Lattice simulation of supersymmetric systems and spontaneous SUSY breaking

Issaku Kanamori (Universität Regensburg)

Mar. 8, 2012
"Novel Numerical Methods for Strongly Coupled Quantum Field Theory and Quantum Gravity" at KITP
works with M.Hanada, F.Sugino and H.Suzuki

Introduction

target systems: $\mathcal{N}=(2,2)$ 2-dim SYM and $\mathcal{N}=2$ SQM
Plan 1. Introduction \& Motivation
2. Lattice Formulation
3. Restoration of the full SUSY (no lattice artifact)
4. Vacuum Energy
5. Witten index
6. Conclusions and Discussions

Motivation

Lattice simulation: a non-perturbative method for field theory \Rightarrow non-perturbative aspects of SUSY

Motivation

Lattice simulation: a non-perturbative method for field theory \Rightarrow non-perturbative aspects of SUSY

- SUSY breaking

Why our world is not supersymmetric?

Motivation

Lattice simulation: a non-perturbative method for field theory \Rightarrow non-perturbative aspects of SUSY

- SUSY breaking

Why our world is not supersymmetric?

- gauge/gravity duality tool for strong coupling gauge theory talks by S.Catterall, M.Hanada, S.Matsuura

Motivation

Lattice simulation: a non-perturbative method for field theory \Rightarrow non-perturbative aspects of SUSY

- SUSY breaking

Why our world is not supersymmetric?

- gauge/gravity duality tool for strong coupling gauge theory talks by S.Catterall, M.Hanada, S.Matsuura
- will be found in LHC ?
worth developing simulation techniques

Motivation

Lattice simulation: a non-perturbative method for field theory \Rightarrow non-perturbative aspects of SUSY

- SUSY breaking Why our world is not supersymmetric?
- gauge/gravity duality tool for strong coupling gauge theory talks by S.Catterall, M.Hanada, S.Matsuura
- will be found in LHC ?
worth developing simulation techniques
- "Experiment" for theoretical analysis

SUSY is broken on the lattice

supersymmetry
 (SUSY)

algebra:

$$
\{Q, \bar{Q}\}=i \partial \quad Q^{2}=\bar{Q}^{2}=0
$$

invariance of the action: $\quad Q S=0(=\partial X)$ $\partial X=\left(\partial X_{1}\right) X_{2} \ldots X_{n}+X_{1}\left(\partial X_{2}\right) \ldots X_{n}+\cdots$

SUSY is broken on the lattice

supersymmetry
 (SUSY)

algebra:

$$
\{Q, \bar{Q}\}=i \partial \quad Q^{2}=\bar{Q}^{2}=0
$$

invariance of the action: $\quad Q S=O(=\partial X)$

$$
\partial X=\left(\partial X_{1}\right) X_{2} \ldots X_{n}+X_{1}\left(\partial X_{2}\right) \ldots X_{n}+\cdots
$$

But on the lattice, Leibniz rule is broken! \Rightarrow NO SUSY?

Scalar Q for $\mathcal{N} \geq 2$ on lattice

- (exact) SUSY on lattice: impossible?

Scalar Q for $\mathcal{N} \geq 2$ on lattice

- (exact) SUSY on lattice: impossible?

If $\mathcal{N} \geq 2$, it is possible!

Scalar Q for $\mathcal{N} \geq 2$ on lattice

- (exact) SUSY on lattice: impossible?

If $\mathcal{N} \geq 2$, it is possible!

- topological twist \Rightarrow scalar Q on a site $\left(Q^{2}=0\right)$

Scalar Q for $\mathcal{N} \geq 2$ on lattice

- (exact) SUSY on lattice: impossible?

$$
\text { If } \mathcal{N} \geq 2 \text {, it is possible! }
$$

- topological twist \Rightarrow scalar Q on a site $\left(Q^{2}=0\right)$

Scenario

- part of SUSY at finite a, the whole is restored in $a \rightarrow 0$ (automatically/with only a few fine tunings)

Scalar Q for $\mathcal{N} \geq 2$ on lattice

- (exact) SUSY on lattice: impossible?

