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Motivation

Point of reference: heavy-ion collision at RHIC/LHC:
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Key question:

Understand the features of (early)
thermalization for an evolving (boost-
invariant) plasma system

What do we mean by thermalization here?
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Thermalization

At weak coupling the obvious definition would be to require thermal
momentum distributions for quarks and gluons...

At strong coupling, the picture of a gas of gluons is not really valid
— alternatively require that observables such as 2-point functions/spatial

Wilson loops/ entanglement entropy are the same as for a thermal system...
explored in the AdS/CFT context

This is very good for studying relaxation processes where the final state is
some uniform static plasma system — this is not so for the plasma
undergoing expansion

For an expanding plasma fireball we need local equilibrium — bilocal probes
get contaminated by collective flow

We adopt an operational definition of thermalization — the point when
plasma starts being describable by (viscous) hydrodynamics.
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AdS/CFT, hydrodynamics and nonequilibrium processes

Hydrodynamics isolates long wavelength effective degrees of freedom of a
theory
The energy-momentum tensor Tµν is expressed in terms of a local
temperature T and flow velocity uµ

Tµν is expressed as an expansion in the gradients of the flow velocities
(shown here for N = 4 SYM)

Tµν
rescaled = (πT )4(ηµν + 4uµuν)︸ ︷︷ ︸

perfect fluid

− 2(πT )3σµν︸ ︷︷ ︸
viscosity

+

+ (πT 2)
(

log 2Tµν
2a + 2Tµν

2b + (2− log 2)

(
1
3

Tµν
2c + Tµν

2d + Tµν
2e

))
︸ ︷︷ ︸

second order hydrodynamics

The coefficients of the various tensor structures are the transport coefficients.
In a conformal theory these are pure numbers times powers of T .
Full nonlinear hydrodynamic equations follow now from ∂µTµν = 0
The above form of Tµν for N = 4 SYM at strong coupling is not an
assumption but can be proven from AdS/CFT Minwalla et.al.
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AdS/CFT, hydrodynamics and nonequilibrium processes

Linearized hydrodynamics

Look at small disturbances of the uniform static plasma. . .

If Tµν is described by (1st order viscous) hydrodynamics then one can derive
dispersion relation of long wavelength modes from hydrodynamic equations:
shear modes:

ωshear = −i
η

E + p
k2

sound modes:

ωsound =
1√
3

k − i
2
3

η

E + p
k2

If we were to include terms in Tµν with more derivatives (higher order viscous
hydrodynamics), we would get terms with higher powers of k in the
dispersion relations...

Hypothetical resummed all-order hydrodynamics would predict the full
dispersion relation for these modes ωshear (k), ωsound (k)

What happens in the AdS/CFT description?
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AdS/CFT, hydrodynamics and nonequilibrium processes

The uniform static plasma system is described as a static planar black hole
Small disturbances of the uniform static plasma ≡ small perturbations of the
black hole metric (≡ quasinormal modes (QNM))

g5Dαβ = g5D,black hole
αβ + δg5Dαβ (z)e−iωt+ikx

Dispersion relation fixed by linearized Einstein’s equations. Results for the
sound channel

from Kovtun,Starinets hep-th/0506184
This is equivalent to summing contributions from all-order viscous
hydrodynamics
But, in addition, there is an infinite set of higher QNM — effective degrees
of freedom not contained in the hydrodynamic description at all!
Romuald A. Janik (Kraków) Plasma thermalization and numerical relativity 8 / 37
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AdS/CFT, hydrodynamics and nonequilibrium processes

Einstein’s equations in AdS/CFT

contain all-order viscous hydrodynamic modes (with specific values of all
transport coefficients)

in addition contain the dynamics of genuine nonhydrodynamical modes

incorporate their interactions in a fully nonlinear (and unique) way

Consequence:
Einstein’s equations can serve to study nonequilibrium processes in strongly
coupled N = 4 SYM and are an effective tool for exploring physics beyond
hydrodynamics

Question:
In the case of boost-invariant plasma expansion can we unambigously determine
i) whether these nonhydrodynamical modes are really important
or
ii) whether it would be enough to consider just all-order viscous hydrodynamic
modes
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Boost-invariant flow

Bjorken ’83
Assume a flow that is invariant under
longitudinal boosts and does not depend
on the transverse coordinates.

