) and (7) imply that b
0

(v) ⌘
B

0

(v), s
0

(v) ⌘ 1, a
0

(v) ⌘ 1, and a
1

(v) ⌘ 0. Substitut-
ing the above expansions into Einstein’s equations and
solving the resulting equations order by order in r, one
finds that there is one undetermined coe�cient, b

4

(v).
All other coe�cients are determined by the boundary
geometry, Einstein’s equations, and b

4

(v) [10].
By substituting the above series expansions into the

variation of the on-shell gravitational action, one may
compute the expectation value of the stress tensor in
terms of the expansion coe�cients. This procedure has
been carried out in Ref. [5], so we simply quote the re-
sults. In terms of the expansion coe�cients, the SYM
stress tensor reads

Tµ
⌫ = (N2

c /2⇡2) diag(�E ,P?,P?,P||) , (9)

where (with b(k)

0

⌘ @k
v b

0

):

�E = 3

4

a
4

+ 1

256

h
3(b(1)

0

)4 + 14(b(2)

0

)2 � 4b(1)

0

b(3)

0

i
, (10a)

P? = � 1

4

a
4

+ b
4

+ 1

768

h
21(b(1)

0

)4 � 468(b(1)

0

)2b(2)

0

+ 10(b(2)

0

)2 + 4b(1)

0

b(3)

0

+ 64b(4)

0

i
, (10b)

P|| = � 1

4

a
4

� 2b
4

+ 1

768

h
21(b(1)

0

)4 + 936(b(1)

0

)2b(2)

0

+ 10(b(2)

0

)2 + 4b(1)

0

b(3)

0

� 128b(4)

0

i
. (10c)

Numerics.—One may solve the Einstein equations
(4a)–(4c) for the time derivatives ⌃̇, Ḃ, and A00. Define

⇥(r, v) ⌘
Z 1

r
dw

⇥
⌃(w, v)3 � h

1

(w, v)
⇤�H

1

(r, v) ,

(11a)

�(r, v) ⌘
Z 1

r
dw

h
2⇥(w, v)B0(w, v) ⌃(w, v)�3/2

� h
2

(w, v)
i
�H

2

(r, v) , (11b)

where Hn is an indefinite (radial) integral of hn,

hn = H 0
n . (12)

Then Eqs. (4a)–(4c) are solved by

⌃̇ = �2⇥ ⌃�2, (13a)
Ḃ = � 3

2

�⌃�3/2 , (13b)

A00 = �4� 24⇥ ⌃0⌃�4 + 9

2

�B0 ⌃�3/2 . (13c)

0 = ⌃00 +
1

2
(B0)2⌃

0 = ⌃̈+
1

2
(Ḃ2⌃�A0⌃̇)

dynamical equations (EOMs) constraintsif obeyed at const. r + EOMs 
then obeyed everywhere

if obeyed at const. t + EOMs 
then obeyed everywhere

(                  ,                                           )h0 = @rh(t, r) ḣ = @th(t, r) +
1

2
A(t, r)@rh(t, r)

On a constant t slice    and B are related by a constraint                        .  As B 
appears quadratically (important later on), we choose it to characterize initial state.          

B is not completely arbitrary - it needs to satisfy near-boundary (large r) expansion 
with AdS asymptotics (no sources - flat boundary metric, see the next slide).

Once B and    are known on a given time slice, one can use EOMs to obtain first
   , then    and finally A. Having those guys one can solve    and     for       and       
and choose your favorite finite difference scheme for making a step in time 

⌃ ⌃00 +
1

2
(B0)2⌃ = 0

⌃̇

Chesler & Yaffe (2008)

Ḃ

⌃

Ḃ ⌃̇ @tB @t⌃

The only remaining issue is the choice of the bulk cut off for radial integration. By 
trials and errors we put it behind the event horizon at the initial time hypersurface.



Specifying initial states
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Near-boundary expansion of warp-factors to O(1/r8) read

where                   and                                               ,                  

The initial state in the bulk contains information about all time derivatives of pressure 
anisotropy at a given instance of time

This information does not allow to see isotropization as the Taylor series has a too 
small convergence radius and numerical studies are needed.