$$
\text { If } \mathcal{N} \geq 2 \text {, it is possible! }
$$

- topological twist \Rightarrow scalar Q on a site $\left(Q^{2}=0\right)$

Scenario

- part of SUSY at finite a, the whole is restored in $a \rightarrow 0$ (automatically/with only a few fine tunings)
- 2-dim: g has dim=1, l-loop $\sim\left(a^{2} g^{2}\right)^{l} \rightarrow 0$
no SUSY breaking quatum corrections

Scalar Q for $\mathcal{N} \geq 2$ on lattice

- (exact) SUSY on lattice: impossible?

$$
\text { If } \mathcal{N} \geq 2 \text {, it is possible! }
$$

- topological twist \Rightarrow scalar Q on a site $\left(Q^{2}=0\right)$

Scenario

- part of SUSY at finite a, the whole is restored in $a \rightarrow 0$ (automatically/with only a few fine tunings)
- 2-dim: g has dim=1, l-loop $\sim\left(a^{2} g^{2}\right)^{l} \rightarrow 0$
no SUSY breaking quatum corrections
perturbative power counting: non-pertubativitly...?

Scalar Q for $\mathcal{N} \geq 2$ on lattice

- (exact) SUSY on lattice: impossible?

$$
\text { If } \mathcal{N} \geq 2 \text {, it is possible! }
$$

- topological twist \Rightarrow scalar Q on a site $\left(Q^{2}=0\right)$

Scenario

- part of SUSY at finite a, the whole is restored in $a \rightarrow 0$ (automatically/with only a few fine tunings)
- 2-dim: g has dim=1, l-loop $\sim\left(a^{2} g^{2}\right)^{l} \rightarrow 0$
no SUSY breaking quatum corrections
perturbative power counting: non-pertubativitly...?
First, we need to confirm this scenario in the simulation

Scalar Q for $\mathcal{N} \geq 2$ on lattice

- (exact) SUSY on lattice: impossible?

$$
\text { If } \mathcal{N} \geq 2 \text {, it is possible! }
$$

- topological twist \Rightarrow scalar Q on a site $\left(Q^{2}=0\right)$

Scenario

- part of SUSY at finite a, the whole is restored in $a \rightarrow 0$ (automatically/with only a few fine tunings)
- 2-dim: g has dim=1, l-loop $\sim\left(a^{2} g^{2}\right)^{l} \rightarrow 0$
no SUSY breaking quatum corrections
perturbative power counting: non-pertubativitly...?
First, we need to confirm this scenario in the simulation
\Downarrow
Then, we measure SUSY breaking

Formulation

Target System: 2-dim $\mathcal{N}=(2,2)$ SYM

$$
\begin{gathered}
\mathcal{Q}=4=2^{D}: \text { a } 2-\operatorname{dim} \text { cousin of } 4 \text {-dim } \mathcal{N}=4(\mathcal{Q}=16) \\
Q_{\alpha i}=\left(Q \mathbb{1}+\gamma_{\mu} Q_{\mu}+\gamma_{5} \tilde{Q}\right)_{\alpha i} \quad \text { Dirac-Kähler (staggered) }
\end{gathered}
$$

Target System: 2 -dim $\mathcal{N}=(2,2)$ SYM

$$
\begin{gathered}
\mathcal{Q}=4=2^{D}: \text { a } 2 \text {-dim cousin of 4-dim } \mathcal{N}=4(\mathcal{Q}=16) \\
Q_{\alpha i}=\left(Q \mathbb{1}+\gamma_{\mu} Q_{\mu}+\gamma_{5} \tilde{Q}\right)_{\alpha i} \quad \text { Dirac-Kähler (staggered) }
\end{gathered}
$$

nilpotent Q (Twisted) SUSY Algebra, continuum

$$
Q^{2}=0 \quad Q_{0}^{2}=0 \quad\left\{Q, Q_{0}\right\}=2 i \partial_{0}
$$

Target System: 2 -dim $\mathcal{N}=(2,2)$ SYM

$$
\begin{gathered}
\mathcal{Q}=4=2^{D}: \text { a } 2-\operatorname{dim} \text { cousin of 4-dim } \mathcal{N}=4(\mathcal{Q}=16) \\
Q_{\alpha i}=\left(Q \mathbb{1}+\gamma_{\mu} Q_{\mu}+\gamma_{5} \tilde{Q}\right)_{\alpha i} \quad \text { Dirac-Kähler (staggered) }
\end{gathered}
$$

nilpotent Q (Twisted) SUSY Algebra, continuum

$$
Q^{2}=0 \quad Q_{0}^{2}=0 \quad\left\{Q, Q_{0}\right\}=2 i \partial_{0}
$$

Action (dimensional reduction from 4-dim $\mathcal{N}=1$)

$$
S=\frac{1}{g^{2}} \int d^{2} x \operatorname{tr}\left\{\frac{1}{2} F_{M N} F_{M N}+\psi^{\top} C \Gamma_{M} D_{M} \psi+\hat{H}^{2}\right\}=Q(\ldots)
$$

