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Homework problems for numerical relativists



Consider asymptotically (global) AdS solutions to
pure gravity with A<0in D =4.
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If one requires that the metric
(conformally) approach the static
cylinder, waves bounce off
infinity and return in finite time.

The dual field theory lives on S? x R.



At the linearized level, AdS appears just as stable as
Minkowski space or de Sitter.

For Minkowski or de Sitter, it has been shown that

small but finite perturbations remain small
(Christodoulou, Klainerman; Friedrich).

This has never been shown for AdS.

WHY NOT?

It Is just not true.



Claim: AdS is nonlinearly unstable

(Anderson, 2006; Dafermos and Holzegel, 2006)

Generic small (but finite) perturbations of AdS
become large and eventually form black holes.

The energy cascades from low frequency to
high frequency modes in a manor reminiscient
of the onset of turbulence.



Doesn’t this contradict the fact that AdS is
supersymmetric?

Doesn’t this contradict the fact that there
IS a positive energy theorem?

No



Positive Energy Theorem: If the matter satisfies a
reasonable energy condition, then E > O for all
nonsingular, asymptotically AdS initial data, and
E=0if and only if the spacetime is AdS.

This ensures that AdS cannot decay. A%

It does not ensure that a small amount of energy
added to AdS won’t generically form a small black

hole.

That is usually ruled out by arguing that waves
disperse. This doesn’t happen in AdS.



Exam ple (Dafermos).

Consider S = /R — (V¢)?

This has a positive energy theorem and small
nonlinear perturbations of Minkowski spacetime
remain small.

Now consider S = /R + (Vg)?

No positive energy theorem, but Minkowski
spacetime is still nonlinearly stable.



Why is AdS nonlinearly unstable?

Anderson: AdS boundary conditions act like a
confining box. Any finite excitation which is added to
this box might be expected to eventually explore all
configurations consistent with the conserved
guantities — including small black holes.

Dafermos and Holzegel: Since linearized perturbations

do not decay, nonlinear corrections are expected to
grow in time.



A third motivation (Dias, Santos, G.H.):

Hawking and Penrose proved a singularity
theorem showing that closed universes are
generically singular. AdS is like a closed universe
for the fields inside, so it should be generically
singular.



Special solutions need not be singular

For some linearized gravitational modes, there are
corresponding nonlinear solutions called geons.

Geons are nonsingular and globally asymptotically
AdS. There are an infinite number of them, but they
are all special since they are

(1) Exactly periodic in time
(2) Invariant under a continuous symmetry



Perturbative construction of solutions

Expand: g =g+ Z e'h\)
At each order, have to solve:
(2) _ (9)
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Different types of perturbations

“Scalar type” perturbations: h_, are constructed
from spherical harmonics.

“Vector type” perturbations: h_, are constructed
from vector harmonics. (For S2, these are *VY,,,, )

“Tensor type” perturbations only exist in higher
dimensions.



At each order, can reduce the metric perturbation
to two functions satisfying (Kodama, Ishibashi, 2003)

@) () + VO (@) (tr) =T, (t,r),

where Ll is the wave operator associated with

dr?
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Boundary conditions

Regularity at the origin requires: Dy, ~ C’)(rg)

?

Asymptotically:

Dy NRg)m(t) | Sg,m(t) | 0(7“_2)

’ T

Surprisingly, to keep the metric fixed at infinity, we
need to choose

Sg,m(t) = (



First Order

The allowed frequenciesare wy =1+/¢4 2p

For p =0, the solutions are

(I)é,lqzz (t7 7“) —



General structure

If the source has harmonic time dependence
cos wt, then the solution will have the same
harmonic time dependence, EXCEPT when w
agrees with one of the normal mode frequencies.

Then we get a resonance and the solution grows

linearly in time:
O(t,r) = cos(wt)R(r)

+t sin(wt) L(r).



Example 1

Start with a single ¢ = 2, m = 2 mode.
At second order — no resonances

At third order — one resonant term
but one can set the growing mode to zero by

changing the frequency slightl
ging q y sligntly 14703
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Continue in this way to construct geon.



Example 2

Start with a linear combination of ¢/ =2, m = 2
and ¢ = 4, m = 4 mode.

At second order — no resonances

At third order — 4 resonant terms
growing mode in two can be removed by adjusting
the frequencies of two original modes
growing mode of one is just absent



Last growing mode cannot be removed. This
correspondsto £ =6, m =6 withw=7.

Get a growing mode with higher frequency than
we started with.

Energy is transferred to higher frequency modes.
Expect this to continue. When ¢/ =6,m =6

mode grows, it will source even higher frequency
modes with growing amplitude.



