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Strongly interacting electron systems 

Key examples:  

• High Tc superconductors 

• Heavy fermion compounds 

 

Challenge conventional theoretical techniques 

Introduction 



Introduction 

Lattice models (time continuous) 

 

configurations:  

electrons located on the sites of an 
ionic lattice in a solid 

 

Hamiltonian: 

typically a sum of kinetic (hopping) 
terms and short range repulsive 
interactions 

 



Hubbard model (1963) 

 

Coulomb repulsion → onsite repulsion U  

Introduction 
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Hubbard model 

• Kinetics dominated n<<1, U<<t → Fermi liquid 

• Interaction dominated U>>t  

  → Mott insulator at half filling 

 

 

Introduction 

µ 



Strongly interacting electron systems 

Challenge: Intermediate densities  

 

Conventional techniques fail  

• Mean field results are unreliable  

• Bethe Ansatz does not work in D > 1 

• Quantum Monte Carlo suffers from sign problem 

• … 

 

→ Too difficult 

  

 

Introduction 



A model for strongly interacting fermions 

1.  Simplifications/adjustments 

2.  Incorporate supersymmetry 

 

→ Exact result for strongly interacting fermions in D > 1 

(not accessible via conventional techniques) 

 

Our work 



Hardcore spinless fermions 

• spinless fermions 

• hardcore 

• hopping t 

 

The model 
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Hardcore spinless fermions 

• spinless fermions 

• hardcore 

• hopping t 

 

The model 

1V

Insulator Fermi liquid 

Stripe phase 
[Henley , et. al. ‘01]  

µ 



Hardcore spinless fermions 

• spinless fermions 

• hardcore 

• hopping t 

 

The model 

1V

Insulator Fermi liquid 

µ 

Supersymmetry 
[Fendley, et. al. ‘03]  



Plan of the talk 

Benefit of supersymmetry is twofold: 
• Powerful tools 
• Subtle interplay between kinetic and potential terms 
   leading to quantum criticality and superfrustration 
 
• The model: definition & supersymmetry basics 
  
• Witten index: superfrustration 
• Cohomology: quantum ground states as tilings 
• Spectral flow: quantum criticality 
 
• Recent developments 
• Conclusions 



Supersymmetry 

  Q]Q,[,0)(Q,0)(Q 22
fN

Hamiltonian defined as 

0],[,0]Q,[]Q,[  
fNHHH

Algebraic structure 

supercharges Q+, Q=(Q+)†  and fermion number Nf : 



H  Q ,Q
satisfies 



Supersymmetry 

Spectrum: 

• E ≥ 0 for all states 

• E > 0  pair into doublets (superpartners) 

 

• E = 0 states are singlets 

High energy physics:  

symmetry between bosonic and fermionic particles 

Here:  

• particles are spinless fermions ( f ) 

• symmetry between “bosonic” ( f even) and 
“fermionic” ( f ± 1 odd) states 

0|Q|Q   

0|Q      ),|Q,(|   



The model 



H  Q ,Q Hkin H pot

Hamiltonian for 1D chain 

The supersymmetric lattice model 

Supercharges for hardcore spinless fermions: 

[Fendley - Schoutens - de Boer  2003] 

Hamiltonian for general lattice 

H  Q ,Q



Supersymmetry: example 

6-site chain 
Possible configurations for hardcore spinless fermions 
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Supersymmetry: example 

Manifestly supersymmetric spectrum 
 

• Energy is positive definite 

• E>0 states form pairs between 
“fermionic” and “bosonic” states 

• E=0 states are singlets 



Witten index: superfrustration 



Powerful tool: Witten index 

fN
W )1(Tr 

“bosonic” states 
contribute +1, 
“fermionic” states 
contribute -1, so all 
superpartners cancel 

|W| is lower bound to  
number of ground states  

[Witten, ‘82] 

⇒ W=#GSB-#GSF 



Witten index: example 

22961 W

fN
W )1(Tr 

1x 6x 9x 2x 

Purely combinatorial problem 



Triangular lattice 
N  M sites with periodic BC 

[van Eerten, ‘05] 

|W| ~ 1.14NM 

Witten index 



Tri   Hex   Martini 

|W| ~ 1.14V |W| ~ 1.2V |W| ~ 1.17V 

V is number of sites (2D volume) 

Superfrustration -  examples 

[van Eerten, ’05; 
Fendley, Schoutens, ‘05] 



Superfrustration 

Frustration 
Competing terms in hamiltonian 
→ multiple ground states 
 
Supersymmetry 
Subtle competition between kinetic and potential terms 
→ for 2D lattices exponential ground state degeneracy  
 
Violation of 3rd law of thermodynamics 
Exponential number of ground states 
→ finite zero temperature entropy  
 

? 