$A_{M}=$ (gauge field, scalar)
$\psi^{T}=\left(\psi_{0}, \psi_{1}, \chi, \eta / 2\right) \quad$ (with a suitable rep. of $\left.\Gamma_{M}\right)$
$\hat{H}=$ aux. field

Sugino model

Sugino, JHEP 01(2004)067

target: $2-\operatorname{dim} \mathcal{N}=(2,2) \mathrm{SYM}$

nilpotent Q Lattice version

$$
Q^{2}=\delta_{\phi}^{\text {(gauge) }}
$$

Q-exact action (lattice)

$$
\begin{array}{rr}
S=Q(\ldots)=S[U(x, \mu), \phi(x), \bar{\phi}(x), H(x) & \text { bosons } \\
\left.\eta(x), \chi(x), \psi_{0}(x), \psi_{1}(x)\right] & \text { fermions }
\end{array}
$$

$$
\begin{aligned}
Q U(x, \mu)= & i \psi_{\mu}(x) U(x, \mu) \\
Q \psi_{\mu}(x)= & i \psi_{\mu}(x) \psi_{\mu}(x) \\
& -i\left(\phi(x)-U(x, \mu) \phi(x+\hat{\mu}) U(x, \mu)^{-1}\right)
\end{aligned}
$$

$$
Q \phi=0
$$

Lattice Action $\left(S U\left(N_{C}\right)\right)$

$\left[S_{\text {cont. }}=Q \frac{1}{g^{2}} \int d x \operatorname{tr}\left\{\chi H+\frac{1}{4} \eta[\phi, \bar{\phi}]+2 \chi F_{01}-i \psi_{\mu} D_{\mu} \bar{\phi}\right\}\right]$

$$
\begin{aligned}
S_{\text {sugino }}= & Q \frac{1}{a^{2} g^{2}} \sum_{x} \operatorname{tr}\left[\chi(x) H(x)+\frac{1}{4} \eta(x)[\phi(x), \bar{\phi}(x)]-i \chi(x) \hat{\Phi}(x)\right. \\
& \left.+i \sum_{\mu=0,1}\left\{\psi_{\mu}(x)\left(\bar{\phi}(x)-U(x, \mu) \bar{\phi}(x+a \hat{\mu}) U(x, \mu)^{-1}\right)\right\}\right] \\
= & \frac{1}{a^{2} g^{2}} \sum_{x} \operatorname{tr}\left[\frac{1}{4} \hat{\Phi}_{\mathrm{TL}}(x)^{2}+\ldots\right]
\end{aligned}
$$

$$
i \hat{\Phi}(x)=\frac{U(x, 0,1)-U(x, 0,1)^{-1}}{1-\frac{1}{\epsilon^{2}}\|1-U(x, 0,1)\|^{2}} \sim 2 i F_{01}
$$

$$
\text { with }\|1-U(x, 0,1)\|<\epsilon
$$

To suppress lattice artifact "vacua", we need:

$$
\begin{aligned}
& 0<\epsilon<2 \sqrt{2} \text { for } N_{C}=2,3,4 \\
& 0<\epsilon<2 \sqrt{N_{C}} \sin \left(\pi / N_{C}\right) \text { for } N_{C} \geq 5
\end{aligned}
$$

Different models: the same result

Sugino model

A_{μ}, scalar $\phi_{(i)}$
CKKU model Cohen-Katz-Kaplan-Ünsal JHEP 0308 (2003) 024
$A_{\mu}+i \phi_{(\mu)}$: complex link variables

Different models: the same result

Sugino model
A_{μ}, scalar $\phi_{(i)}$
CKKU model Cohen-Katz-Kaplan-Ünsal JHEP 0308 (2003) 024
$A_{\mu}+i \phi_{(\mu)}$: complex link variables
Both types give the same results: M.Hanada-I.K., JHEP 1101 (2011) 058

Restoration of the full SUSY
 No SUSY breaking lattice artifacts survive

I.K and H.Suzuki, NPB (2009), 420

In which stage is SUSY broken?