Spherical scalar field collapse in AdS

(Bizon and Rostworowski, 2011)

Recall the situation when A = 0 (Choptuik, Christodoulou):

For any initial scalar field profile ¢ = a f(r),
large a == large black hole

small a ==» waves scatter and go off to e

For a critical value a., the collapse forms a “zero mass
black hole” i.e. a naked singularity. Near o.:

Mpy ~ (a0 — a,)? with v = .37



Repeating this in AdS one finds
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The scalar curvature R at the origin oscillates with
period about 2m. Starting with small amplitude
initial data, the maximum of R behaves as follows:
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If you rescale time and scalar curvature by
the amplitude, these curves all agree:
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Note: the time to form a black hole scales like
(amplitude). This is much faster than an ergotic

Process.

This is because the normal mode frequencies in AdS
are all integer multiples of a fundamental
frequency. So there are lots of resonances.

AdS is much more unstable than a random box.



Conclusion of spherically symmetric scalar
field evolution in AdS:

No matter how small you make the initial
amplitude, the curvature at the origin grows
and you eventually form a small black hole.



What is the general endpoint of this
instability?

It is might not a Kerr AdS black hole, since that may
also be unstable!

Holzegel and Smulevici (2011) argued that a linear
scalar field outside a Kerr-AdS black hole probably
decays very slowly, like 1/log t. This was
confirmed numerically by Santos.

All asymptotically AdS solutions are
probably unstable (Dafermos).



A proposal for the evolution
(Dias, Marolf, Santos, G.H., in progress)

The instability appears similar to the instability of
AdS. The effective potential for a large angular
momentum mode looks like

BH infinity
may form a black
hole here.

The result is a “black moon”.



One approach to showing this:

Quasi-normal mode (QNM) frequencies of Kerr AdS
approach those of AdS when ¢ becomes large.

If the time to form a black moon is short enough so
that the difference in QNM frequencies doesn’t
matter, the evolution will be just like in AdS.



The orbit of the black moon will typically decay, and
the moon will merge with the original black hole.
But it radiates during this process.

End up with smaller amount of energy in radiation
around the black hole. This may form a smaller
black moon which spirals in, etc.

If you continue to form smaller and smaller black
holes, you violate the spirit of cosmic censorship.



Slight complication:
There are non-coalescing binaries in AdS.

The gravitational waves produced become
standing waves that support the orbit.



There are special “black moon” solutions
that don’t decay:

Consider a Kerr AdS black hole with horizon
generator £—0/0t+Q 0/0¢

If Q> 1, there is a radius for which ¢ is tangent to a
geodesic.

These are circular orbits which are invariant under
the Killing field. They are stable for certain black
holes.



Now replace the geodesic by a small black hole.
This will create a metric perturbation which will
also be invariant under €.

Since ¢ is null on the horizon, the perturbation will
not cause the original horizon to grow. Adding
higher order corrections leads to an exact “black
moon” solution.

Since the orbit is stable, black moons farther out
might be expected to approach this configuration.



Superradiance

If a wave e wtim® scatters off a rotating black hole
with Q>1 and w <mQ, it can return with larger
amplitude.

In AdS, the outgoing wave is reflected off infinity
and the process repeats. Get a superradiant
instability.

This is different from the earlier instability, but
interacts with it.



Implications for the
dual field theory

The fact that perturbations evolve to black holes can
be viewed as thermalization (in a microcanonical
ensemble).

The instability of AdS black holes is probably not
present at finite N.

- What is the dual description of the instability at
large N?



Geons are dual to high energy states that
do not thermalize.

They are different from the states found by
Freivogel, McGreevy, and Suh, 1109.6013.

- Why don’t these states thermalize?
-  How many states don’t thermalize?



Boundary stress tensor for geon

Contains alternating positive and negative energy
regions around the equator.

Invariant under 0/0t + (w/m)0/0¢
which is timelike near the poles but spacelike near
the equator.



Conclusions

(1) Anti-de Sitter spacetime is nonlinearly unstable:
generic small perturbations become large and
(probably) form black holes.

(2) The resulting AdS black holes may also be
unstable. Their evolution might produce
arbitrarily large curvature outside the horizon.

(3) There are exact nonsingular geons, and
noncoalescing binaries in AdS.



Homework Problems for
Numerical Relativists

(1) Evolve small perturbations of anti-de Sitter and

show that they form black holes.

(2) Construct the geons explicitly.

(3) Evolve small perturbations of Kerr AdS and see if
a black moon formes.

(4) Construct the non-coalescing binary explicitly.



