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Introduction and motivation

At extreme temperatures or densities, hadronic matter is expected to undergo a
change of state to a deconfined phase [Cabibbo and Parisi, 1975; Collins and
Perry, 1974]

Heavy ion collisions experiments at SPS, RHIC and LHC show evidence for ‘A
new state of matter’ [Heinz and Jacob, 2000, Arsene et al., 2004; Back et al.,
2004; Adcox et al., 2004; Adams et al., 2005; Aad et al., 2010; Aamodt et al.,
2010; Chatrchyan et al., 2011], which behaves as an almost ideal fluid [Kolb and
Heinz, 2003] (‘The most perfect liquid observed in Nature’)

Perturbative computations in thermal gauge theory are hindered by infrared
divergences [Kapusta, 1979; Linde, 1980; Gross, Pisarski and Yaffe, 1980] and
poorly convergent near Tc [Kajantie et al., 2002; Andersen et al., 2010]

Non-perturbative tools to study the strongly coupled quark-gluon plasma include:
1 Computer simulations [DeTar, 2011; Levkova, 2012] on the lattice [Wilson, 1974]

X based on the first principles of QCD
X mathematically well-defined, with no uncontrolled systematic uncertainty
7 only numerical results in the range of parameters relevant for continuum physics
7 not well-suited to study certain type of problems (real-time dynamics, large densities, . . . )

2 Holographic computations [Son and Starinets, 2007; Gubser and Karch, 2009] based on
the gauge/string duality [Maldacena, 1997; Gubser, Klebanov and Polyakov, 1998;
Witten, 1998]

X elegant analytical approach
X suitable for studying a large number of physical observables
7 not rigorously proven yet
7 practical computations rely on the approximation of an infinite number of colors
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More on the large-N limit

The N →∞ limit of a generic quantum theory is characterized by factorization
properties of VEV’s, and can be interpreted as a ‘classical limit’ [Yaffe, 1982]

The large-N limit of QCD, at fixed ’t Hooft coupling λ = g2N and fixed number
of flavors Nf clarifies certain non-trivial phenomenological aspects of QCD [’t
Hooft, 1974; Witten, 1979; Dashen, Jenkins and Manohar, 1994]

Dominance of planar diagrams and of the pure-glue sector, with corrections
suppressed by powers of 1/N:

A =
∞∑
G=0

N2−2G
∞∑
n=0

cG ,nλ
n

Analytical solutions in D = 1 + 1 dimensions [Gross and Witten, 1980]

Volume reduction [Eguchi and Kawai, 1982; Bhanot, Heller and Neuberger, 1982;
Gonzalez-Arroyo and Okawa, 1983; Kovtun, Ünsal and Yaffe, 2007]

Implications for the phase diagram structure at large densities [McLerran and
Pisarski, 2007]
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Goals of the works presented here

Test the dependence on N for strongly coupled theories at finite temperature, via
lattice simulations [Lucini, Teper and Wenger, 2003; Bringoltz and Teper, 2005;
Datta and Gupta, 2010]—see also [Teper, 2009]

Comparison with holographic models

Investigate non-perturbative contributions to the free energy

Generalization to the D = 2 + 1 case—Universal aspects? Possible relevance for
holographic applications to CM systems [Sachdev, 2010]?

Casimir scaling of Polyakov loops in different representations

Renormalized Polyakov loops
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Improved holographic QCD model – I

Kiritsis and collaborators [Gürsoy, Kiritsis, Mazzanti and Nitti, 2008] proposed an
AdS/QCD model based on a 5D Einstein-dilaton gravity theory, with the fifth
direction dual to the energy scale of the SU(N) gauge theory

Field content on the gravity side: metric (dual to the SU(N) energy-momentum
tensor), the dilaton (dual to the trace of F 2) and the axion (dual to the trace of
FF̃ )

Gravity action:

SIHQCD = −M3
PN

2
∫

d5x
√
g

[
R −

4

3
(∂Φ)2 + V (λ)

]
+ 2M3

PN
2
∫
∂M

d4x
√
h K

Φ is the dilaton field, λ = exp(Φ) is identified with the running ’t Hooft coupling
of the dual SU(N) YM theory

Dynamics defined by the choice of the dilaton potential V (λ)

The effective five-dimensional Newton constant G5 = 1/
(
16πM3

PN
2
)

becomes
small in the large-N limit
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Improved holographic QCD model – II

Ansatz for the dilaton potential V (λ), imposing asymptotic freedom with a
logarithmically running coupling in the UV and linear confinement in the IR of the
gauge theory

V (λ) =
12

`2

[
1 + V0λ+ V1λ

4/3
√

log
(
1 + V2λ4/3 + V3λ2

)]
,

Gauge/gravity duality expected to hold in the large-N limit only: calculations in
the gravity model neglect string interactions which can become non-negligible at
a scale MPN