Superfrustration 

´3-rule´ 
 
• repulsive interactions favor 3-site interparticle distance 
• chemical potential favors higher densities 
 

Combined with kinetic terms 
→ quantum charge frustration at intermediate densities 

[Fendley, Schoutens, ‘05] 



Cohomology:  
quantum ground states as tilings 



 Cohomology of Q 

GS are in 1-1 correspondence with cohomology elements 

 More difficult to compute than Witten index 

 But gives more information: 

 gives total number of gs 

 gives fermion number of gs 

 often gives relation between gs and geometric object 

 

Powerful tool: Cohomology 



Cohomology technique 

Lemma 

Susy ground states are in 1-1 correspondence with 
the cohomology 

 

 

 of Q+ in the complex 



...
Q

  HN f

Q

  HN f 1

Q

  ...



Square lattice: Witten index  

N  M sites with periodic BC 

[Fendley - Schoutens - van Eerten ‘05; 
Jonsson ‘06] 



Square lattice (periodic BC) 

 Cohomology of Q gives direct relation between 
ground states and rhombus tilings 

 # of tiles = # of fermions 

[LH - Schoutens ‘10] 



Square lattice (periodic BC) 

 Cohomology of Q gives direct relation between 
ground states and rhombus tilings 

 # of tiles = # of fermions 

 

 GS at intermediate filling 

 

 

 Sub-extensive GS entropy 

 
[LH - Schoutens ‘10] 

Sgs ~ 0.46(N+M) 



Square lattice: ground states 

 # gs grows exponentially with the linear size of the system 

 zero energy ground states found at intermediate filling 

 compelling evidence for critical edge modes 

 what is the nature of these states? 

 

 

 

 

 

 



Square lattice: ground states 

 # gs grows exponentially with the linear size of the system 

 zero energy ground states found at intermediate filling 

 compelling evidence for critical edge modes 

 what is the nature of these states? 

 

 

 

 

 

 



Triangular lattice 
N  M sites with periodic BC 

[van Eerten, ‘05] 

Witten index 



Full cohomology problem is very hard, but intermediate 
results: 

 Upper bound on #gs 

 Lower bound on filling 

 Upper bound on filling 

 

 

 

 [Jonsson, ‘10; Engström, ‘09; 
LH, Mehta, Moran, Schoutens, Vala, ‘11] 

Triangular lattice: ground states 



[LH, Mehta, Moran, Schoutens, Vala, ‘11] 

Numerical results: Ground state degeneracy 



[LH, Mehta, Moran, Schoutens, Vala, ‘11] 

Numerical results: Filling fraction 



[LH, Mehta, Moran, Schoutens, Vala, ‘11] 

Numerical results: Momentum 

Flatband dispersion: 
Zero energy states at  
all momenta 
Eigenvalues of translations: 

y 

x 



Spectral flow: quantum criticality 



1D chain 

• Periodic chain of length L: 2 gs for L mod 3 = 0; 
      1 gs otherwise 
 
• Fermion number in ground state:  f= [L/3] 
• Bethe Ansatz solution (integrable) 
• Continuum limit: N=(2,2) SCFT with central charge 

c=1 → quantum critical, emergent spacetime 
supersymmetry 
 
 

[Fendley-Schoutens-deBoer ‘03,  

Fendley-Nienhuis-Schoutens ‘03, 

 Beccaria-DeAngelis ‘05,  

Fendley-Hagendorf   ‘10 & ’11, LH ‘11] 



 XXZ spin chain – exact mapping 

 SUSY Matrix models of Veneziano-Wosiek (via 
mapping to XXZ spin chain) 