What is also important is that due to                         and AdS asymptotics          
   always goes to 0 for some r>0. Such point is a curvature singularity and needs to 
be covered by the event horizon. Note that not all initial data have apparent horizon.

⌃00 +
1

2
(B0)2⌃ = 0 ⌃ ⇠ r

⌃

What we also find out is that for a given initial profile B there is a minimal value of 
energy density   for which this singularity is covered by the event horizon 
(„maximally far from equilibrium states”)

✏

see Beuf, Heller, Janik & Peschanski (2009) for a similar observation for the Bjorken flow

B =
1

r4

⇢
b4(t) +

1

r
b04(t) +

2

12r6
b004(t) +

1

4r3
b(3)4 (t) + . . .

�
⌃ = r

⇢
1� 1

7r8
b4(t)

2 + . . .

�
,

A = r2
⇢
1� 1

r4
a4 �

2

7r8
b4(t)

2 � 3

7r9
b4(t)b

0
4(t) + . . .

�
and

✏ =
3

8⇡2
N2

c a4 �P (t) =
3

8⇡2
N2

c b4(t)



Obtaining representative set of initial states
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In order to produce a large set of initial data (and so hopefully a good statistics) we 

Setting up initial states at tini and letting them evolve unforced is more generic than 
quenching and can be used to obtain a variety of behaviors

2) generate B as the ratio of two 10th order polynomials with random coefficients modulo 
minimal subtraction necessary for having AdS asymptotics; normalize B in a convenient way;

1) without any loss of generality fix units by setting a4=1;

3) run simulation for a given B and store data increasing at each run B 1.15-folds until we obtain 
profiles close to „maximally far-from-equilibrium ones” (typically multiplication is repeated ~ 8x);
4) return to step 2);

see Heller, Janik & Witaszczyk (2011) for a similar approach to the holographic Bjorken flow

10 examples of initial states 
encoded geometrically 
including once supported 
mostly in the UV, mostly in the 
IR, in the middle and spread 
evenly between UV and IR

              (z = 1/r)



Linearized approximation
Let’s look once again at Einstein’s equations

2

as an absorber of gravitational radiation — any radiation
which passes through the horizon cannot escape back to
the boundary. At late times when the boundary geom-
etry is no longer changing, the bulk geometry outside
the horizon will relax and asymptotically become static.
This is the gravitational description of thermalization in
SYM.

Di↵eomorphism and translation invariance allows one
to chose the metric ansatz

ds2 =�A dv2 + ⌃2

⇥
eBdx

2

? + e�2Bdx2

||
⇤
+ 2dr dv , (3)

where A, B, and ⌃ are all functions of the radial coor-
dinate r and time v only. Infalling radial null geodesics
have constant values of v (as well as x? and x||). Out-
going radial null geodesics satisfy dr/dv = 1

2

A. At the
boundary, located at r = 1, the coordinate v coincides
with the boundary time t. The geometry in the bulk at
v > 0 corresponds to the causal future of t > 0 on the
boundary. The form of the metric (3) is invariant under
the residual di↵eomorphism r ! r + f(v), where f(v) is
an arbitrary function.

With a metric of the form (3), Einstein’s equations may
be reduced to the following set of di↵erential equations:

0 = ⌃ (⌃̇)0 + 2⌃0 ⌃̇� 2⌃2 , (4a)
0 = ⌃ (Ḃ)0 + 3

2

�
⌃0Ḃ + B0 ⌃̇

�
, (4b)

0 = A00 + 3B0Ḃ � 12⌃0 ⌃̇/⌃2 + 4 , (4c)
0 = ⌃̈ + 1

2

�
Ḃ2 ⌃�A0 ⌃̇

�
, (4d)

0 = ⌃00 + 1

2

B02 ⌃ , (4e)

where, for any function h(r, v),

h0 ⌘ @rh, ḣ ⌘ @vh + 1

2

A @rh . (5)

Eqs. (4d) and (4e) are constraint equations; the radial
derivative of Eq. (4d) and the time derivative of Eq. (4e)
are implied by Eqs. (4a)–(4c).