Target: $2-\operatorname{dim} \mathcal{N}=(2,2) \mathrm{SYM}, \mathrm{SU}(2)$
lattice model + scalar mass term

+ thermal B.C.

In which stage is SUSY broken?

Target: $2-\operatorname{dim} \mathcal{N}=(2,2) \mathrm{SYM}, \mathrm{SU}(2)$
lattice model + scalar mass term

+ thermal B.C.

1. lattice artifact
2. scalar mass term: to control the flat directions
3. boundary condition: anti-periodic in temporal direction for fermion (thermal)

In which stage is SUSY broken?

Target: 2-dim $\mathcal{N}=(2,2) \mathrm{SYM}, \mathrm{SU}(2)$
lattice model + scalar mass term

+ thermal B.C.

1. Iattice artifact Our interest
2. scalar mass term: to control the flat directions
3. boundary condition: anti-periodic in temporal direction for fermion (thermal)

In which stage is SUSY broken?

Target: 2-dim $\mathcal{N}=(2,2) \mathrm{SYM}, \mathrm{SU}(2)$
lattice model + scalar mass term

+ thermal B.C.

1. Iattice artifact Our interest
2. scalar mass term: to control the flat directions Partially Conserved Super Current (PCSC)
3. boundary condition: anti-periodic in temporal direction for fermion (thermal)

In which stage is SUSY broken?

Target: 2-dim $\mathcal{N}=(2,2) \mathrm{SYM}, \mathrm{SU}(2)$
lattice model + scalar mass term

+ thermal B.C.

1. Iattice artifact Our interest
2. scalar mass term: to control the flat directions Partially Conserved Super Current (PCSC)
3. boundary condition: anti-periodic in temporal direction for fermion (thermal) no effect to local Ward-Takahashi identity

In which stage is SUSY broken?

Target: 2-dim $\mathcal{N}=(2,2) \mathrm{SYM}, \mathrm{SU}(2)$
lattice model + scalar mass term

+ thermal B.C.

1. Iattice artifact Our interest
2. scalar mass term: to control the flat directions Partially Conserved Super Current (PCSC)
3. boundary condition: anti-periodic in temporal direction for fermion (thermal)
no effect to local Ward-Takahashi identity
PCSC relation
(Separate the effect of lattice artifact) satisfied $\quad \Rightarrow$ the lattice artifact vanishes not satisfied \Rightarrow does not vanish

PCSC relation

4 supercharges: $Q_{A}=\left\{Q_{0}, Q_{1}, \tilde{Q}, Q\right\}$
Partially conserved supercurrent:

$$
\partial_{\mu} \mathcal{J}_{\mu}^{A}=0 \Rightarrow \partial_{\mu} \mathcal{J}_{\mu}^{A}=\mu^{2} / g^{2} Y^{A}(\text { PCSC }) \quad \mu: \text { scalar mass }
$$

$$
\left\langle\partial_{\mu} \mathcal{J}_{\mu}^{A}(x) X^{A}(0)\right\rangle-\frac{\mu^{2}}{g^{2}}\left\langle Y^{A}(x) X^{A}(0)\right\rangle=-i \delta^{2}(x)\left\langle Q^{A} X^{A}(0)\right\rangle
$$

(A: no sum)

$$
\frac{\left\langle\partial_{\mu} \mathcal{J}_{\mu}^{A}(x) X^{A}(0)\right\rangle}{\left\langle Y^{A}(X) X^{A}(0)\right\rangle}=\frac{\mu^{2}}{g^{2}} \text { for } x \neq 0
$$

$Y^{A}=-2\left[C\left(\Gamma_{2} \operatorname{tr}\left(A_{2} \Psi\right)+\Gamma_{3} \operatorname{tr}\left(A_{3} \Psi\right)\right)\right]^{A} \quad \sim$ (scalar) \times (fermion)
$X^{A}=\frac{1}{g^{2}}\left[\Gamma_{0}\left(\Gamma_{2} \operatorname{tr}\left(A_{2} \psi\right)+\Gamma_{3} \operatorname{tr}\left(A_{3} \psi\right)\right)\right]^{A}$

