
A new numerical approach to 
evolution of 5D asymptotically 

AdS spacetimes

Frans Pretorius

Princeton University

Novel numerical methods workshop 
KITP, UCSB 

Jan 31, 2011



Outline

• Motivation & Background

– gauge-gravity dualities, in particular AdS/CFT

• A new approach using generalized harmonic 
(GH) evolution to study AAdS spacetimes
(work with Hans Bantilan & Steve Gubser)

– overview of the structure of AAdS spacetimes, and why it is not a 
trivial adaptation of a working asymptotically flat code

– basics of the GH approach

– first  step: 5D AAdS spacetime with SO(3) symmetry and 
massless scalar field with “non-deforming” boundary fall-off

– early results: the non-linear phase of quasi-normal ringdown of 
black holes, and corresponding boundary dynamics

• Conclusion and future work



Gauge/gravity duality from a non-string theorists 
perspective

• The main development in the past decade within string 
theory has been the discovery of gauge/gravity dualities

– even if string theory is not the theory of everything, that such a 
mapping exists is remarkable, and provides an alternative route 
to understanding gravity and strongly coupled gauge theories

• The first concrete duality [Maldacena 1998] conjectures a 
1-1 correspondence between states in type IIB string 
theory in asymptotically AdS5 x S5 spacetimes and 
4D, N  =4, SU(N) Yang-Mills theory

– in the limit of a strongly coupled gauge theory and large AdS
radius L relative to the string and Planck scales, the bulk 
spacetime is well described by Einstein gravity (plus possible 
form fields)



A few demonstrated/conjectured correspondences

• Stationary black holes dual to thermal states

• Perturbations of black holes dual to dynamics of ideal fluids

• Black hole collisions dual to models of the formation and 
thermalization of the quark-gluon plasma formed in heavy ion 
collisions

• Various condensed matter dualities: superconductors, 
superfluids, quantum Hall effect, etc … [see reviews by S. Hartnol, 
arXiv:1106.4324, G. Horowitz, arXiv:1010.2784; J. McGreevy, 
arXiv:0909.0518 ]

– Interesting that black holes are involved in most of these correspondences 
are they “merely” supplying a temperature and fluid-like properties, as might 
have been expected from classical/semiclassical black hole physics, or are 
there deeper connections? 

• Input that numerical relativity can bring to these studies are 
solutions to the classical gravity side of the correspondence in 
regimes difficult or impossible to study via analytic methods



5D AdS spacetime

• Global AdS in spherical-polar type coordinates 
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• spacetime of constant negative 
curvature  (R=-20/L2)

• the boundary metric (r) is the 4D 
Einstein static universe (R x S3)

• Poincare coordinates cover a 
conformally flat piece of global AdS (the 
Poincare patch) 

this segment of AdS is usually used for 
applications with a CFT on R3,1 ; we will solve the 
equations in global coordinates and transform to a 
patch as needed
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Main source of difficulty evolving AAdS spacetimes

• The boundary (“infinity”) is timelike, and correctly solving for the 
metric behavior approaching it is crucial to the problem; however the 
metric is singular in the limit  
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• This is not a “true” geometric 
singularity, though still has 
important physical consequences :

Infinite proper distance from any 
point in the interior to a point on 
the boundary on a t=const. slice; 
null signals will propagate back and 
forth in finite proper time, 
experiencing infinite red/blue shift 
in the process



Generalized harmonic evolution of AAdS spacetimes

• We want to solve Einstein’s equations with a scalar field matter 
source and cosmological constant L=-6/L2 ,

using the GH harmonic scheme [Garfinkle, PRD 65 (2002), FP CQG 
22 (2005)], with constraint damping [Gundlach et al., CQG 22 
(2005)]

– talks by Chesler, Garfinkle on alternative approaches

– The specific spacetimes we will look at here are high density initially time-
symmetric, axisymmetric concentrations of scalar field energy, that immediately 
form distorted black holes that ring down to AdS Schwarzchild black holes
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Generalized harmonic evolution of AAdS spacetimes

• Specifically, the Einstein equations in GH form are a set of coupled, 
qausi-linear hyperbolic PDEs, one for each metric element

where

and k and P are constraint damping parameters

• Because of the singular nature of the AAdS boundary, we cannot 
directly discretize these equations using the metric gmn and source 
functions Hm

– To describe the regularization, we first need to fix (in part) the gauge

  







L



TgTgCngPCn

HHgggg

























k
3

1
8

3

2
)1(2

2

1

)(

),(,),(,

tnxHC
mm

m



mm
  ;0



Coordinates

• Choose spherical polar coordinates (t,r,,q,), with a compactified
radial coordinate r related to the standard AdS coordinate r via

where l is some length scale; for simplicity we choose l=1 and define 
a related coordinate q=1- r so that the boundary is at q=0