The above set of di↵erential equations must be solved
subject to boundary conditions imposed at r = 1. The
requisite condition is simply that the boundary metric
gB

µ⌫(x) coincide with our choice (1) of the 4d geometry.
In particular, we must have

lim
r!1

⌃(r, v)/r ⌘ 1 , lim
r!1

B(r, v) ⌘ B
0

(v) . (6)

One may fix the residual di↵eomorphism invariance by
demanding that

lim
r!1

⇥
A(r, v)� r2

⇤
/r = 0 . (7)

These boundary conditions, plus initial data satisfying
the constraint (4e) on some v = const. slice, uniquely
specify the subsequent evolution of the geometry.

Given a solution to Einstein’s equations, the SYM
stress tensor is determined by the near-boundary be-
havior of the 5d metric [5] . If S

G

denotes the gravi-
tational action, then the SYM stress tensor is given by
Tµ⌫(x) = (2/

p�gB(x)) �S
G

/�gB

µ⌫(x) .

Near the boundary one may solve Einstein’s equations
with a power series expansion in r. Specifically, A, B and
⌃ have asymptotic expansions of the form

A(r, v) =
X

n=0

[ an(v) + ↵n(v) log r] r2�n , (8a)

B(r, v) =
X

n=0

[ bn(v) + �n(v) log r] r�n , (8b)

⌃(r, v) =
X

n=0

[ sn(v) + �n(v) log r] r1�n . (8c)

The boundary conditions (6) and (7) imply that b
0

(v) ⌘
B

0

(v), s
0

(v) ⌘ 1, a
0

(v) ⌘ 1, and a
1

(v) ⌘ 0. Substitut-
ing the above expansions into Einstein’s equations and
solving the resulting equations order by order in r, one
finds that there is one undetermined coe�cient, b

4

(v).
All other coe�cients are determined by the boundary
geometry, Einstein’s equations, and b

4

(v) [10].
By substituting the above series expansions into the

variation of the on-shell gravitational action, one may
compute the expectation value of the stress tensor in
terms of the expansion coe�cients. This procedure has
been carried out in Ref. [5], so we simply quote the re-
sults. In terms of the expansion coe�cients, the SYM
stress tensor reads

Tµ
⌫ = (N2

c /2⇡2) diag(�E ,P?,P?,P||) , (9)

where (with b(k)

0

⌘ @k
v b

0

):

�E = 3

4

a
4

+ 1

256

h
3(b(1)

0

)4 + 14(b(2)

0

)2 � 4b(1)

0

b(3)

0

i
, (10a)

P? = � 1

4

a
4

+ b
4

+ 1

768

h
21(b(1)

0

)4 � 468(b(1)

0

)2b(2)

0

+ 10(b(2)

0

)2 + 4b(1)

0

b(3)

0

+ 64b(4)

0

i
, (10b)

P|| = � 1

4

a
4

� 2b
4

+ 1

768

h
21(b(1)

0

)4 + 936(b(1)

0

)2b(2)

0

+ 10(b(2)

0

)2 + 4b(1)

0

b(3)

0

� 128b(4)

0

i
. (10c)

Numerics.—One may solve the Einstein equations
(4a)–(4c) for the time derivatives ⌃̇, Ḃ, and A00. Define

⇥(r, v) ⌘
Z 1

r
dw

⇥
⌃(w, v)3 � h

1

(w, v)
⇤�H

1

(r, v) ,

(11a)

�(r, v) ⌘
Z 1

r
dw

h
2⇥(w, v)B0(w, v) ⌃(w, v)�3/2

� h
2

(w, v)
i
�H

2

(r, v) , (11b)

where Hn is an indefinite (radial) integral of hn,

hn = H 0
n . (12)

Then Eqs. (4a)–(4c) are solved by

⌃̇ = �2⇥ ⌃�2, (13a)
Ḃ = � 3

2

�⌃�3/2 , (13b)

A00 = �4� 24⇥ ⌃0⌃�4 + 9

2

�B0 ⌃�3/2 . (13c)

0 = ⌃00 +
1

2
(B0)2⌃

0 = ⌃̈+
1

2
(Ḃ2⌃�A0⌃̇)

dynamical equations (EOMs) constraintsif obeyed at const. r + EOMs 
then obeyed everywhere

if obeyed at const. t + EOMs 
then obeyed everywhere

All the equations, but one, are quadratic in B.

