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Lattice simulation: a non-perturbative method for field
theory non-perturbative aspects of SUSY

• SUSY breaking
Why our world is not supersymmetric?

• gauge/gravity duality
tool for strong coupling gauge theory

talks by S.Catterall, M.Hanada, S.Matsuura

• will be found in LHC ?
worth developing simulation techniques

• “Experiment” for theoretical analysis
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boson ϕ fermion λ

supersymmetry
(SUSY)

algebra: {Q,Q} = ∂ Q2 = Q
2
= 0

invariance of the action: QS = 0(= ∂X)
∂X = (∂X1)X2 . . . Xn + X1(∂X2) . . . Xn + · · ·

But on the lattice, Leibniz rule is broken! NO SUSY?
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— (exact) SUSY on lattice: impossible?
If N ≥ 2, it is possible!

• topological twist scalar Q on a site (Q2 = 0)

Scenario

• part of SUSY at finite , the whole is restored in → 0
(automatically/with only a few fine tunings)

• 2-dim: g has dim=1, -loop ∼ (2g2) → 0
no SUSY breaking quatum corrections

perturbative power counting: non-pertubativitly...?

First, we need to confirm this scenario in the simulation

Then, we measure SUSY breaking
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Formulation
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Target System: 2-dim N = (2,2) SYM

7

Q = 4 = 2D: a 2-dim cousin of 4-dim N = 4 (Q = 16)
Qα = (Q11+ γμQμ + γ5Q̃)α Dirac-Kähler (staggered)

nilpotent Q (Twisted) SUSY Algebra, continuum

Q2 = 0 Q2
0
= 0 {Q,Q0} = 2∂0

Action (dimensional reduction from 4-dim N = 1)

S =
1

g2

∫

d2 tr

¨
1

2
FMNFMN + Ψ

TCMDMΨ+ Ĥ2

«

= Q(...)

AM = (gauge field, scalar)

ΨT = (ψ0, ψ1, χ, η/2) (with a suitable rep. of M)

Ĥ = aux. field



Sugino model
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Sugino, JHEP 01(2004)067
target: 2-dim N = (2,2) SYM

nilpotent Q Lattice version

Q2 = δ
(gge)
ϕ

Q-exact action (lattice)

S = Q(. . . ) = S[U(,μ), ϕ(), ϕ(), H() bosons

η(), χ(), ψ0(), ψ1()] fermions

QU(, μ) = ψμ()U(, μ)

Qψμ() = ψμ()ψμ()

− (ϕ() − U(, μ)ϕ( + μ̂)U(, μ)−1)

Qϕ = 0

... U

ψμ, χ, η



Lattice Action (SU(NC))
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[ Scont. = Q
1

g2

∫

d tr{χH+ 1
4
η[ϕ,ϕ] + 2χF01 − ψμDμϕ} ]

Ssgino = Q
1

2g2

∑



tr

�

χ()H() +
1

4
η()[ϕ(), ϕ()]− χ()̂()

+ 
∑

μ=0,1

¦

ψμ()
�

ϕ()− U(, μ)ϕ(+ μ̂)U(, μ)−1
�©
�

=
1

2g2

∑



tr

�
1

4
̂TL()

2 + . . .

�

̂() =
U(,0,1) − U(,0,1)−1

1− 1

ε2
||1− U(,0,1)||2

∼ 2F01
with ||1− U(,0,1)|| < ε

To suppress lattice artifact “vacua”, we need:
0 < ε < 2

p
2 for NC = 2,3,4

0 < ε < 2
p

NC sin(π/NC) for NC ≥ 5
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Sugino model
Aμ, scalar ϕ()

CKKU model Cohen-Katz-Kaplan-Ünsal JHEP 0308 (2003) 024

Aμ + ϕ(μ) : complex link variables
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Sugino model
Aμ, scalar ϕ()

CKKU model Cohen-Katz-Kaplan-Ünsal JHEP 0308 (2003) 024

Aμ + ϕ(μ) : complex link variables

Both types give the same results: M.Hanada-I.K., JHEP 1101 (2011) 058
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Restoration of the full SUSY
No SUSY breaking lattice artifacts survive

I.K and H.Suzuki, NPB (2009), 420
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lattice model + scalar mass term
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In which stage is SUSY broken?

12

Target: 2-dim N = (2,2) SYM, SU(2)
lattice model + scalar mass term

+ thermal B.C.