PCSC relation (continuum limit)

PCSC relation (continuum limit)

PCSC is satisfied \Rightarrow no SUSY breaking due to lattice artifact

Simulation detail

- Algorithm: Rational Hybrid Monte Carlo (RHMC)
(+ Multi-time step acceleration)
- lattice size: $3 \times 6-30 \times 10$
- $a g=0.2357-0.059$
- 200-4,000 configurations
- $\langle\psi(x) \psi(y)\rangle=D^{-1}(x, y)$:

Brute force inversion with Lapack (always all-to-all propagators)
cf. disconnected fermion loops in QCD

Vacuum Energy

order parameter for SUSY breaking

Observing spontaneous SUSY breaking

no explicit breaking caused by lattice artifact We can discuss spontaneous breaking

Observing spontaneous SUSY breaking

no explicit breaking caused by lattice artifact We can discuss spontaneous breaking
2-dim $\mathcal{N}=(2,2)$ SYM: maybe broken? Hori-Tong, JHEP 0705 (2007) 079

Observing spontaneous SUSY breaking

no explicit breaking caused by lattice artifact We can discuss spontaneous breaking
2-dim $\mathcal{N}=(2,2)$ SYM: maybe broken? Hori-Tong, JHEP 0705 (2007) 079

- order parameter $\langle\mathcal{H}\rangle=\frac{1}{2}\left\langle Q \mathcal{J}_{0}^{(0)}\right\rangle \quad\left(\left\{Q, Q_{0}\right\}=2 i \partial_{0}\right)$

Observing spontaneous SUSY breaking

no explicit breaking caused by lattice artifact We can discuss spontaneous breaking
2-dim $\mathcal{N}=(2,2)$ SYM: maybe broken? Hori-Tong, JHEP 0705 (2007) 079

- order parameter $\langle\mathcal{H}\rangle=\frac{1}{2}\left\langle Q \mathcal{J}_{0}^{(0)}\right\rangle \quad\left(\left\{Q, Q_{0}\right\}=2 i \partial_{0}\right)$
- measure with thermal boundary condition

Observing spontaneous SUSY breaking

no explicit breaking caused by lattice artifact
We can discuss spontaneous breaking
2-dim $\mathcal{N}=(2,2)$ SYM: maybe broken? Hori-Tong, JHEP 0705 (2007) 079

- order parameter $\langle\mathcal{H}\rangle=\frac{1}{2}\left\langle Q \mathcal{J}_{0}^{(0)}\right\rangle \quad\left(\left\{Q, Q_{0}\right\}=2 i \partial_{0}\right)$
- measure with thermal boundary condition
- extrapolate to zero temperature $(\beta \rightarrow \infty)$: ground state energy density \mathcal{E}
$\mathcal{E}=\langle\mathcal{H}\rangle$ at zero temperature $\begin{cases}=0 & \text { SUSY } \\ \neq 0 & \text { SUSY }\end{cases}$

Observing spontaneous SUSY breaking

no explicit breaking caused by lattice artifact
We can discuss spontaneous breaking
2-dim $\mathcal{N}=(2,2)$ SYM: maybe broken? Hori-Tong, JHEP 0705 (2007) 079

- order parameter $\langle\mathcal{H}\rangle=\frac{1}{2}\left\langle Q \mathcal{J}_{0}^{(0)}\right\rangle \quad\left(\left\{Q, Q_{0}\right\}=2 i \partial_{0}\right)$
- measure with thermal boundary condition
- extrapolate to zero temperature $(\beta \rightarrow \infty)$: ground state energy density \mathcal{E}

$$
\mathcal{E}=\langle\mathcal{H}\rangle \text { at zero temperature } \begin{cases}=0 & \text { SUSY } \\ \neq 0 & \text { SUSY }\end{cases}
$$

- extrapolate the scalar mass to zero (before $\beta \rightarrow \infty$)

Check with SQM

(known): form of the potential \Rightarrow broken or not

Check with SQM

(known): form of the potential \Rightarrow broken or not

SYM: Seems not broken

I.K. PRD 79 (2009) 115015

SYM: Seems not broken

I.K. PRD 79 (2009) 115015

Ground state energy is consistent with 0

Witten Index: normalized sign The sign problem is a problem, but...