In a conformal theory, Tµ
µ = 0 and ∂µTµν = 0 determine, under the above

assumptions, the energy-momentum tensor completely in terms of a single
function ε(τ), the energy density at mid-rapidity.

The longitudinal and transverse pressures are then given by

pL = −ε− τ d
dτ
ε and pT = ε+

1
2
τ

d
dτ
ε .

From AdS/CFT one can derive the large τ expansion of ε(τ) for
N = 4 plasma
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Large τ behaviour of ε(τ)

Current result for large τ : RJ,Peschanski;RJ;RJ,Heller;Heller

ε(τ) =
1

τ
4
3

− 2

2
1
2 3
3
4

1
τ 2

+
1 + 2 log 2

12
√

3

1

τ
8
3

+
−3 + 2π2 + 24 log 2− 24 log2 2

324 · 2 12 3 14
1

τ
10
3

+. . .

Leading term — perfect fluid behaviour
second term — 1st order viscous hydrodynamics
third term — 2nd order viscous hydrodynamics
fourth term — 3rd order viscous hydrodynamics...

As we decrease τ more and more dissipation will start to be important

Question: If we start from various initial conditions at τ = 0 when does the
above hydrodynamic form of ε(τ) starts being applicable?
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Aim: Study the evolution of ε(τ) all the way from τ = 0 to large τ starting from
various initial conditions and investigate the transition to hydrodynamic
behaviour...

Method: Describe the time dependent evolving strongly coupled plasma system
through a dual 5D geometry — given e.g. by

ds2 =
gµν(xρ, z)dxµdxν + dz2

z2
≡ g5Dαβdxαdxβ

i) use Einstein’s equations for the time evolution

Rαβ −
1
2

g5DαβR − 6 g5Dαβ = 0

ii) read off 〈Tµν(xρ)〉 from the numerical metric gµν(xρ, z)

gµν(xρ, z) = ηµν + z4g (4)
µν (xρ) + . . . 〈Tµν(xρ)〉 =

N2c
2π2
· g (4)
µν (xρ)
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Initial conditions for the evolution of the plasma system

Our point of departure — start with arbitrary initial conditions and look for
common features/regularities

In weakly coupled gauge theory, the analog would be to start from arbitrary
momentum distributions of gluons and follow the evolution until equilibration

At strong coupling the analog is a specific initial geometry in the bulk

However, not unexpectedly, there is no direct quantitative interpretation in
terms of e.g. gluon momenta distributions

This is not the only possible approach...

Romuald A. Janik (Kraków) Plasma thermalization and numerical relativity 13 / 37



Initial conditions for the evolution of the plasma system

Our point of departure — start with arbitrary initial conditions and look for
common features/regularities

In weakly coupled gauge theory, the analog would be to start from arbitrary
momentum distributions of gluons and follow the evolution until equilibration

At strong coupling the analog is a specific initial geometry in the bulk

However, not unexpectedly, there is no direct quantitative interpretation in
terms of e.g. gluon momenta distributions

This is not the only possible approach...

Romuald A. Janik (Kraków) Plasma thermalization and numerical relativity 13 / 37



Initial conditions for the evolution of the plasma system

Our point of departure — start with arbitrary initial conditions and look for
common features/regularities

In weakly coupled gauge theory, the analog would be to start from arbitrary
momentum distributions of gluons and follow the evolution until equilibration

At strong coupling the analog is a specific initial geometry in the bulk

However, not unexpectedly, there is no direct quantitative interpretation in
terms of e.g. gluon momenta distributions

This is not the only possible approach...