1. lattice artifact Our interest

2. scalar mass term: to control the flat directions
Partially Conserved Super Current (PCSC)

3. boundary condition: anti-periodic in temporal direction
for fermion (thermal)

no effect to local Ward-Takahashi identity

PCSC relation
(Separate the effect of lattice artifact)

satisfied the lattice artifact vanishes
not satisfied does not vanish



PCSC relation
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4 supercharges: QA = {Q0,Q1, Q̃,Q}

Partially conserved supercurrent:

∂μJ
A
μ
= 0 ∂μJ

A
μ
= μ2/g2 YA (PCSC) μ: scalar mass

〈∂μJ A
μ
()XA(0)〉 −

μ2

g2
〈YA()XA(0)〉 = −δ2()〈QAXA(0)〉

(A: no sum)

〈∂μJ A
μ
()XA(0)〉

〈YA()XA(0)〉
=
μ2

g2
for  6= 0

YA = −2[C(2 tr(A2Ψ) + 3 tr(A3Ψ))]A ∼ (scalar)× (fermion)

XA =
1

g2
[0(2 tr(A2Ψ) + 3 tr(A3Ψ))]

A



PCSC relation (continuum limit)
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PCSC is satisfied no SUSY breaking due to lattice artifact



Simulation detail
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• Algorithm: Rational Hybrid Monte Carlo (RHMC)
(+ Multi-time step acceleration )

• lattice size: 3× 6–30× 10

• g = 0.2357–0.059

• 200–4,000 configurations

• 〈ψ()ψ(y)〉 = D−1(, y):
Brute force inversion with Lapack (always all-to-all
propagators)

cf. disconnected fermion loops in QCD
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Vacuum Energy
order parameter for SUSY breaking
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Observing spontaneous SUSY breaking

17

I.K.-Suzuki-Sugino, PRD77 (2008) 091502

no explicit breaking caused by lattice artifact
We can discuss spontaneous breaking

2-dim N = (2,2) SYM: maybe broken? Hori-Tong, JHEP 0705 (2007) 079

• order parameter 〈H〉 = 1
2
〈QJ

(0)
0 〉 ({Q,Q0} = 2∂0)

• measure with thermal boundary condition

• extrapolate to zero temperature (β→∞):
ground state energy density E

E = 〈H〉 at zero temperature

�
= 0 SUSY
6= 0 SUSY

• extrapolate the scalar mass to zero (before β→∞)
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(known): form of the potential broken or not
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gϕ3



SYM: Seems not broken
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I.K. PRD 79 (2009) 115015
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SYM: Seems not broken
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I.K. PRD 79 (2009) 115015
Ground state energy is consistent with 0
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Witten Index: normalized sign
The sign problem is a problem, but...

I.K. NPB841 (2010), 42



Witten index
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Witten index: useful index to detect spontaneous SUSY
breaking

• Witten index:  = tr(−1)Fe−βH = (NB − NF)
�
�
E=0

index 6= 0: SUSY
index = 0: SUSY or SUSY



Witten index

21

Witten index: useful index to detect spontaneous SUSY
breaking

• Witten index:  = tr(−1)Fe−βH = (NB − NF)
�
�
E=0

index 6= 0: SUSY
index = 0: SUSY or SUSY

• Lattice action with S = QΛ, Q2 = 0:
|λ〉 and Q|λ〉( 6= 0) make a pair as in the continuum

index is well defined
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∫

DϕDψDψexp(−SP)

P: Periodic boundary condition
a proper definition of the measure is needed
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Normalization...?

22

Witten index in path integral

 = ZP =

∫

DϕDψDψexp(−SP)

P: Periodic boundary condition
a proper definition of the measure is needed

Expectation value

〈A〉 =
∫

DϕDψDψAexp(−S)
∫

DϕDψDψexp(−S)
=

C
∫

DϕDψDψAexp(−S)
C
∫

DϕDψDψexp(−S)

Overall normalization of ZP seems impossible to determine
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Z =

∫

DψDψDϕe−SB−SF =

∫

Dϕσ[D]e−S
′
, S′ = SB − ln |Det(D)|

Reweighting the sign of Det(D) (or Pf(D)): σ[D]

〈A〉0 ≡
∫

DϕAe−S
′

∫

Dϕe−S′
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′
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=
〈Aσ[D]〉0
〈σ[D]〉0
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Z =

∫

DψDψDϕe−SB−SF =

∫

Dϕσ[D]e−S
′
, S′ = SB − ln |Det(D)|

Reweighting the sign of Det(D) (or Pf(D)): σ[D]

〈A〉0 ≡
∫

DϕAe−S
′

∫

Dϕe−S′
, 〈A〉 =

∫

DϕAσ[D]e−S
′

∫

Dϕσ[D]e−S′
=
〈Aσ[D]〉0
〈σ[D]〉0

Normalized partition func.