I.K. NPB841 (2010), 42

Witten index

Witten index: useful index to detect spontaneous SUSY breaking

- Witten index: $w=\operatorname{tr}(-1)^{F} e^{-\beta H}=\left.\left(N_{B}-N_{F}\right)\right|_{E=0}$ index $\neq 0$: SUSY index $=0:$ SUSY or SUSY

Witten index

Witten index: useful index to detect spontaneous SUSY breaking

- Witten index: $w=\operatorname{tr}(-1)^{F} e^{-\beta H}=\left.\left(N_{B}-N_{F}\right)\right|_{E=0}$ index $\neq 0$: SUSY index $=0$: SUSY or SUSY
- Lattice action with $S=Q \wedge, Q^{2}=0$: $|\lambda\rangle$ and $Q|\lambda\rangle(\neq 0)$ make a pair as in the continuum
\Rightarrow index is well defined

Normalization...?

Witten index in path integral

$$
w=Z_{P}=\int \mathcal{D} \phi \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left(-S_{P}\right)
$$

P: Periodic boundary condition
a proper definition of the measure is needed

Normalization...?

Witten index in path integral

$$
w=Z_{P}=\int \mathcal{D} \phi \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left(-S_{P}\right)
$$

P: Periodic boundary condition a proper definition of the measure is needed

Expectation value

$$
\langle A\rangle=\frac{\int \mathcal{D} \phi \mathcal{D} \bar{\psi} \mathcal{D} \psi A \exp (-S)}{\int \mathcal{D} \phi \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp (-S)}
$$

Normalization...?

Witten index in path integral

$$
w=Z_{P}=\int \mathcal{D} \phi \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp \left(-S_{P}\right)
$$

P: Periodic boundary condition a proper definition of the measure is needed

Expectation value

$$
\langle A\rangle=\frac{\int \mathcal{D} \phi \mathcal{D} \bar{\psi} \mathcal{D} \psi A \exp (-S)}{\int \mathcal{D} \phi \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp (-S)}=\frac{\mathcal{C} \int \mathcal{D} \phi \mathcal{D} \bar{\psi} \mathcal{D} \psi A \exp (-S)}{\mathcal{C} \int \mathcal{D} \phi \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp (-S)}
$$

Overall normalization of Z_{P} seems impossible to determine

Sign of the $\operatorname{Det}(D)$ (or $\operatorname{Pf}(D))$

$Z=\int \mathcal{D} \bar{\psi} \mathcal{D} \psi \mathcal{D} \phi e^{-S_{B}-S_{F}}=\int \mathcal{D} \phi \sigma[D] e^{-S^{\prime}}, \quad S^{\prime}=S_{B}-\ln |\operatorname{Det}(D)|$
Reweighting the sign of $\operatorname{Det}(D)$ (or $\operatorname{Pf}(D)$): $\sigma[D]$

$$
\langle A\rangle_{0} \equiv \frac{\int \mathcal{D} \phi A e^{-s^{\prime}}}{\int \mathcal{D} \phi e^{-S^{\prime}}}, \quad\langle A\rangle=\frac{\int \mathcal{D} \phi A \sigma[D] e^{-s^{\prime}}}{\int \mathcal{D} \phi \sigma[D] e^{-S^{\prime}}}=\frac{\langle A \sigma[D]\rangle_{0}}{\langle\sigma[D]\rangle_{0}}
$$

Sign of the $\operatorname{Det}(D)$ (or $\operatorname{Pf}(D)$)

$Z=\int \mathcal{D} \bar{\psi} \mathcal{D} \psi \mathcal{D} \phi e^{-S_{B}-S_{F}}=\int \mathcal{D} \phi \sigma[D] e^{-S^{\prime}}, \quad S^{\prime}=S_{B}-\ln |\operatorname{Det}(D)|$
Reweighting the sign of $\operatorname{Det}(D)$ (or $\operatorname{Pf}(D)): \sigma[D]$

$$
\langle A\rangle_{0} \equiv \frac{\int \mathcal{D} \phi A e^{-S^{\prime}}}{\int \mathcal{D} \phi e^{-S^{\prime}}}, \quad\langle A\rangle=\frac{\int \mathcal{D} \phi A \sigma[D] e^{-S^{\prime}}}{\int \mathcal{D} \phi \sigma[D] e^{-S^{\prime}}}=\frac{\langle A \sigma[D]\rangle_{0}}{\langle\sigma[D]\rangle_{0}}
$$