Romuald A. Janik (Kraków) Plasma thermalization and numerical relativity 13 / 37



Initial conditions for the evolution of the plasma system

Our point of departure — start with arbitrary initial conditions and look for
common features/regularities

In weakly coupled gauge theory, the analog would be to start from arbitrary
momentum distributions of gluons and follow the evolution until equilibration

At strong coupling the analog is a specific initial geometry in the bulk

However, not unexpectedly, there is no direct quantitative interpretation in
terms of e.g. gluon momenta distributions

This is not the only possible approach...

Romuald A. Janik (Kraków) Plasma thermalization and numerical relativity 13 / 37



Initial conditions for the evolution of the plasma system

Our point of departure — start with arbitrary initial conditions and look for
common features/regularities

In weakly coupled gauge theory, the analog would be to start from arbitrary
momentum distributions of gluons and follow the evolution until equilibration

At strong coupling the analog is a specific initial geometry in the bulk

However, not unexpectedly, there is no direct quantitative interpretation in
terms of e.g. gluon momenta distributions

This is not the only possible approach...

Romuald A. Janik (Kraków) Plasma thermalization and numerical relativity 13 / 37



Initial conditions for the evolution of the plasma system

Our point of departure — start with arbitrary initial conditions and look for
common features/regularities

In weakly coupled gauge theory, the analog would be to start from arbitrary
momentum distributions of gluons and follow the evolution until equilibration

At strong coupling the analog is a specific initial geometry in the bulk

However, not unexpectedly, there is no direct quantitative interpretation in
terms of e.g. gluon momenta distributions

This is not the only possible approach...

Romuald A. Janik (Kraków) Plasma thermalization and numerical relativity 13 / 37



Initial conditions for the evolution of the plasma system

Chesler and Yaffe adopted a different way of preparing the initial state:

1 Start from the vacuum of N = 4 SYM (no plasma)
2 Change the physical 4D metric of gauge theory spacetime in a

time-dependent manner
3 This will produce some nonequilibrium state
4 Follow its evolution...

We adopted our approach for the following reasons:

We want to study the evolution right from τ = 0 with energy-momentum
conservation satisified throughout the evolution

Throughout the evolution we keep the physical 4D Minkowski metric

We did not want to mix the equilibration dynamics with the response of the
gauge theory to a change in the physical metric

We want to study evolution from a wide range of initial conditions

We already had some information on plasma evolution from τ = 0 from
power series solutions of Einstein’s equations (which did not extend to the
hydrodynamic regime)
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Initial conditions for the evolution of the plasma system

In a previous work [Beuf, Heller, RJ, Peschanski], we analyzed possible initial
conditions in the Fefferman-Graham coordinates

ds2 =
1
z2

(
−ea(z,τ)dτ 2 + eb(z,τ)τ 2dy2 + ec(z,τ)dx2⊥

)
+

dz2

z2

Note that the initial hypersurface τ = 0 is partly light-like...

The initial conditions are determined in terms of a single function, say c0(z).
a0(z) = b0(z) are determined through a constraint equation.

In [Beuf, Heller, RJ, Peschanski], for each initial condition we obtained a
power series solution of Einstein’s equations leading to

ε(τ) =
26∑

n=0

εnτ
2n + . . .

(with a finite radius of convergence)
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Initial conditions for the evolution of the plasma system

A typical solution of the constraint equations is

a0(z) = b0(z) = 2 log cos z2 c0(z) = 2 log cosh z2

There is a coordinate singularity at z =
√
π/2 where

ds2 =
− cos2(z2)dτ 2 + . . .

z2

This can be cured ala Kruskal-Szekeres by modifying the metric ansatz but
keeping the initial hypersurface identical for comparision with the power
series solutions of [Beuf, Heller, RJ, Peschanski]

The singularity in c0(z) = 2 log cosh z2 as z →∞ is more dangerous!

We have to terminate our grid at a finite value of z and impose some
boundary conditions there...