〈σ[D]−1e+S′e−
1
2

∑

 μ
2ϕ2 〉 =
∫

Dϕe
− 1
2

∑

 μ
2ϕ2



Z
=

�

e
S′− 1

2

∑

 μ
2ϕ2



�

0

〈σ[D]〉0
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Z =

∫

DψDψDϕe−SB−SF =

∫

Dϕσ[D]e−S
′
, S′ = SB − ln |Det(D)|

Reweighting the sign of Det(D) (or Pf(D)): σ[D]

〈A〉0 ≡
∫

DϕAe−S
′

∫

Dϕe−S′
, 〈A〉 =

∫

DϕAσ[D]e−S
′

∫

Dϕσ[D]e−S′
=
〈Aσ[D]〉0
〈σ[D]〉0

Normalized partition func.

〈σ[D]−1e+S′e−
1
2

∑

 μ
2ϕ2 〉 =
∫

Dϕe
− 1
2

∑

 μ
2ϕ2



Z
=

�

e
S′− 1

2

∑

 μ
2ϕ2



�

0

〈σ[D]〉0

 = ZP =

�∫

Dϕe−
1
2

∑

 μ
2ϕ2

�

︸ ︷︷ ︸

calculable const.

〈σ[DP]〉0,P
〈eS′P−

1
2

∑

 μ
2ϕ2 〉0,P

P: Periodic boundary cond.



Test with 1-dim model (SQM)

24

Supersymmetric Quantum Mechanics:
1 real scalar + 1 complex fermion (+ aux. field)



Test with 1-dim model (SQM)

24

Supersymmetric Quantum Mechanics:
1 real scalar + 1 complex fermion (+ aux. field)

known results with a bosonic potential: 1
2
W′(ϕ)2

• n = 4: W = λ4ϕ
4 + λ2ϕ

2



Test with 1-dim model (SQM)

24

Supersymmetric Quantum Mechanics:
1 real scalar + 1 complex fermion (+ aux. field)

known results with a bosonic potential: 1
2
W′(ϕ)2

• n = 4: W = λ4ϕ
4 + λ2ϕ

2 SUSY,  = 1



Test with 1-dim model (SQM)

24

Supersymmetric Quantum Mechanics:
1 real scalar + 1 complex fermion (+ aux. field)

known results with a bosonic potential: 1
2
W′(ϕ)2

• n = 4: W = λ4ϕ
4 + λ2ϕ

2 SUSY,  = 1

• n = 3: W = λ3ϕ
3 + λ2ϕ

2



Test with 1-dim model (SQM)

24

Supersymmetric Quantum Mechanics:
1 real scalar + 1 complex fermion (+ aux. field)

known results with a bosonic potential: 1
2
W′(ϕ)2

• n = 4: W = λ4ϕ
4 + λ2ϕ

2 SUSY,  = 1

• n = 3: W = λ3ϕ
3 + λ2ϕ

2 SUSY,  = 0



Test with 1-dim model (SQM)

24

Supersymmetric Quantum Mechanics:
1 real scalar + 1 complex fermion (+ aux. field)

known results with a bosonic potential: 1
2
W′(ϕ)2

• n = 4: W = λ4ϕ
4 + λ2ϕ

2 SUSY,  = 1

• n = 3: W = λ3ϕ
3 + λ2ϕ

2 SUSY,  = 0

Lattice Action: S = QΛ

S =

N−1∑

k=0

h1

2
(ϕk+1 − ϕk)2 +

1

2
W′(ϕk)2 + (ϕk+1 − ϕk)W′(ϕk)−

1

2
F2
k

+ ψk(ψk+1 − ψk) +W′′(ϕk)ψkψk

i

Catterall, Beccaria-Curci-D’Ambrosio,...

ϕ: scalar, F: aux. field, ψ,ψ: fermions



Result: n = 4
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set 4b (Lλ2 = 4, L2λ4 = 1) : μ2 = 2.0,0.984(12)
set 4c (Lλ2 = 4, L2λ4 = 4) : μ2 = 1.5,0.989(11)
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set 3a, N=21
set 3b, N=21
set 3c, N=21
set 3d, N=21
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set 3d, µ2=3.0

set 3a (Lλ2 = 4, L3/2λ3 = 4 ) : μ2 = 1.5,−0.024(23)
set 3b (Lλ2 = 4, L3/2λ3 = 16) : μ2 = 2.0,0.0004(7)
set 3c (Lλ2 = 4, L3/2λ3 = 32) : μ2 = 1.5,−0.0009(8)
set 3d (Lλ2 = 2, L3/2λ3 = 16) : μ2 = 1.5,−0.0005(6)
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2-dim N = (2,2) super Yang-Mills on lattice

a robust system (no sign problem): ready to enjoy physics

• SUSY breaking lattice artifacts vanish? YES

• seems no spontaneous SUSY breaking with SU(2)

• flat direction: scalar mass term
twisted boundary condition?

• gravity dual???

the sign factor with a proper normalization
Witten index, partition function (SQM)

• Witten index of BFSS model?
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