• For a first study, consider spacetimes with SO(3) symmetry; i.e. non-
trivial fields only a function of (t,r,

– corresponds to axisymmetric spacetimes in the bulk, and will be dual to CFT 
states that have a related symmetry in the stress energy 

• AdS vacuum metric in these coordinates:
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Regular variables at the AAdS Boundaries

• First, analytically subtract out the divergent parts corresponding to 
pure AdS

• Second, for simplicity we want to use coordinates where the leading 
order power-law approach to the AdS boundary takes on the 
standard (Fefferman-Graham) form used in most of the AdS/CFT 
literature [Henneaux and Teitelboim, Comm.Math.Phys 98 (1985)] 

where m,n denote (t,,q,) components 
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Regular variables at the AAdS Boundaries

• Third, given the desired fall-off, factor out appropriate powers of q
so that we can place a simple Dirichlet boundary condition there on 
the leading order component [Garfinkle & Duncan, PRD 63 (2001)] ; 
putting all this together (with similar factoring for axis/origin 
regularity): 
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• we evolve the barred 
variables, and each one 
of them variables satisfies 
a Dirichlet condition at 
r1



GH equations approaching the AAdS Boundary

• Unfortunately, just defining variables that are regular and 
well-behaved in the limit is not good enough

– the field equations still contain terms that are individually singular, 
though should conspire to cancel in a well-behaved gauge

– to see this more clearly, expand the GH equations about q=0. define:

– the field equations in GH form are a set of wave equations, so substitute 
the above on and solve for a wavelike-operator acting on the leading 
order term 
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GH equations approaching the AAdS Boundary

• An illustrative example:

where  

and c0, c1, … are coefficients that depend on the particular equation, 
but are finite and regular in the limit q=0

• There are a hierarchy (the q-2 and q-1 terms in all the equations) of 
“constraints”, namely terms that do not contain second time 
derivatives of the field

– Note: these are not (entirely) the harmonic constraints

• Implies we are not free to choose the asymptotic form of the 
regularized source functions if the evolution is to preserve the 
desired asymptotic form of the metric

– e.g. “harmonic” with respect to AdS, i.e. H=HADS is not allowed (!) 
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Asymptotic choice of gauge

• Guided by the q=0 expansion, and some trial and error, we found the 
following asymptotic gauge choice works well (stable, consistent evolution) 
in the cases we have looked at so far

• many open questions regarding boundary conditions:

– what class of gauges are consistent with a given choice of the asymptotic metric, 
and constraint preserving?

– that we are not explicitly setting the leading order metric perturbation is akin to 
the way axis-regularity conditions are set; i.e., it is not a traditional boundary in 
the sense where one is free to set the modes coming into the computational 
domain

• this corresponds to a boundary theory without “sources”; if we need to add 
them, in general the leading order metric fall-off would change, and how 
would this alter the above regularity conditions? 
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Brief overview of code

• Discretize equations in base second order in space and time 
from

• Standard, second order accurate finite differences (requires 3 
time levels)

• Apparent horizon found via flow method, and used as basis for 
excision

• Kreiss-Oliger style numerical dissipation

• Berger & Oliger style AMR, multigrid (for initial data) and 
parallel support through PAMR/AMRD libraries



Initial Data

• Solve the constraints using ADM-based York-Lichnerowitz conformal 
decomposition

• For this study, restrict to time-symmetric initial data; momentum constraints 
trivially satisfied, solve the Hamiltonian constraint for a spatial metric that is 
conformal to pure AdS

• Non trivial initial curvature sourced by the scalar field; interestingly, for a 
scalar field profile with characteristic width of order the AdS length scale L, 
can specify arbitrary strong initial data; i.e. trapped surfaces of arbitrarily 
large radius present

open circles, mass at 
closed circles, mass from AH when 

present at t=0 L=1, spherically symmetric ID, width ~ L



AAdS Black Holes

• The 5D AdS-Schwarzschild black has metric is:

the horizon is at r=rH, where

and it has mass, entropy and temperature
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Quasi-normal modes of AAdS Black Holes

• Gravitational and scalar field perturbations of 5D AdS-
Schwarzschild black holes exhibit quasi-normal (QN) 
decay [Horowitz & Hubeny PRD 62 (2000); Review: Berti, 
Cardoso & Starinets CQG 26 (2009)]

– in general for the metric there are scalar, vector & tensor modes; 
here due to axisymmetry only scalar modes can be excited

– decompose scalar perturbation into scalar spherical harmonics on 
S3, Sklm(,q,j) ; again due to symmetry only k≠0; l=m=0.