This may not be a problem if there is an event horizon in between - but
a-priori we do not know where...
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The metric ansatz and numerical formalism

We use the following metric ansatz

ds2 =
−a2(u)α2(t, u)dt2 + t2a2(u)b2(t, u)dy2 + c2(t, u)dx2⊥

u
+

d2(t, u)du2

4u2

b(t, u), c(t, u), d(t, u) are the dynamical metric coefficients. u = 0 is the
boundary, u > 0 is the bulk.

We use the ADM formulation of Einstein’s equations

The initial step requires special care as the hypersurface t = 0 is not spacelike

In the ADM formulation we are free to choose how to foliate spacetime into
‘equal time’ hypersurfaces

This is done through a choice of lapse function a2(u)α2(t, u)

Impose boundary conditions on the AdS boundary in order for the gauge
theory metric to be Minkowski. In general t 6= τ (the physical proper-time).
Because of this, does not reduce to trivial Dirichlet b.c.
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The metric ansatz and numerical formalism

The key problem is what boundary conditions to impose in the bulk.
For a sample initial profile c0(u) = cosh u, there is a curvature singularity
at u =∞.

We use the ADM freedom of foliation to ensure that all hypersurfaces end on
a single spacetime point in the bulk — this ensures that we will control the
boundary conditions even though they may be in a strongly curved part of
the spacetime

This also ensures that no information flows from outside our region of
integration...

It is crucial to optimally tune the cut-off u0 in the bulk...
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The metric ansatz and numerical formalism

Depending on the relation of u0 to the event horizon we can get quite
different behaviours of the numerical simulation

In order to extend the simulation to large values of τ neccessary for observing
the transition to hydrodynamics we need to tune u0 to be close to the event
horizon.

Fortunately, this is quite simple in practice...

Romuald A. Janik (Kraków) Plasma thermalization and numerical relativity 19 / 37



The metric ansatz and numerical formalism

Depending on the relation of u0 to the event horizon we can get quite
different behaviours of the numerical simulation

In order to extend the simulation to large values of τ neccessary for observing
the transition to hydrodynamics we need to tune u0 to be close to the event
horizon.

Fortunately, this is quite simple in practice...

Romuald A. Janik (Kraków) Plasma thermalization and numerical relativity 19 / 37



The metric ansatz and numerical formalism

Depending on the relation of u0 to the event horizon we can get quite
different behaviours of the numerical simulation

In order to extend the simulation to large values of τ neccessary for observing
the transition to hydrodynamics we need to tune u0 to be close to the event
horizon.

Fortunately, this is quite simple in practice...

Romuald A. Janik (Kraków) Plasma thermalization and numerical relativity 19 / 37



The metric ansatz and numerical formalism

Depending on the relation of u0 to the event horizon we can get quite
different behaviours of the numerical simulation

In order to extend the simulation to large values of τ neccessary for observing
the transition to hydrodynamics we need to tune u0 to be close to the event
horizon.

Fortunately, this is quite simple in practice...

Romuald A. Janik (Kraków) Plasma thermalization and numerical relativity 19 / 37



The metric ansatz and numerical formalism

black line – dynamical horizon, arrows – null geodesics, colors represent curvature
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The metric ansatz and numerical formalism

Recall:

ds2 =
−a2(u)α2(t, u)dt2 + t2a2(u)b2(t, u)dy2 + c2(t, u)dx2⊥

u
+

d2(t, u)du2

4u2

We set the lapse to always vanish at the boundary in the bulk

Consequently, we set the (nondynamical) function a(u) to

a(u) = cos
(
π

2
u
u0

)
The remaining part of the lapse, α(t, u) is chosen to be a function of the
metric coefficients

α ∝ dc2

b
or α ∝ bd

1 + u
u0

b2
or α ∝ d

b
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The metric ansatz and numerical formalism

We use Chebyshev spectral methods for the spatial derivatives (hence very
strong sensitivity to boundary conditions)

We need very accurate spatial derivatives at the boundary in order to reliably
extract the physical energy density from the numerical geometry

For the time evolution we use an adaptive 8th/9th-order Runge-Kutta method
(gnu scientific library)

Numerical checks:
1 We monitor ADM constraints during evolution
2 The energy density ε(τ) extracted from simulations made with different

lapses/cut-offs for the same initial condition should coincide
3 We compare the numerical ε(τ) with the power series solution in its region of

convergence
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Results

We have considered 20+9 initial conditions, each given by a choice of the
metric coefficient c(τ = 0, u).