2/3 ' 2.5 GeV in SU(3)

First-order transition from a thermal-graviton- to a black-hole-dominated regime

The model successfully describes the main non-perturbative spectral and
thermodynamical features of the SU(3) YM theory

Predictions for the plasma bulk viscosity, drag force and jet quenching
parameter [Gürsoy, Kiritsis, Michalogiorgakis and Nitti, 2009]

Generalization to theories with a nearly conformal regime [Alanen, Kajantie and
Tuominen, 2010]

Generalization to theories with dynamical fermions in the Veneziano
limit [Järvinen and Kiritsis, 2011]

Generalization to the D = 2 + 1 case
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Lattice QCD: The basics

Discretize a finite hypervolume in D-dimensional Euclidean spacetime by a regular
grid with finite spacing a

Transcribe gauge and fermion d.o.f. to lattice elements, e.g.:

Uµ(x) = exp[ig0aAµ(x + a/2)],

and build gauge-invariant lattice observables

Discretization of the continuum gauge action with the Wilson lattice
action [Wilson, 1974]:

S = β
∑
2

(
1−

1

N
Re Tr U2

)
, with: β =

2N

g2
0 a

4−D

Tree-level improvement [Weisz, 1983]:

S = β
∑
x

∑
µ<ν

{
3

2
−

1

N
Re tr

[
5

3
U1,1
µ,ν(x)−

1

12
U1,2
µ,ν(x)−

1

12
U1,2
ν,µ(x)

]}
A gauge-invariant, non-perturbative regularization

Amenable to numerical simulation: Sample configuration space according to a
statistical weight proportional to exp(−S)

Physical results recovered by extrapolation to the continuum limit a→ 0
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Thermodynamics on the lattice
Thermal averages from simulations on a lattice with compactified Euclidean time
direction, with T = 1/(aNτ )

Pressure p(T ) via the ‘integral method’ [Engels et al., 1990]:

p = T
∂

∂V
logZ '

T

V
logZ =

1

aDND−1
s Nτ

∫ β

β0

dβ′
∂ logZ
∂β′

=
D(D − 1)

2aD

∫ β

β0

dβ′ (〈U2〉T − 〈U2〉0)

Other equilibrium observables obtained from basic thermodynamic relations:

∆ = ε− (D − 1)p = TD+1 ∂

∂T

p

TD
=

D(D − 1)

2a4

∂β

∂ log a
(〈U2〉0 − 〈U2〉T )

ε =
T 2

V

∂

∂T
logZ = ∆ + (D − 1)p

s =
S

V
=
ε− f

T
=

∆ + Dp

T

Trace of the bare Polyakov loop in an irreducible representation r

tr

 Nt∏
nt=1

U
(r)
t (~x , ant)


obtained from the matrix elements in the defining representation, using Young
calculus and the Weyl formula
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Simulation details
Lattice sizes ND−1

s × Nτ , with Ns from 16 to 64, and Nτ from 5 to 12

Simulation algorithm: heat-bath [Kennedy and Pendleton, 1985] and
overrelaxation [Adler, 1981; Brown and Woch, 1987] on SU(2) subgroups
[Cabibbo and Marinari, 1982]; tests with full-SU(N) overrelaxation [Kiskis,
Narayanan and Neuberger, 2003; Dürr, 2004; de Forcrand and Jahn, 2005] and
with the USQCD Chroma suite [Edwards and Joó, 2004]

Non-perturbative scale determination for the Wilson action from the
literature [Necco and Sommer, 2001; Boyd et al., 1996; Lucini, Teper and
Wenger, 2004]

For the tree-level improved action: static potential at T = 0 from Wilson loops
W (r , L):

aV (r) = lim
L→∞

ln
W (r , L− a)

W (r , L)

Iteratively smeared spacelike links:

U
(i+1)
µ (x) = U ∈ SU(N) maximizing Re tr(U†W )

with:

W = (1− k)U
(i)
µ (x) +

k

4

∑
U

(i)
staple

Fits to the Cornell potential to extract a from the string tension in lattice units:

aV (r) = σa2 · r/a + aV0 +
γ

r/a
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Improved holographic QCD model vs. lattice data
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Improved holographic QCD model vs. lattice data
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AdS/CFT vs. lattice data in a ‘quasi-conformal’ regime

At T ' 3Tc the deconfined plasma becomes approximately scale-invariant, while still
strongly interacting and far from the Stefan-Boltzmann limit
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4
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Marco Panero, University of Helsinki & KITP The planar limit of strongly coupled gauge theories in 3+1 and in 2+1 dimensions 16/26



AdS/CFT vs. lattice data in a ‘quasi-conformal’ regime

In this temperature range, the entropy density is compatible with the supergravity
prediction for N = 4 SYM [Gubser, Klebanov and Tseytlin, 1998]

s
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=

3

4
+

45

32
ζ(3)(2λ)−3/2 + . . .