This implies that at the linear order A and    are that of AdS-Schwarzschild (and so 
do not evolve) and B undergoes decoupled dynamics captured by the equation 

⌃

In the following we will scan through a large set of initial data (B’s at t=0) and 
compare solutions of linearized Einstein’s equations with solutions of the non-linear 
problem focusing mostly on predictions for dual stress tensor operator

2

as an absorber of gravitational radiation — any radiation
which passes through the horizon cannot escape back to
the boundary. At late times when the boundary geom-
etry is no longer changing, the bulk geometry outside
the horizon will relax and asymptotically become static.
This is the gravitational description of thermalization in
SYM.

Di↵eomorphism and translation invariance allows one
to chose the metric ansatz

ds2 =�A dv2 + ⌃2

⇥
eBdx

2

? + e�2Bdx2

||
⇤
+ 2dr dv , (3)

where A, B, and ⌃ are all functions of the radial coor-
dinate r and time v only. Infalling radial null geodesics
have constant values of v (as well as x? and x||). Out-
going radial null geodesics satisfy dr/dv = 1

2

A. At the
boundary, located at r = 1, the coordinate v coincides
with the boundary time t. The geometry in the bulk at
v > 0 corresponds to the causal future of t > 0 on the
boundary. The form of the metric (3) is invariant under
the residual di↵eomorphism r ! r + f(v), where f(v) is
an arbitrary function.

With a metric of the form (3), Einstein’s equations may
be reduced to the following set of di↵erential equations:

0 = ⌃ (⌃̇)0 + 2⌃0 ⌃̇� 2⌃2 , (4a)
0 = ⌃ (Ḃ)0 + 3

2

�
⌃0Ḃ + B0 ⌃̇

�
, (4b)

0 = A00 + 3B0Ḃ � 12⌃0 ⌃̇/⌃2 + 4 , (4c)
0 = ⌃̈ + 1

2

�
Ḃ2 ⌃�A0 ⌃̇

�
, (4d)

0 = ⌃00 + 1

2

B02 ⌃ , (4e)

where, for any function h(r, v),

h0 ⌘ @rh, ḣ ⌘ @vh + 1

2

A @rh . (5)

Eqs. (4d) and (4e) are constraint equations; the radial
derivative of Eq. (4d) and the time derivative of Eq. (4e)
are implied by Eqs. (4a)–(4c).

The above set of di↵erential equations must be solved
subject to boundary conditions imposed at r = 1. The
requisite condition is simply that the boundary metric
gB

µ⌫(x) coincide with our choice (1) of the 4d geometry.
In particular, we must have

lim
r!1

⌃(r, v)/r ⌘ 1 , lim
r!1

B(r, v) ⌘ B
0

(v) . (6)

One may fix the residual di↵eomorphism invariance by
demanding that

lim
r!1

⇥
A(r, v)� r2

⇤
/r = 0 . (7)

These boundary conditions, plus initial data satisfying
the constraint (4e) on some v = const. slice, uniquely
specify the subsequent evolution of the geometry.

Given a solution to Einstein’s equations, the SYM
stress tensor is determined by the near-boundary be-
havior of the 5d metric [5] . If S

G

denotes the gravi-
tational action, then the SYM stress tensor is given by
Tµ⌫(x) = (2/

p�gB(x)) �S
G

/�gB

µ⌫(x) .

Near the boundary one may solve Einstein’s equations
with a power series expansion in r. Specifically, A, B and
⌃ have asymptotic expansions of the form

A(r, v) =
X

n=0

[ an(v) + ↵n(v) log r] r2�n , (8a)

B(r, v) =
X

n=0

[ bn(v) + �n(v) log r] r�n , (8b)

⌃(r, v) =
X

n=0

[ sn(v) + �n(v) log r] r1�n . (8c)

The boundary conditions (6) and (7) imply that b
0

(v) ⌘
B

0

(v), s
0

(v) ⌘ 1, a
0

(v) ⌘ 1, and a
1

(v) ⌘ 0. Substitut-
ing the above expansions into Einstein’s equations and
solving the resulting equations order by order in r, one
finds that there is one undetermined coe�cient, b

4

(v).
All other coe�cients are determined by the boundary
geometry, Einstein’s equations, and b