Normalized partition func.
$\left\langle\sigma[D]^{-1} e^{+S^{\prime}} e^{-\frac{1}{2} \sum_{i} \mu^{2} \phi_{i}^{2}}\right\rangle=\frac{\int \mathcal{D} \phi e^{-\frac{1}{2} \sum_{i} \mu^{2} \phi_{i}^{2}}}{Z}=\frac{\left\langle e^{S^{\prime}-\frac{1}{2} \sum_{i} \mu^{2} \phi_{i}^{2}}\right\rangle_{0}}{\langle\sigma[D]\rangle_{0}}$

Sign of the $\operatorname{Det}(D)($ or $\operatorname{Pf}(D))$

$Z=\int \mathcal{D} \bar{\psi} \mathcal{D} \psi \mathcal{D} \phi e^{-S_{B}-S_{F}}=\int \mathcal{D} \phi \sigma[D] e^{-S^{\prime}}, \quad S^{\prime}=S_{B}-\ln |\operatorname{Det}(D)|$
Reweighting the sign of $\operatorname{Det}(D)$ (or $\operatorname{Pf}(D)$): $\sigma[D]$

$$
\langle A\rangle_{0} \equiv \frac{\int \mathcal{D} \phi A e^{-s^{\prime}}}{\int \mathcal{D} \phi e^{-S^{\prime}}}, \quad\langle A\rangle=\frac{\int \mathcal{D} \phi A \sigma[D] e^{-S^{\prime}}}{\int \mathcal{D} \phi \sigma[D] e^{-S^{\prime}}}=\frac{\langle A \sigma[D]\rangle_{0}}{\langle\sigma[D]\rangle_{0}}
$$

Normalized partition func.
$\left\langle\sigma[D]^{-1} e^{+S^{\prime}} e^{-\frac{1}{2} \sum_{i} \mu^{2} \phi_{i}^{2}}\right\rangle=\frac{\int \mathcal{D} \phi e^{-\frac{1}{2} \sum_{i} \mu^{2} \phi_{i}^{2}}}{Z}=\frac{\left\langle e^{s^{\prime}-\frac{1}{2} \sum_{i} \mu^{2} \phi_{i}^{2}}\right\rangle_{0}}{\langle\sigma[D]\rangle_{0}}$

$$
\Rightarrow w=Z_{\mathrm{P}}=\underbrace{\left(\int \mathcal{D} \phi e^{-\frac{1}{2} \sum_{i} \mu^{2} \phi_{i}^{2}}\right)}_{\text {calculable const. }} \frac{\left\langle\sigma\left[D_{\mathrm{P}}\right]\right\rangle_{0, \mathrm{P}}}{\left\langle e^{\left.S_{\mathrm{P}}^{\prime}-\frac{1}{2} \sum_{i} \mu^{2} \phi_{i}^{2}\right\rangle_{0, \mathrm{P}}}\right.}
$$

P: Periodic boundary cond.

Test with 1-dim model (SQM)

Supersymmetric Quantum Mechanics:
1 real scalar +1 complex fermion (+ aux. field)

Test with 1-dim model (SQM)

Supersymmetric Quantum Mechanics:
1 real scalar +1 complex fermion (+ aux. field)
known results with a bosonic potential: $\frac{1}{2} W^{\prime}(\phi)^{2}$

- $n=4: W=\lambda_{4} \phi^{4}+\lambda_{2} \phi^{2}$

Test with 1-dim model (SQM)

Supersymmetric Quantum Mechanics:
1 real scalar +1 complex fermion (+ aux. field)
known results with a bosonic potential: $\frac{1}{2} W^{\prime}(\phi)^{2}$

- $n=4: W=\lambda_{4} \phi^{4}+\lambda_{2} \phi^{2} \quad$ SUSY, $w=1$

Test with 1-dim model (SQM)

Supersymmetric Quantum Mechanics:
1 real scalar +1 complex fermion (+ aux. field)
known results with a bosonic potential: $\frac{1}{2} W^{\prime}(\phi)^{2}$

- $n=4: W=\lambda_{4} \phi^{4}+\lambda_{2} \phi^{2} \quad$ SUSY, $w=1$
- $n=3: W=\lambda_{3} \phi^{3}+\lambda_{2} \phi^{2}$