We have chosen quite different looking profiles e.g.

c1(u) = cosh u

c3(u) = 1 +
1
2

u2

c7(u) = 1 +
1
2u
2

1 + 3
2u
2

c10(u) = 1 +
1
2

u2e−
u
2

c15(u) = 1 +
1
2

u2eu

c19(u) = 1 +
1
2

tanh2
(

u +
1

25
u2
)
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Key physical questions

When and how does the transition to hydrodynamics (≡ thermalization/
isotropization) occur?

To what extent would higher order (even all-order) viscous hydrodynamics
explain plasma dynamics or do we need to incorporate genuine
nonhydrodynamic degrees of freedom in the far from equilibrium regime

Does there exist some physical characterization of the initial state which
determines the main features of thermalization and subseqent evolution?

What is the produced entropy from τ = 0 to τ =∞ (asymptotically perfect
fluid regime)

It is convenient to eliminate explicit dependence on the number of degrees of
freedom and use an effective temperature Teff instead of ε(τ)

〈Tττ 〉 ≡ ε(τ) ≡ N2c ·
3
8
π2 · T 4eff
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Nonequilibrium vs. hydrodynamic behaviour

Introduce the dimensionless quantity w(τ) ≡ Teff (τ) · τ
Viscous hydrodynamics (up to any order in the gradient expansion) leads to
equations of motion of the form

τ

w
d

dτ
w =

Fhydro(w)

w

where Fhydro(w) is a universal function completely determined in terms of the
hydrodynamic transport coefficients (shear viscosity, relaxation time and
higher order ones). For strongly coupled N = 4 plasma it becomes

Fhydro(w)

w
=

2
3

+
1

9πw
+

1− log 2
27π2w2

+
15− 2π2 − 45 log 2 + 24 log2 2

972π3w3
+ . . .

Therefore if plasma dynamics would be given by viscous hydrodynamics (even
to arbitrary high order) a plot of F (w) ≡ τ d

dτ w as a function of w would be
a single curve for all the initial conditions

Genuine nonequilibrium dynamics would, in contrast, lead to several curves...
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Nonequilibrium vs. hydrodynamic behaviour

A plot of F (w)/w versus w for various initial data
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A plot of F (w)/w versus w for various initial data

0 0.2 0.4 0.6 0.8
w

0.4

0.8

1.2

F HwL
w

Romuald A. Janik (Kraków) Plasma thermalization and numerical relativity 26 / 37



Nonequilibrium vs. hydrodynamic behaviour

An observable sensitive to the details of the dissipative dynamics (e.g.
hydrodynamics) is the pressure anisotropy

∆pL ≡ 1− pL

ε/3
= 12F (w)− 8

For a perfect fluid ∆pL ≡ 0. For a sample initial profile we get

For w = Teff · τ > 0.63 we get a very good agreement with viscous
hydrodynamics
Still sizable deviation from isotropy which is nevertheless completely due to
viscous flow.
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Entropy

The AdS/CFT prescription for 〈Tµν〉 is on a very solid ground in the
framework of the AdS/CFT correspondence — in contrast entropy, especially
for nonequillibrium systems is much less understood

It is even not clear whether an exact local notion makes sense on the QFT
side...