4

(v) [10].
By substituting the above series expansions into the

variation of the on-shell gravitational action, one may
compute the expectation value of the stress tensor in
terms of the expansion coe�cients. This procedure has
been carried out in Ref. [5], so we simply quote the re-
sults. In terms of the expansion coe�cients, the SYM
stress tensor reads

Tµ
⌫ = (N2

c /2⇡2) diag(�E ,P?,P?,P||) , (9)

where (with b(k)

0

⌘ @k
v b

0

):

�E = 3

4

a
4

+ 1

256

h
3(b(1)

0

)4 + 14(b(2)

0

)2 � 4b(1)

0

b(3)

0

i
, (10a)

P? = � 1

4

a
4

+ b
4

+ 1

768

h
21(b(1)

0

)4 � 468(b(1)

0

)2b(2)

0

+ 10(b(2)

0

)2 + 4b(1)

0

b(3)

0

+ 64b(4)

0

i
, (10b)

P|| = � 1

4

a
4

� 2b
4

+ 1

768

h
21(b(1)

0

)4 + 936(b(1)

0

)2b(2)

0

+ 10(b(2)

0

)2 + 4b(1)

0

b(3)

0

� 128b(4)

0

i
. (10c)

Numerics.—One may solve the Einstein equations
(4a)–(4c) for the time derivatives ⌃̇, Ḃ, and A00. Define

⇥(r, v) ⌘
Z 1

r
dw

⇥
⌃(w, v)3 � h

1

(w, v)
⇤�H

1

(r, v) ,

(11a)

�(r, v) ⌘
Z 1

r
dw

h
2⇥(w, v)B0(w, v) ⌃(w, v)�3/2

� h
2

(w, v)
i
�H

2

(r, v) , (11b)

where Hn is an indefinite (radial) integral of hn,

hn = H 0
n . (12)

Then Eqs. (4a)–(4c) are solved by

⌃̇ = �2⇥ ⌃�2, (13a)
Ḃ = � 3

2

�⌃�3/2 , (13b)

A00 = �4� 24⇥ ⌃0⌃�4 + 9

2

�B0 ⌃�3/2 . (13c)

The solutions of interest are such that satisfy AdS boundary condition (no sourcing 
= flat boundary metric).
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Time evolution of pressure anisotropy (L/NL)
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Evolution of 10 sample profiles

13/17

Linearized Einstein’s equations 
again do a surprisingly good 
job in reproducing boundary 
stress tensor (dotted curves in 
the plot below)

              (z = 1/r)

Bini(z)/z
4

z

AEH(t)

t t

�P (t)



Isotropization time as a function of initial entropy

The closer initial entropy to 
the final one, the faster the 
thermalization (in units of a4 ~ 
initial=final energy density)

Relative difference in 
thermalization time obtained 
from linearized and full 
Einstein’s equation does not 
exceed 30% !!!

results of the analysis of
1210 different initial states
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Quantifying accuracy of linear approximation
One possible criterium to quantify the accuracy of linear approximation for the 
evolution of the stress tensor is to take

This and also other criteria adopted by us suggest that linearized Einstein’s 
equations do a very good job in reproducing dual stress tensor in this setup.
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Linearized approximation in the bulk
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Summary

Open directions
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General theme: are non-linear effects in AdS crucial as soon as single horizon forms?

First step: consider more realistic setups (Bjorken flow, shockwaves collision, ...).

AdS/CFT seems to naturally lead to short thermalization times of order of the ones 
required by the successful description of RHIC and LHC data.

Motivated by these studies and close-limit approximation we reexamined the 
simplest holographic thermalization setup - holographic isotropization - trying to 
understand to which extend linearized Einstein’s equations capture the full dynamics.

Quite surprisingly, linearized gravity gives good qualitative and also quantitative 
(within 30%) predictions for the dynamics of dual stress tensor!!!

Existing studies of non-trivial examples of holographic thermalization were based on
numerical solutions of Einstein’s equations in the nonlinear regime.

Side project: how do various features of dual geometry (e.g. B localized in the UV / 
IR / spread) affect nonlocal observables (e.g. two-point functions) and how do these 
features differ between linearized approximation and full dynamics (also „30%”?)?