Test with 1-dim model (SQM)

Supersymmetric Quantum Mechanics:
1 real scalar +1 complex fermion (+ aux. field)
known results with a bosonic potential: $\frac{1}{2} W^{\prime}(\phi)^{2}$

- $n=4: W=\lambda_{4} \phi^{4}+\lambda_{2} \phi^{2} \quad$ SUSY, $w=1$
- $n=3: W=\lambda_{3} \phi^{3}+\lambda_{2} \phi^{2} \quad$ SUSY, $w=0$

Test with 1-dim model (SQM)

Supersymmetric Quantum Mechanics:
1 real scalar +1 complex fermion (+ aux. field)
known results with a bosonic potential: $\frac{1}{2} W^{\prime}(\phi)^{2}$

- $n=4: W=\lambda_{4} \phi^{4}+\lambda_{2} \phi^{2} \quad$ SUSY, $w=1$
- $n=3: W=\lambda_{3} \phi^{3}+\lambda_{2} \phi^{2} \quad$ SUSY, $w=0$

Lattice Action: $S=Q \wedge$

$$
\begin{aligned}
S=\sum_{k=0}^{N-1} & {\left[\frac{1}{2}\left(\phi_{k+1}-\phi_{k}\right)^{2}+\frac{1}{2} W^{\prime}\left(\phi_{k}\right)^{2}+\left(\phi_{k+1}-\phi_{k}\right) W^{\prime}\left(\phi_{k}\right)-\frac{1}{2} F_{k}^{2}\right.} \\
& \left.+\bar{\psi}_{k}\left(\psi_{k+1}-\psi_{k}\right)+W^{\prime \prime}\left(\phi_{k}\right) \bar{\psi}_{k} \psi_{k}\right]
\end{aligned}
$$

Catterall, Beccaria-Curci-D'Ambrosio,...
ϕ : scalar, F : aux. field, $\psi, \bar{\psi}$: fermions

Result: $n=4$

set $4 \mathrm{a}\left(L \lambda_{2}=1, L^{2} \lambda_{4}=1\right): \mu^{2}=2.5,0.88(5)$
set $4 \mathrm{~b}\left(L \lambda_{2}=4, L^{2} \lambda_{4}=1\right): \mu^{2}=2.0,0.984(12)$
set $4 \mathrm{c}\left(L \lambda_{2}=4, L^{2} \lambda_{4}=4\right): \mu^{2}=1.5,0.989(11)$

Result: $n=3$

set 3a $\left(L \lambda_{2}=4, L^{3 / 2} \lambda_{3}=4\right): \mu^{2}=1.5,-0.024(23)$ set $3 b\left(L \lambda_{2}=4, L^{3 / 2} \lambda_{3}=16\right): \mu^{2}=2.0,0.0004(7)$ set $3 c\left(L \lambda_{2}=4, L^{3 / 2} \lambda_{3}=32\right): \mu^{2}=1.5,-0.0009(8)$ set $3 \mathrm{~d}\left(L \lambda_{2}=2, L^{3 / 2} \lambda_{3}=16\right): \mu^{2}=1.5,-0.0005(6)$

Conclusions and Discussions

Conclusions and Discussions

$2-\operatorname{dim} \mathcal{N}=(2,2)$ super Yang-Mills on lattice a robust system (no sign problem): ready to enjoy physics

- SUSY breaking lattice artifacts vanish? YES
- seems no spontaneous SUSY breaking with SU(2)

Conclusions and Discussions

$2-\operatorname{dim} \mathcal{N}=(2,2)$ super Yang-Mills on lattice
a robust system (no sign problem): ready to enjoy physics

- SUSY breaking lattice artifacts vanish? YES
- seems no spontaneous SUSY breaking with SU(2)
- flat direction: scalar mass term
\Rightarrow twisted boundary condition?
- gravity dual???

Conclusions and Discussions

$2-\operatorname{dim} \mathcal{N}=(2,2)$ super Yang-Mills on lattice
a robust system (no sign problem): ready to enjoy physics

- SUSY breaking lattice artifacts vanish? YES
- seems no spontaneous SUSY breaking with SU(2)
- flat direction: scalar mass term
\Rightarrow twisted boundary condition?
- gravity dual???
the sign factor with a proper normalization
\Rightarrow Witten index, partition function (SQM)
- Witten index of BFSS model?