– A given QN mode can then schematically be written as

– the decay time (imaginary mode) is of most interest to heavy ion 
collisions  thermalization/equilibration time scale of boundary 
state
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Quasi-normal modes of AAdS Black Holes

• For large BHs relative to L (rH>L), there are fast

and slow

gravitational QNMs; the former can be thought of as 
related to “microscopic” perturbations of the boundary 
state, the latter “hydrodynamic”. 

• The scalar field only has fast modes
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Quasi-normal modes of AAdS Black Holes

• form a distorted BH via 
asymmetric scalar field collapse
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Quasi-normal modes of AAdS Black Holes

• form a distorted BH via 
asymmetric scalar field collapse
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Quasi-normal modes of AAdS Black Holes

• To give some idea of how “non-linear” we are, below is the ratio of 
equatorial to polar circumference of AH for increasing asymmetric ID

• Can describe asymptotic behavior of fields as a superposition of linear QN 
modes, plus what appears to be a gauge mode (a purely decaying 
exponential); the non-linearity manifests in higher k-number modes through 
the appearance harmonics of the lower k-modes



Boundary stress energy

• The AdS/CFT dictionary says

where (q)Tuv is the Brown-York quasi-local stress energy tensor 
associated with a q=const. surface (with intrinsic metric Suv, extrinsic 
curvature Kuv, and intrinsic Einstein tensor Guv)

and we have subtracted off the AdS Casimir term (arising due to the 
chosen S3 topology)
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Boundary stress energy : wy/wx=4

• To compare, The AdS-Schwarzschild solution describes a thermal state 
on S3 with (L=1):
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Boundary stress energy : wy/wx=32

• To compare, The AdS-Schwarzschild solution describes a thermal state 
on S3 with (L=1):
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Hydrodynamics of the boundary SET

• Correspondence suggests if the bulk is dual to a thermal state on 
the boundary, the boundary SET should behave like a N  =4 SYM
conformal fluid

where up to 2nd order in a derivative expansion of the fluid 
velocity 



Hydrodynamics of the boundary SET

• with equation of state and transport coefficients given by

with energy density , pressure P, fluid 4-velocity u, shear 
tensor sun , Weyl curvature tensor Cun , temperature T, number 
of fields Nc (relate to G), shear viscosity , stress relaxation 
timet, shear vorticity coupling ts, shear-shear coupling xs and 
Weyl curvature coupling xC. 



Hydrodynamics of the boundary SET

• Strategy to test for consistency 

– evaluate divergence of the extracted boundary SET 
… is it converging to zero? Yes. 

– from the extracted boundary SET, compute an 
energy density and 4 velocity … using this and the 
constitutive relations, reconstruct the SET order by 
order in the derivative expansion and compare to 
the remaining components of the extracted SET

• i.e. we have 4 independent components of the 
extracted SET (,v,P,Pq/), but if the dynamics is of 
that of a thermal fluid, only 2 are independent



Boundary Hydrodynamics : extracted velocities

wy/wx=4 wy/wx=32



Boundary Hydrodynamics : consistency with a SYM 
fluid

wy/wx=4 wy/wx=32



Connecting to QGP flows 

• The simulations were 
performed in global 
coordinates; to relate to 
hydrodynamics in 
Minkowski spacetime we 
need to extract a Poincare 
patch of the boundary

– some freedom in terms of 
which patch to use and the 
conformal transformation 
from S3xR to  R3,1 : use a 
transformation by Gubser
[PRD82, 2010] designed to 
capture deviations from 
translational invariance 
orthogonal to the collision 
axis in the Bjorken flow 
picture

– time-symmetric conditions 
suggest t=0 is a decent 
approximation to the 
“moment of collision” 
(though we’re starting with 
a thermal state)

Temperature, wy/wx=32
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Conclusions

• Future extensions/applications

– connect simulation results to QGP experiments by some post-
process description of particle production (e.g. Cooper-Frye) 

• based on this tune gravity initial conditions to best model experiments

– relax symmetries and initial data to model non-central 
collisions, and possibly a pre-thermalization stage of the 
collision (soliton collisions?)

– theoretical questions : how far can the gravity/fluid duality 
be pushed, “instability” of AdS in the sense of Bizon et al., 
etc.

– adding various matter fields, including those corresponding 
to operator insertions in the CFT and hence “deformed” AdS
asymptotics



GH equations approaching the AAdS Boundary

• An illustrative example:

where  

and c0, c1, … are coefficients that depend on the particular equation, 
but are finite and regular in the limit q=0.
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