However, phenomenological notion of local entropy density is widely used in
(dissipative) hydrodynamics
On the AdS side entropy is obtained from the area element of a horizon but
we have to choose
the kind of horizon (currently: apparent horizon not event horizon)
we have to map a point on the boundary to an appropriate point in the bulk
(using null geodesics — but in general there are ambiguities)

For the boost-invariant setup fortunately the null geodesic ambiguities are
absent as well as ambiguities associated with defining the apparent horizon...
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Entropy

We consider the entropy per unit rapidity and unit transverse area in units of
initial temperature introducing a dimensionless entropy density s through

s =
S

1
2N
2
c π
2T 2eff (0)

Determine initial entropy from the area of a dynamical horizon at a point
where a null geodesic from τ = 0 intersects the horizon
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Final entropy

For large proper-time, the dynamics is given by hydrodynamics, leading to the
large τ expansion

Teff (τ)= Λ

(Λτ)1/3

{
1− 1
6π(Λτ)2/3

+ −1+log 2
36π2(Λτ)4/3

+ −21+2π2+51 log 2−24 log2 2
1944π3(Λτ)2+...

}

We obtain the Λ parameter from a fit to the late time tail of our numerical
data.

Knowing Λ, we may use the standard perfect fluid expression for the entropy
at τ =∞

sfinal =
Λ2

T 2eff (0)
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Entropy production

Consider the entropy production sfinal − sinitial as a function of sinitial

Recall the complicated nonequilibrium dynamics...
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Entropy production

Consider the entropy production sfinal − sinitial as a function of sinitial

Yet the entropy production depends in surprisingly clean way on sinitial ...

The initial entropy turns out to be a key characterization of the initial state
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A numerical criterion for thermalization

We want to study systematically the properties of the plasma at the point
when the dynamics becomes describable by viscous hydrodynamics...

We adopted a numerical criterion for thermalization∥∥∥∥∥ τ d
dτ w

F 3rd order
hydro (w)

− 1

∥∥∥∥∥ < 0.005

We looked at the following features of thermalization:
1 the dimensionless quantity w = Teff · τ
2 The thermalization time in units of initial temperature τth · Teff (0)
3 The temperature at thermalization relative to the initial
temperature Tth/Teff (0)
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w = Teff · τ at thermalization

w at thermalization is approximately constant and for the initial profiles
considered does not exceed w = 0.67. It seems to decrease for profiles with
smaller initial entropy
N.B. sample initial conditions for hydrodynamics at RHIC (τ0 = 0.25 fm,
T0 = 500 MeV ) assumed in [Broniowski, Chojnacki, Florkowski, Kisiel]
correspond to w = 0.63
The pressure anisotropy at thermalization is still sizable

∆pL ≡ 1− pL

ε/3
= 12F (w)− 8 ' 12Fhydro(w)− 8 ∼ 0.72− 0.73
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τth · Teff (0) at thermalization

Thermalization time in units of the initial effective temperature Teff (0)

Again we see a clean dependence on the initial entropy sinitial
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Temperature at thermalization

It is interesting to consider the ratio of the temperature at thermalization to
the initial effective temperature
This gives information on which part of the cooling process occurs in the far
from equilibrium regime and which part occurs during the hydrodynamic
evolution

Note: for initial profiles with large sinitial , the energy density initially rises and
only then falls −→ even for Tth/Teff (0) ∼ 1 there is still sizable
nonequilibrium evolution
For profiles with small initial entropy most of the cooling is of
a nonequilibrium nature.
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Conclusions

AdS/CFT provides a very general framework for studying time-dependent
dynamical processes

The AdS/CFT methods do not presuppose hydrodynamics so are applicable
even to very out-of-equilibrium configurations

Even though genuine nonequilibrium dynamics is very complicated, we
observed surprising regularities

Initial entropy seems to be a key physical characterization of the initial state
determining the total entropy production and thermalization time and
temperature

For w = Tth · τth > 0.7 we observe hydrodynamic behaviour but with sizeable
pressure anisotropy (described wholly by viscous hydrodynamics)

We implemented ADM evolution using spectral methods, freezing the
evolution at some interior point by forcing the lapse to vanish there
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For w = Tth · τth > 0.7 we observe hydrodynamic behaviour but with sizeable
pressure anisotropy (described wholly by viscous hydrodynamics)

We implemented ADM evolution using spectral methods, freezing the
evolution at some interior point by forcing the lapse to vanish there
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