 Generalize hard-core constraint 

 Allow k particles to be nearest neighbors, but not k+1:  
Mk susy model ↔ k-th SCFT minimal model 

 

 

 

[Fendley , Nienhuis , Schoutens ’03 
Veneziano, Wosiek, ‘06] 

Relations/extensions 



1D Quantum criticality 

Numerical techniques to identify continuum CFT 
• Finite size scaling of energy gap: E~1/L 
• Entanglement entropy: S ~ c log L 
• Superconformal field theories: Spectral flow: 
  Energy depends parabolically on boundary twist 

+ Accurate for small systems 
+ No scaling required 



Boundary twist: spectral flow 

wave function picks up a phase exp(2πια)  

as a particle hops over a “boundary”: 

 

 

twist: α: 0    1/2 

“pbc        apbc”   =  “R       NS sector” 

 

SCFT: energy is parabolic function of twist parameter 



Chain Spectrum, L=27, Nf=9, PBC (α=0) 



Chain Spectrum, L=27, Nf=9, APBC 



Spectral flow chain, L=27, Nf=9 



What can we learn from spectral flow? 

• 3 fit parameters 

• 4 unknowns: 

 E, Q0, c and vF 

• → ratios 

• for 1D chain we extract:  

 

 

 

  

E 

P 

a c 

b 

d 

state E/c Q0/c E/c Q0/c 

a 0 -0.334 0 -1/3 

b -0.083 0 -1/12 0 

c 0 0.342 0 1/3 

d 0.254 0.675 1/4 2/3 

numerics SCFT 



• square ladder 

 (2,0)x(0,L) 

• zigzag ladder 

 (2,1)x(0,L) 

 GS for 

• (3,3)x(0,L) 

 fermions can hop  
 past each other  

L 

L 

(0,L) 

(3,3) 

Spectral flow for the square lattice 

[LH - Halverson - Fendley - Schoutens  ‘08] 

//l=0:/ (-1/12,0)&,&/ l=k/2:/ (1/12, 1/3),/ l=k:/ (1/4, 2/3)/nonumber
//l=0:/ (-1/12,0)&,&/ l=k/2:/ (1/12, 1/3),/ l=k:/ (1/4, 2/3)/nonumber
//l=0:/ (-1/12,0)&,&/ l=k/2:/ (1/12, 1/3),/ l=k:/ (1/4, 2/3)/nonumber
//l=0:/ (-1/12,0)&,&/ l=k/2:/ (1/12, 1/3),/ l=k:/ (1/4, 2/3)/nonumber
//l=0:/ (-1/12,0)&,&/ l=k/2:/ (1/12, 1/3),/ l=k:/ (1/4, 2/3)/nonumber


Spectral flow results (3,3)x(0,11), Nf=8 

[LH - Halverson - Fendley - Schoutens  ‘08] 



Spectral flow results 

[LH - Halverson - Fendley - Schoutens  ‘08] 



Spectral flow results 

minimal models in SCFT: 



Open problems/recent developments 



 Triangles (t) as 
impurities 

 #gs=2t 

 Anomalous 
scaling of 
entanglement 
entropy    

[LH-Swingle (to appear)] 

Controllable gs degeneracy 



 

 

 

 

 Exact ground states from cohomology for lattices with 
reduced frustration 

 

 Towards understanding the phases in the square 
lattice: system of decoupled chains in infinite 
staggering limit 

 
[LH - Moran - Schoutens - Vala ’11 ; 
Fendley – Hagendorf  ’10; ’11; 
LH-Berg (work in progress)] 

Staggering: beyond gs counting in 2D 



 AdS/CMT: apply gauge/gravity duality to 
condensed matter systems 

 Toy model for AdS/CMT?? 

 Typical features: extensive ground state entropy, 
supersymmetry and large N 

 What is continuum theory in 2D? 

 Is there an emergent gauge symmetry? 

 Can we include gauge symmetry explicitly on the 
lattice? 

 ... 

Open questions/future directions 



Conclusions 

µ 

Supersymmetry 

Techniques 
Witten index 
Cohomology 
Spectral flow 
Staggering 
... 

Features 
Superfrustration 
Quantum criticality 
Competing orders 
... 

Exact results for strongly interacting fermions 



Thank you 