5 5.5 6 6.5 7 7.5 8 8.5 9
λ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
s
, 

n
o

rm
al

iz
ed

 t
o

 i
ts

 v
al

u
e 

in
 t

h
e 

n
o

n
-i

n
te

ra
ct

in
g

 l
im

it

SU(3)

SU(4)

SU(5)

SU(6)

SU(8)

supergravity model

Entropy density vs. ’t Hooft coupling

A comparison of N = 4 SYM predictions and full-QCD lattice results for the drag
force on heavy quarks also suggests λ ' 5.5 [Gubser, 2006]
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T 2 contributions to the trace anomaly?

The trace anomaly reveals a characteristic T 2-behavior, possibly of non-perturbative
origin [Meisinger, Miller and Ogilvie, 2002; Meǵıas, Ruiz Arriola and Salcedo, 2003;
Pisarski, 2006; Andreev, 2007]
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Extrapolation to N → ∞

Based on the parametrization [Bazavov et al., 2009]:

∆

T 4
=
π2

45
(N2 − 1) ·

(
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{
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[
(T/Tc )− f1
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)(
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Confining phase of SU(N) theories in D = 2 + 1 dimensions

In the confining phase, the equation of state is essentially independent of N for all
SU(N ≥ 3), and can be described by a gas of massive, non-interacting glueballs, whith
spectral density given by a simple bosonic closed string model [Isgur and Paton, 1985]

ρ̃D(m) = 2
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Deconfined phase of SU(N) theories in D = 2 + 1 dimensions

In the deconfined phase the equation of state is proportional to N2 − 1
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Deconfined phase of SU(N) theories in D = 2 + 1 dimensions

The trace of the energy-momentum tensor is dominated by contributions proportional
to T 2
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Generalities

The free energy associated with the bare Polyakov loop is divergent in the
continuum: renormalization required [Dotsenko and Vergeles, 1980]

Polyakov loops in different irreducible representations of the gauge group:
Tests of Casimir scaling [Döring et al., 2007; Hübner et al., 2007]
Equivalence of different irreducible representations in the large-N limit
Effective (matrix) models for the deconfinement region? [Pisarski, 2002]
The finite-T properties of strongly coupled gauge theories with dynamical fermions in
different representations are interesting for ETC models [Dietrich, Sannino and
Tuominen, 2005]—see also [Rummukainen, 2011; Del Debbio, 2010] for recent reviews

Polyakov loop renormalization through the constant term in the QQ̄ potential at
T = 0 [Kaczmarek, Karsch, Petreczky and Zantow, 2002; Hübner and Pica, 2008]

Gauge/string duality suggests that the renormalized Polyakov loop is a
monotonically increasing function of T [Noronha, 2009], in contrast with
perturbative computations [Burnier, Laine and Vepsäläinen, 2009; Brambilla,
Ghiglieri, Petreczky and Vairo, 2010]
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Bare and renormalized Polyakov loops

Strong evidence of Casimir scaling in bare Polyakov loops
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Bare and renormalized Polyakov loops

Strong evidence of Casimir scaling in bare Polyakov loops
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Bare and renormalized Polyakov loops

Strong evidence of Casimir scaling in bare Polyakov loops
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Bare and renormalized Polyakov loops

Strong evidence of Casimir scaling in bare Polyakov loops
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Bare and renormalized Polyakov loops

Renormalized Polyakov loops interpolate between a strongly coupled regime and a
perturbative regime [Dumitru et al., 2003; Gupta, Hübner and Kaczmarek, 2007]
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Bare and renormalized Polyakov loops

T−2 dependence of the logarithm of renormalized Polyakov loops close to Tc [Meǵıas,
Ruiz Arriola and Salcedo, 2005; Xu and Huang, 2011]
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Conclusions

In the deconfined phase, the equation of state of (non-supersymmetric)
Yang-Mills theories appears to be nearly exactly proportional to N2 − 1; this holds
both in both D = 3 + 1 and D = 2 + 1 dimensions

The IHQCD model provides a quantitative description of the results for the
D = 3 + 1 case

For the D = 3 + 1 case, the bulk thermodynamic quantities in a nearly conformal,
yet strongly coupled, regime near T ∼ 3Tc can be compared with holographic
predictions for N = 4 SYM

Both in D = 3 + 1 and D = 2 + 1 dimensions, ∆ exhibits a characteristic T 2

dependence in the deconfined phase

In the confining phase, the equation of state of YM theories in D = 2 + 1 can be
described in terms of a gas of massive, non-interacting glueballs (with
multiplicities independent of N—except for the N = 2 case), whose spectral
density can be modelled by a bosonic string model

Bare Polyakov loops in D = 3 + 1 dimensions show strong evidence of Casimir
scaling

Renormalized loops interpolate between a strong-coupling regime (revealing a
dependence on powers of T ) and a perturbative regime at higher temperatures
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